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Abstract

While statistical uncertainties at the Large Hadron Collider (LHC) continue to decrease,
uncertainties pertaining to theoretical modelling become more and more dominant, de-
manding higher precision in event-generation tools. At the same time, it has become
evident that the computing power available to LHC experiments is unlikely to meet the de-
mand during the high-luminosity phase of the LHC. For the discrimination of new-physics
signals from (known) Standard-Model phenomena, detailed knowledge of unwanted back-
ground processes is necessary with high statistical significance. The precision and effi-
ciency constraints of current event generators therefore hinder the full realisation of the
physics potential of the LHC as well as future colliders.

Parton showers are among the most widely used theoretical tools in collider physics
and core part of any multi-purpose Monte Carlo event generator. Despite their vital
importance in the modelling of so-called logarithmically enhanced radiation, these algo-
rithms employ a series of approximations yielding only limited accuracy in the descrip-
tion of highly-complex collider events. While the situation may be improved upon by the
systematic combination with accurate (and often precise) perturbative calculations, via
procedures known as matching and multi-jet merging schemes, typically, the complexity
of such algorithms render these inefficient for events with many particles. Moreover, the
combination of parton-shower simulations with precision calculations is so far limited to
the next-to-leading order in a perturbative series of the strong coupling constant with
first approaches extending it to the next-to-next-to-leading order for a few processes.

This thesis focusses on a so-far little explored parton-shower framework called sector
showers, which is designed for the efficient combination with higher-order perturbative
corrections. Within the sector-shower approach to parton showers, the branching phase
space is divided into non-overlapping regions, each of which corresponds to a certain
parton-shower branching. This drastically reduces the usually factorially growing number
of so-called parton-shower histories to only a single history in best cases.

A new and full-fledged implementation of sector showers in the VINCIA antenna shower
in PYTHIA 8.3 is presented alongside a dedicated multi-jet merging scheme. It is demon-
strated that the maximally bijective nature of sector showers directly translates into a
drastically improved scaling of the event-generation time and memory footprint with the
particle multiplicity. First steps towards and efficient algorithm to match the new shower
implementation with fixed-order calculations are presented. To this end, it will be demon-
strated how the use of analytic forms of so-called one-loop amplitudes can significantly
accelerate state-of-the-art precision calculations. Facilitated by the use of sector showers,
a proof-of-concept implementation of a novel method to match parton showers to second-
order calculations will be outlined. As a proof of the usability of the revised VINCIA
antenna shower in real-life setups, a study of Higgs production in the phenomenologically
interesting vector boson fusion channel is presented.

i





Publication List

This thesis is based on the following works:

I Helen Brooks, Christian T Preuss, and Peter Skands, Sector Showers for Hadron
Collisions, JHEP 07 (2020) 032, doi:10.1007/JHEP07(2020)032, [arXiv:2003.00702]

II Helen Brooks, Christian T Preuss, Efficient multi-jet merging with the Vincia sector
shower, CPC 264 (2021) 107985, doi:10.1016/j.cpc.2021.107985, [arXiv:2008.09468]

III Stefan Höche, Stephen Mrenna, Shay Payne, Christian T Preuss, and Peter Skands,
A Study of QCD Radiation in VBF Higgs Production with VINCIA and PYTHIA,
submitted to SciPost Physics, [arXiv:2106.10987]

IV John M Campbell, Stefan Höche, and Christian T Preuss, Accelerating LHC phe-
nomenology with analytic one-loop amplitudes: A C++ interface to MCFM, sub-
mitted to EPJC, [arXiv:2107.04472]

V John M Campbell, Stefan Höche, Hai Tao Li, Christian T Preuss, and Peter Skands,
Towards NNLO+PS Matching with Sector Showers, submitted to PLB,
[arXiv:2108.07133]

Additionally, the following work has been published during the candidature, but is not
included in this thesis:

VI Nick Baberuxki, Christian T Preuss, Daniel Reichelt, Steffen Schumann, Resummed
predictions for jet-resolution scales in multijet production in e+e− annihilation,
JHEP 04 (2020) 112, doi:10.1007/JHEP04(2020)112, [arXiv:1912.09396]

iii

https://inspirehep.net/literature/1783225
https://inspirehep.net/literature/1812784
https://inspirehep.net/literature/1869512
https://inspirehep.net/literature/1880907
https://inspirehep.net/literature/1905669
https://inspirehep.net/literature/1771860




Declaration

I hereby declare that this thesis contains no material which has been accepted for the
award of any other degree or diploma at any university or equivalent institution and
that, to the best of my knowledge and belief, this thesis contains no material previously
published or written by another person, except where due reference is made in the text
of the thesis.

This thesis includes 2 original papers published in peer reviewed journals and 3 submitted
publications. The core theme of the thesis is the improvement of the efficiency and
precision of particle-level event simulations in Monte Carlo event generators. The ideas,
development, and writing up of all the papers in the thesis were the principal responsibility
of myself, the student, working within the School of Physics and Astronomy under the
supervision of Peter Skands.

The inclusion of co-authors reflects the fact that the work came from active collaboration
between researchers and acknowledges input into team-based research.

My contribution to each of the included works is stated below.

Publication title Sector Showers for Hadron Collisions
Status Published, Thesis Chapter 4
Student contribution (75% )
Developed the initial-state sector criteria. Wrote the code implementation and validated
it. Performed the phenomenological studies of initial-state and final-state sector showers.
Wrote the paper draft.
Collaborator contributions
Helen Brooks (10% ) Helped with the implementation of resonance-final sector showers
and performed the phenomenological study with them. Contributed to discussions and
the write-up.
Peter Skands (15% ) Developed the idea and implemented the antenna functions. Re-
sponsible for overall project management. Contributed to discussions and the write-up.

Publication title Efficient multi-jet merging with the Vincia sector shower
Status Published, Thesis Chapter 5
Student contribution (75% )
Contributed to the code implementation. Validated the merging implementation and
performed the speed and memory benchmarking. Performed the phenomenological study.
Wrote the paper draft.
Collaborator contribution
Helen Brooks (25% ) Developed the underlying code structure for the merging implemen-
tation. Contributed to discussions and proof-read the write-up.

v



vi CONTENTS

Publication title Accelerating LHC Phenomenology with analytic one-loop amplitudes:
A C++ Interface to MCFM
Status Submitted, Thesis Chapter 6
Student contribution (50% )
Initiated the development and lead the collaboration. Contributed to the code implemen-
tation and validation. Performed the benchmarking. Contributed to the write-up.
Collaborator contributions
John M Campbell (25% ) Developed and validated the code implementation. Performed
cross-checks with MCFM. Contributed to discussions and the write-up.
Stefan Höche (25% ) Developed and validated the code implementation. Performed the
benchmarking. Contributed to discussions and the write-up.

Publication title Towards NNLO+PS Matching with Sector Showers
Status Submitted, Thesis Chapter 7
Student contribution (60% )
Developed the NNLO matching formalism. Wrote the code implementation of the an-
tenna subtraction method and contributed to the implementation of two-to-four showers.
Implemented matrix-element corrections and the COMIX interface. Validated the code
implementation. Initiated and lead the collaboration; organised regular meetings. Wrote
the paper draft.
Collaborator contributions
John M Campbell (8% ) Helped with the development of the subtraction method and
analytical integration of antenna functions. Implemented analytic matrix elements. Con-
tributed to discussions and the write-up.
Stefan Höche (10% ) Helped with the development of the matching method and analytical
integration of antenna functions. Implemented the COMIX interface. Contributed to
discussions and the write-up.
Hai Tao Li (10% ) Originally developed the two-to-four antenna shower framework and
contributed to its re-implementation in VINCIA. Validated the code implementation. Con-
tributed to discussions and proof-read the write-up.
Peter Skands (12% ) Originally developed the two-to-four antenna shower framework and
the NLO matrix-element correction method. Implemented the basic matrix-element cor-
rection framework. Contributed to discussions and the write-up.

Publication title A Study of QCD Radiation in VBF Higgs Production with VINCIA and
PYTHIA
Status Submitted, Thesis Chapter 8
Student contribution (70% )
Extended the merging implementation for VBF processes, wrote the POWHEG hooks for
VINCIA. Lead the phenomenological study. Generated the POWHEGBOX event sam-
ples and performed the leading-order event generation using SHERPA event samples and
PYTHIA-internal events. Performed the study of non-perturbative effects. Produced all
plots and wrote the paper draft.
Collaborator contributions
Stefan Höche (6% ) Generated the SHERPA event samples. Contributed to discussions and
the write-up.
Stephen Mrenna (6% ) Implemented the parallelisation for VINCIA. Performed the tree-
level merged event generation with SHERPA event samples.
Shay Payne* (3% ) Helped with the NLO-matched event generation with POWHEG event
samples. Contributed to the write-up.
Peter Skands (15% ) Developed the original idea for the study. Defined and suggested
new observables. Contributed to discussions and the write-up.



CONTENTS vii

* marks co-authors who were Monash students while part of the work was undertaken.

I have not renumbered sections of submitted or published papers.

Student Name: Christian Tobias Preuss Date: August 26, 2021

I hereby certify that the above declaration correctly reflects the nature and extent of the
student’s and co-authors’ contributions to this work. In instances where I am not the
responsible author I have consulted with the responsible author to agree on the respective
contributions of the authors

Main Supervisor Name: Peter Skands Date: August 26, 2021





Acknowledgements

What a journey this has been – both literally and figuratively. The past years have
certainly been very different to what I had imagined, but it has nevertheless been a
tremendous and unforgettable experience. This thesis would not be what it became
without the help and work of so many people who accompanied this journey.

First and foremost, I want to express my gratitude to my supervisor Peter Skands.
It has been an exceptional pleasure to work with him and I am glad to have had him
as my supervisor, mentor, and friend. Without Peter’s support and advice from the
very first second, not only on physics but life in general, I would not have been able to
complete my degree the way I did. I have benefited from Peter’s vast knowledge and
physics intuition. I would like to thank him for giving me the freedom to bring in my own
ideas, for encouraging me to follow my intuition, for allowing me to attend the CTEQ
school in Pittsburgh and to spend time at Fermilab, for encouraging me to collaborate
with other academics, for staying excited when I was critical and for being critical when
I was excited.

I would also like to thank my associate supervisor German Valencia for his continuous
encouragement to work on BSM modelling. The chats we had were always stimulating
and I have learned many new things along the way. The atmosphere in the HEP group
at Monash has made my candidature especially pleasant. The regular group meetings,
coffee (and cake) sessions, and student get-togethers have always been terrific, both in
person and online. I would like to thank everyone in the group for making it possible
for me to regularly join these while I was overseas. I want to thank my fellow postgrads
and especially Cody Duncan for the great atmosphere in the cohort. My work would
not have been possible without the administrative help by Jean Pettigrew and Karen Lee
and the financial support by Monash University through the Monash Graduate Scholar-
ship, the Monash International Postgraduate Research Scholarship, and the J.L. William
Scholarship.

My first year at Monash would not have been the same without Helen Brooks, whose
office door was always open for me and who patiently answered all my questions on
showers, VINCIA, PYTHIA, and coding. I am thankful to her for teaching me the art of
merging and for her help with the implementation of the MESS.

Steffen Schumann deserves special mention here, as it is due to him that I have chosen
to work on phenomenology. Without his encouragement to move away for a PhD I would
not have chosen to go to Monash, a decision I am exceptionally happy to have made. I
would also like to thank Daniel Reichelt for many discussions on colour correlations and
resummation and for chauffeuring me through the suburbs of Chicago.

I am fortunate to have had the opportunity to work with John Campbell and Stefan
Höche. Their interest in my work, the countless discussions we had online, and their im-
mense expertise and experience have shaped my understanding of fixed-order calculations,

ix



x CONTENTS

subtraction schemes, and matching. It truly felt like having two additional supervisors
and I would like to thank both of them for their support. I am also glad to have worked
with Hai Tao Li, whose help with the implementation and debugging of the two-to-four
branching framework was indispensable.

During my candidature, I had the chance to join the PYTHIA collaboration and I would
like to thank everyone in the collaboration not only for accepting me as a new member,
but also for stimulating meetings and PYTHIA weeks. Especially, I want to thank Philip
Ilten for thorough reviews of my code, Stephen Mrenna for help with parallelisation, and
Stefan Prestel for interesting and helpful chats on matching and merging.

My friends, both in Europe and Australia, should be mentioned here. Especially, I
would like to thank Benedikt Ringbeck for his strong and long-lasting friendship and for
his comments on the introduction of this thesis. Without Jake Bartels I wouldn’t have
settled in Melbourne as quickly and comfortably as I did and he was the best flatmate
and friend I could have wished for.

Finally, I cannot express how grateful I am to have a supporting and loving family.
My sister Dorothee Preuss who made my childhood and youth as exceptional as it it could
be and with whom I can always talk about everything I have on my heart. My Mama,
Angela Preuß, who fostered my independence, my critical thinking, and encouraged me to
philosophise about politics, nature, and religion – I will never forget the myriad late-night
discussions with her about Gott und die Welt. My Opa, Rudolf Preuß, who taught me the
value of education and who never hesitated to support my education. My Schwiegereltern,
Birgit and Uwe Lemties, who always made me feel welcome to the family and who fueled
me with Nervennahrung during my last year of candidature. Most importantly, I owe my
partner Luisa Lemties a debt of gratitude. The past years have certainly not always been
easy, living a world away from each other for most of the time and having to stand through
the world locking down while being separated. Her patience with me, her unconditional
support in every situation, and her laid-back character have guided me through life over
the past years. It is beyond words how fortunate I am to share my life with Luisa and
how incredibly happy I am about our beautiful baby daughter Leah. Although I have not
had the time I wished I had for both of them during the writing of this thesis, calling
them my family is one of the best things in my life.

Put something silly in the world
That ain’t been there before.
Shel Silverstein Put Something In



1
Introduction

Curiosity is one of the most natural drives of human life. When receiving a present, the
first thought that crosses one’s mind is »what’s in there?«. In a way, particle physicists
are just like children on their birthdays, seeing a huge table full of nicely-wrapped presents
thinking of nothing else but this very question. Unarguably, there is a difference: the gift
is nature itself and it neither comes served on a table nor neatly wrapped in shiny paper.
The question, however, stays the same: »what’s in there?«. Let us take it as a guide into
the fascinating world of Elementary Particle Physics.

When zooming in on whatmatter is comprised of, cf. fig. 1.1, we will first seemolecules
emerge, which in turn are bound states of multiple atoms. The nature of atoms was for a
long time subject of philosophical discussion. While in ancient Greek natural philosophy,
the word atomos already reflected the understanding of a “granular” nature of matter,
being built from “uncuttable” objects [1], it was later observed by English chemist John
Dalton that different chemical compounds containing the same element come in constant
mass ratios, formulated in terms of the law of multiple proportions. This confirmed that
each element is indeed made up of a single type of atoms with a specific mass. The theory
of “uncuttable” atoms then underwent a rapid series of changes around the turn of the 19th

and 20th century. It was Sir J.J. Thomson who discovered the existence of “corpuscles”,
small charged particles which are lighter1 than atoms [2], today known as electrons. As
he discovered these new particles in cathode rays, he came to the conclusion that they
must be subatomic, meaning they form parts of the atoms in the cathode material – the
end of the idea of the indivisable atom. The atomic model he described is often referred
to as the “plum pudding” model: negatively charged electrons (“plums”) sit uniformly
distributed inside the positively charged atom “pudding”. This perspective was disproved
by the Rutherford scattering experiments2, in which alpha particles were shot on gold
foil [3, 4]. Different to what one would expect from Thomson’s model, a proportion of
particles were deflected to large angles. This led Rutherford to the proposal of an atomic
nucleus3, in which all of the positive charge is concentrated, surrounded by a sphere of
electrons [5]. With the positive charges centred in the atom, positively charged alpha
particles (themselves being helium-4 nuclei) are deflected by the nucleus’ electric field.
As quantum theory emerged [6, 7] and it was observed that atoms emit light in discreet
frequencies only [8–11], it became clear that such a “planetary” model of the atom had

1Thomson himself reported them to be smaller than atoms, which from today’s perspective of point-
like electrons seems ill-defined.

2The experiments were actually conducted by Hans Geiger and Ernest Marsden.
3The physical term nucleus is borrowed from the biological term for the cell nucleus.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: From left to right: illustration of a water molecule, a hydrogen atom with
electron orbitals, a helium-4 nucleus (α particle), a proton consisting of two
up and one down quark held together by gluons (curly lines). Length scales
not to scale.

critical deficiencies. If electrons really orbit the atomic nucleus, they necessarily must
emit bremsstrahlung as a consequence of them being accelerated charges. This not only
means that they emit light with a continuous spectrum, but more direly that eventually
they will lose all their energy and fall right into the nucleus, making atoms unstable. This
issue is circumvented in the Bohr model, named after Danish physicist Niels Bohr, which
postulates that electron orbits are quantised [12], meaning that only those “stationary”
orbits with radii of integer multiples of the Planck constant ~ 4 are allowed in order for
the atoms to remain stable. The criterion of discrete circular orbits was later loosened to
ellipses by Arnold Sommerfeld [13]. With the formulation of Quantum Mechanics [14–17],
the Bohr model got a new spin: electrons do not travel on orbits, but instead surround
the nucleus as a “cloud” called orbital, corresponding to the probability density of the
electron’s position. In 1932, Carl Anderson discovered a “positive electron” in cosmic ray
tracks in a cloud chamber [18], theorised before by Paul Dirac as an implication of his
relativistic description of the electron [19]. Today, we call this antiparticle of the electron
the positron [20] and know that to each matter particle there exists an antimatter particle.

After the discovery of the neutron by James Chadwick in 1932 [21, 22], models of
the nucleus were developed containing both, positively charged protons and electrically
neutral neutrons [23–26]. Because protons repel each other by the electric force, they must
be bound together in the nucleus by another stronger force, hence dubbed the strong force.
It was then observed that the strong force had a symmetry : it treats both protons and
neutrons in the same way (different to the electromagnetic force, which only acts on
protons). Moreover, Murray Gell-Mann and George Zweig independently proposed the
quark model [27, 28], describing protons and neutrons not as fundamental particles but
composite objects of three new particles called quarks. The term quark was coined by
Murray Gell-Mann, who took inspiration from the Irish novelist James Joyce’s illegible
work Finnegan’s Wake, in which the following lines can be found [29]:

Three quarks for Muster Mark!
Sure he hasn’t got much of a bark
And sure any he has it’s all beside the mark.

The quark model may be seen as a generalisation of the proton-neutron symmetry men-
tioned above, but assumes a symmetry between three quark “flavours” up (u), down (d),

4The Planck constant h = 6.62607015 × 10−34 m2kgs−1, named after German physicist Max Planck
who introduced it in [6, 7], is the fundamental constant relating the frequency of a photon to its energy,
Eγ = hνγ. The quoted constant ~ = h/2π denotes the reduced Planck constant.
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and strange (s), i.e., that there is no way to distinguish the three5. The existence of this
symmetry has a striking feature: it provides a rigorous and systematic way to derive the
composition and properties of other hadrons, i.e., particles comprised of a combination
of quarks and/or antiquarks. Today, we know that the up, down, and strange quarks
are only the three lightest of a total of six quark flavours, with an additional three heavy
quarks called charm (c), bottom (b), and top (t). The latter is almost 200 times heavier
than a hydrogen atom and was discovered in 1995 at Fermilab’s Tevatron [30,31].

Some atomic nuclei are unstable and decay via the emission of alpha particles (α
decay), an electron and an electron-antineutrino (β decay), or high-energy photons (γ
decay). We have seen above how the study of α particles shaped the understanding
of atoms, eventually leading us to the strong force which keeps atomic nuclei together.
Similarly, studies of β decay shaped our understanding of the weak force. In order to save
energy-momentum conservation in β decay, Wolfgang Pauli hypothesised the existence
of a new particle in an open letter to Lise Meitner [32]. He proposed that the electron
emitted in the decay is accompanied by an extremely light particle – the neutrino6 –
which could take the necessary recoil in the reaction. This idea was taken up by Enrico
Fermi, who formulated a first theory of this type of interaction, represented by a four-
point vertex between the proton, the neutron, the electron, and the anti-neutrino in the
decay [33]. The existence of the so-far hypothetical neutrino was only shown about twenty
years later by Frederick Reines and Clyde Cowan [34]. Today, we know that leptons, just
as quarks, come in six flavours; there are three charged leptons: the electron (e−), the
muon (µ−), and the tau-lepton (τ−); and three neutral leptons: the electron-neutrino
(νe), the muon-neutrino (νµ), and the tau-neutrino (ντ).

Figure 1.2: The particle content of the
Standard Model.

In modern particle physics, the un-
derstanding of subatomic particles is con-
densed in the Standard Model of Parti-
cle Physics. Within the Standard Model,
matter particles are described in terms of
quasi-localised7 point-like excitations of a
quantum field. The particle content of the
Standard Model is depicted in fig. 1.2. In-
teractions between particles are formulated
in terms of local gauge symmetries, im-
posing that observable phenomena be in-
variant (symmetric) under a local redefini-
tion (gauge) of the unobservable quantum
fields. Simply spoken, any measurement
must not depend on the specific choice of
unmeasurable quantities. The Standard
Model contains three such local gauge sym-
metries with the catch that each of them
gives rise to force carrier particles in the

form of gauge bosons. Within the canonical interpretation of quantum field theory, gauge
bosons are thought of as mediating the interaction between matter particles. As an exam-
ple, photons are considered to mediate the electromagnetic force, formulated as Quantum
Electrodynamics (QED) in the Standard Model. The aforementioned weak and strong

5This symmetry holds only if the masses of the three quarks are identical. As this is not the case, but
the masses are of similar magnitude, this symmetry holds only approximately.

6Interestingly, Pauli first called it neutron.
7The uncertainty relation formulated by Werner Heisenberg in [35] forbids the simultaneous precise

measurement of the position and momentum of any object.



4 CHAPTER 1. INTRODUCTION

force are mediated by the W± and Z0 bosons and eight gluons, respectively. As such, it
is the W− boson that mediates the β− decay reaction n → p + (W− → e− + ν̄−e ) and
the gluons are responsible for “gluing” the quarks in hadrons together. The latter were
observed in electron-positron collisions at the DESY Positron-Electron Tandem Ring Ac-
celerator (PETRA) in 1979 [36–38], whereas the existence of the weak bosons W± and
Z0 was observed in 1983 in measurements of proton-antiproton collisions at the CERN
Super Proton Synchrotron (SPS) [39,40]. Probably the most famous particle is the Higgs,
which contrary to the gluon, Z0, and W± is not a gauge boson, i.e., does not mediate a
force. Instead, fundamental particles (except for neutrinos which are assumed massles in
the Standard Model) obtain their masses by interacting with the Higgs field. After years
of searching, the Higgs was finally discovered at the CERN Large Hadron Collider (LHC)
in 2012 [41, 42]. It concluded the search for the Standard-Model particles and added the
last piece to the theory.

Although the Standard Model has impressively proven its own success, it cannot be the
whole story. To name only a few shortcomings, it is now known that neutrinos must have
a non-zero mass, while they are predicted exactly massless in the Standard Model; the
ordinary matter makes up only a few percent of the matter in the universe; the Standard
Model describes only three of the four forces we deem fundamental today, but leaves out
gravity. Hence, we are not merely asking the question »what’s in there?« but rather the
humble questions »where does everything come from and how does the universe work?«.
To address these, further research for new physics and physics beyond the Standard Model
is necessary.

Figure 1.3: Overview of the LHC and its
experiments. Taken from [43].

The history of (subatomic) particle
physics is also a history of particle accel-
erators and particle collisions, with sim-
ple cathode rays at the beginning of the
story and large-scale colliders, such as the
LHC shown in fig. 1.3, at the end. So
why do we need to accelerate and collide
particles for our understanding of the uni-
verse? As smaller and smaller length scales
are probed, increasingly small wave lengths
are needed, corresponding to increasingly
large energies. This is the reason why par-
ticle physics today is often also referred to
as high-energy physics. Colliders are large
linear or circular tubes, in which (typically
two8) particle beams are accelerated to ve-
locities close to the speed of light and then collided at certain interaction points. The
products of reactions between the beam particles are then measured by detectors sur-
rounding the beam pipe at these interaction points.

On first sight there seems to be a wide gap between the mathematically complex
Standard Model and the reconstructed tracks of particles in detectors of high energy
physics experiments. This is where Monte Carlo event generators come into play. Event
generators are multi-purpose tools to simulate full collider events, i.e., everything from
the collision of two beams to the creation of all the observable final-state particles, just
in the same way as one would “see” it in a detector. The “Monte Carlo” part enters the
name of event generators, as these probabilistically generate particle configurations using

8In fixed-target experiments, only one beam is accelerated and shot on a stationary target. This is
energetically unfavourable, so that typically two accelerated beams are used.
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Figure 1.4: Actual event display of the production of two Z0 bosons in a proton-proton
collision measured by the CMS experiment. Taken from [44].

a technique known as Monte Carlo sampling. It provides a simple means to calculate
arbitrarily complicated integrals (or generalised volumes) by a “hit-and-miss” approach,
meaning that the volume of a certain object can be calculated by randomly throwing
points in an encompassing region and counting how many times these hit the object.
To provide such a detailed description, a particle collision is roughly divided into three
stages: the hard scattering in which two beam particles collide to create a small number
of highly-energetic particles; the parton shower during which the particles of the hard
scattering lose energy via the radiation of softer particles kown as bremsstrahlung ; the
hadronisation phase in which the large number of low-energy particles after the shower
are combined into observable hadrons. This factorisation of the event corresponds to
a “time ordering” in terms of the energy, i.e., high energies (hard phenomena) appear
early in the simulation, while low energies (soft phenomena) appear late. While the hard
reaction can be calculated up to a certain order in a perturbative series dictated by the
underlying Quantum Field Theory, parton showers are based on the radiation pattern
of fundamental particles, in turn derived from Quantum Field Theory. This allows to
describe the entire cascade from the few particles in the hard scattering to very many soft
particles, which can be combined into visible hadrons. Different to the previous two parts,
the last part of the simulation, the hadronisation, cannot be derived from perturbative
Quantum Field Theory. It is, instead, based on judicious assumptions about the behaviour
of quarks and gluons at low energies. As such, there exist models of quite different nature
to describe these phenomena. Through their exclusive description of collider signals,
event generators have become an indispensable tool for particle physics, without which
neither data analysis nor comparison of experimental and theoretical predictions would
be possible beyond a qualitative level.

To facilitate the search for new physics phenomena, a precise knowledge of the standard-
model background is necessary. It has thus become clear that higher-precision event gen-
erators are needed to meet the increasing experimental precision of current colliders. At
the same time, the intense use of these tools implicates severe computing challenges for
future physics programs. Projections show that the computing power of the LHC exper-
iments falls short of the need for high-statistics simulations during the high-luminosity
phase of the LHC [45–48]. The precision and efficiency constraints of current event gen-
erators therefore hinder the full exploitation of the physics potential of the LHC as well
as future colliders. It is thus evident that new and refined models are needed to meet the
demand for higher-precision as well as higher-efficiency event generation tools. This thesis
aims at addressing parts of these limitations. It is centred around the development of a
novel parton-shower algorithm dubbed sector showers and the systematic and efficient
correction of their accuracy and precision.
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Outline of the thesis

After a brief recapitulation of Quantum Field Theory and the Standard Model of Particle
Physics in chapter 2 and a review of Particle Physics Phenomenology and Monte Carlo
event generators in chapter 3, the implementation of sector showers in the VINCIA antenna
shower in PYTHIA 8.3 will be described in detail in chapter 4. Chapter 5 presents a
multi-jet merging approach utilising sector showers in order to drastically mitigate the
computational and memory overhead typically inherent to such techniques. In chapter 6,
a new generic interface to the extensive library of analytic one-loop matrix elements
in the MCFM parton-level event generator is presented and the timing improvements
compared to existing automated one-loop providers demonstrated. The precision frontier
is addressed in chapter 7, where, for the first time, a proof-of-concept implementation
of a fully-differential next-to-next-to-leading order plus parton-shower matching scheme
is presented, using the sector shower implementation in VINCIA and the MCFM one-loop
matrix element interface. In chapter 8, VINCIA’s sector showers are tested in a realistic
phenomenological study of Higgs boson production via vector boson fusion, employing the
multi-jet merging scheme of chapter 5 and comparing it to state-of-the-art next-to-leading
order matched predictions. Chapter 9 summarises the main points of this thesis, puts it
into the bigger perspective, and gives an outlook on future developments.



2
QFT and the Standard Model

In this chapter, we will describe the mathematical foundations of the Standard Model of
Particle Physics, herein often referred to simply as the Standard Model (SM). The SM is
constructed as a local gauge theory within Quantum Field Theory (QFT). Since the latter
is a mature and complex field in itself, only a concise overview can be given here. The
interested reader is referred to text books on Particle Physics [49–52] and QFT [53–57],
covering the subject at various levels. Nevertheless, a brief review of Quantum Field
Theory and local gauge theories will be given in section 2.1. The SM as well as its
quantum-field theoretic description will be discussed in section 2.2.

This chapter shall serve two purposes: firstly, it shall give a concise overview over the
mathematical foundations of particle physics; secondly, it shall provide the starting point
for the discussion of Monte Carlo event generators in chapter 3. Some of the material
covered in the latter chapter could therefore equally well be discussed here. This is not
done, so that a broader perspective can be retained within this chapter, while a more
rigorous discussion can be postponed to chapter 3, although some of the mathematical
discussions here may break this rule of thumb.

2.1 QFT, Lie Groups, and Yang-Mills Theory in a Nutshell
In particle physics, we deal with tiny, sub-atomic particles at very high energies.

To obtain a faithful theoretical description of it, we therefore have to combine two of
the major breakthroughs of early-20th century physics into a single theory: Quantum
Mechanics (QM) and Special Relativity (SR). Furthermore, as we know that particles can
have wave-like properties and vice versa (a fact known as the particle-wave duality), we
think of particles and waves merely as two different realisations of a single entity, a field.
A field is a quantity which extends over all of space and time, hence possessing infinitely
many degrees of freedom. It can have different modes of excitation: a well-localised
excitation with a sharp peak or an extended modulation of its amplitude without a clear
definition of a peak structure. We will think of the former as a particle and the latter as
a wave.

The dynamics of fields, i.e., the variation of their amplitude in space and time, is
understood in terms of an action,

S[φ] =

t0∫

t1

dt
∫

d3xL(φ(x), ∂µφ(x)) , (2.1)

7
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which is a functional, mapping the Lagrangian density L (hereinafter simply referred to as
the Lagrangian) to a scalar S. The action integral may be understood as a quantity which
takes all possible configurations of a given system into account when it progresses from a
point t0 to a point t1 in time and assigns it a value with unit [energy]× [time]. According
to the Hamiltonian principle, the physical trajectory, i.e., the actual field configuration
that is realised in the evolution from t0 to t1, is determined by a stationary action, i.e.,
when S assumes a minimal or maximal value. The Lagrangian density L incorporates the
dynamics of the field φ and has a unit of energy.

As we shall see below, symmetries in physics can be studied systematically with the
aid of Lie groups and their Lie algebras. Simply put, the Lie algebra g of a matrix Lie
group G is a vector space of all matrices X, such that U(α) = eiαX ∈ G, together with
an antisymmetric bilinear map (the “commutator” or “Lie bracket”),

[ · , · ] : g× g→ g , [X, Y ] = XY − Y X , (2.2)

which obeys the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 ∀X, Y, Z ∈ g . (2.3)

The generators T a of the Lie group G are a set {T 1, . . . , T n}, which forms a basis of the
Lie algebra g. They obey the commutation relations

[
T a, T b

]
= ifabcT c . (2.4)

Quantum Field Theory extends QM to fields, i.e., reinterprets a field φ as an operator
φ̂ (the hats are only used here as a distinction) on a suitable Hilbert space, imposing
canonical commutation relations among them

[
φ̂(t, ~x), φ̂′(t, ~y)

]
= iδ(3)(~x− ~y) , (2.5)

[
φ̂(t, ~x), φ̂(t, ~y)

]
=
[
φ̂′(t, ~x), φ̂′(t, ~y)

]
= 0 . (2.6)

The definition of the fields on a Hilbert space guarantees the existence of an inner product,
which in turn guarantees that probability interpretation of the quantum fields is possible.
Implementing commutation relations among the fields in a classical field theory quantises
the theory, giving rise to so-called creation and annihilation operators, in terms of which
the (then quantum) fields of the theory are expressed. As their names suggest, these
operators have the simple interpretation to create and annihilate quantised excitations in
the fields – the particle states.

Every quantum field is subject to the requirement that it transforms according to a rep-
resentation of the Poincaré group, which represents the full set of continuous symmetries
of special relativity, namely translations, rotations, and boosts. This requirement ensures
that every QFT is manifestly relativistic, i.e., is valid in high-energy and high-velocity
regimes. Each representation has a characteristic intrinsic form of angular momentum,
called spin. While elementary particles should not be thought of as spinning around
their axes (the concept of an axis is ill-defined for point-like objects), the connection with
angular momentum becomes apparent for instance in angular distributions in scattering
experiments, as will be alluded to below.

The simplest representation of the Poincaré group is the scalar representation, which
provides a spin-0 representation. A scalar field has a single component and, in the case
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of a free complex field with mass m, its dynamics are entailed in the Lagrangian

Lscalar =
1

2

(
∂µφ

)∗
(∂µφ)− m2

2
φ∗φ . (2.7)

For the case of SU(N)-type Lie groups, the construction of a local gauge theory is
referred to as a Yang-Mills theory [58]. Let us consider a space-time-dependent set of
parameters α(x) ≡ {αi(x)} and apply it as the following change of phase of a generic field
Θ,

Θ(x) 7→ U(α(x))Θ(x) , U(α(x)) = eiαi(x)Ti , (2.8)

where the quantities Ti are the generators of the Lie group G. We now say that Θ trans-
forms under the fundamental representation of G. Requiring the associated Lagrangian
density to be invariant under the action of G introduces a vector (i.e. spin-1) field Aµ,
called gauge field, which transforms under the adjoint representation of G,

Aµ 7→ U(α(x))AµU(α(x))−1 +
i
g

(∂µU(α(x)))U(α(x))−1 . (2.9)

The invariance of the Lagrangian density is then ensured by replacing the derivative ∂µ
by the gauge-covariant derivative, defined as

DµΘ = ∂µ ·1 + igAµΘ . (2.10)

We have introduced a new parameter g, which represents the coupling constant of the
theory, coupling the field Θ to the gauge field Aµ.

As it transforms with respect to the adjoint representation of the group G, the gauge
field Aµ is part of the Lie algebra of G and may therefore be written in terms of its
generators, Aµ = AaµT

a. Its dynamics are determined by the field strength tensor Fµν Θ =[
Dµ, Dν

]
Θ, in terms of which the free vector-field Lagrangian reads

Lvector = −1

4
F a,µνF a

µν , (2.11)

where
F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν . (2.12)

In the case of an abelian group, the third term in the equation above vanishes and is
absent in the Lagrangian.

For the discussion of the Standard Model, we shall also need spin-1
2
fields, correspond-

ing to the spinor representation of the Poincaré group. Its Lagrangian density is given
by

Lspinor = iψ̄γµ∂µψ −mψ̄ψ , (2.13)

where we have introduced the Dirac matrices γµ = {γ0, γ1, γ2, γ3}, a set of 4× 4 matrices
obeying the anti-commutation relation

{γµ, γν} = 2gµν14×4 , (2.14)

where gµν denotes the Minkowski metric tensor.



10 CHAPTER 2. QFT AND THE STANDARD MODEL

2.2 The Standard Model
The Standard Model is constructed as a Yang-Mills gauge theory with gauge group

given by the direct product of the three Lie groups

U(1)Y × SU(2)W × SU(3)C . (2.15)

Here, SU(3)C contributes the symmetry pertaining to the colour charges of quarks and glu-
ons, i.e., reflects Quantum Chromodynamics (QCD); the direct product U(1)Y× SU(2)W

contributes electroweak (EW) interactions, including quantum electrodynamics (QED),
weak gauge boson self-interactions, and the Higgs sector.

The fermionic matter in the SM is organised in six doublets over three generations,
broken into the quark and lepton family,

(
u
d

)
,

(
c
s

)
,

(
t
b

)

︸ ︷︷ ︸
Quarks

,

(
νe

e−

)
,

(
νµ

µ−

)
,

(
ντ

τ−

)

︸ ︷︷ ︸
Leptons

. (2.16)

We will write the SM Lagrangian as a sum over a QCD and an EW term,

LSM = LQCD + LEW , (2.17)

where the two terms LQCD and LEW will be given in section 2.2.1 and section 2.2.2 below,
respectively.

2.2.1 Quantum Chromodynamics

The classical (i.e. non-quantised) gauge-invariant QCD Lagrangian is given by

Lclass
QCD = −1

4
F a
µνF

a,µν +
∑

f∈
{u,d,c,s,t,b}

q̄f,i

(
i /Di

j −mfδ
i
j

)
qjf , (2.18)

where the gauge-covariant derivative is defined by

/D
i
j = γµ(Dµ)ij = γµ

(
∂µ ·1 + igSAaµT

a
)i
j
. (2.19)

The classical Lagrangian eq. (2.18) can be quantised e.g. by the method of [59], which,
in the so-called Rξ gauge, introduces a gauge-fixing term,

LgfQCD = − 1

2ξ
(∂µAaµ)2 (2.20)

together with a ghost field Lagrangian

LghostQCD = η̄a
(
−∂µDab

µ

)
ηb , (2.21)

expressed in terms of the covariant derivative

Dab
µ = δab∂µ + gSf

abcAcµ . (2.22)

The full quantised QCD Lagrangian is therefore given by

LQCD = LclassQCD + LgfQCD + LghostQCD (2.23)
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Figure 2.1: Summary of measurements of the dependence of the strong coupling constant
on the energy scale Q. The parentheses state the respective perturbative
accuracy used in the extraction. Taken from [60].

The terms in the classical part of the QCD Lagrangian give rise to the following three
QCD vertices,

g

q

q̄

g

g

g
gg

g g

(2.24)

coupling gluons to a quark-antiquark pair, three gluons, and four gluons respectively.

Due to quantum corrections, the strong coupling constant gS =
√

4παS varies with the
energy scale, expressed in terms of the renormalisation group equation,

µ2
R

∂αS(µ2
R)

∂µ2
R

= β(αS) . (2.25)

Here, the auxiliary scale µR is called the renormalisation scale and the right-hand side
of the equation denotes the beta function of QCD. Its most prominent feature is known
as asymptotic freedom [61, 62], meaning that it drives the strong coupling αS to become
exceedingly large at small energy scales but smaller and smaller for higher and higher
scales, cf. fig. 2.1. As a consequence, coloured particles are considered to behave like
free particles at high energies, while being confined in bound states at low energies, a
phenomenon known as confinement. The beta function can be expanded in a perturbative
series

β(αS) = −
∞∑

i=0

(
βi
4π

)i
α2+i
S , (2.26)

with the first two (renormalisation scheme independent) coefficients being given by

β0 =
11

3
CA −

4

3
TRnF , (2.27)
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β1 =
34

3
C2

A −
20

3
CATRnF − 4CFTRnF . (2.28)

2.2.2 Electroweak Interactions

We decompose the classical electroweak Lagrangian into four terms,

Lclass
EW = Lboson

EW + Lfermion
EW + LHiggs

EW + LYukawa
EW , (2.29)

the bosonic part, fermionic part, Higgs sector, and the Yukawa interactions. To remove
unphysical degrees of freedom, gauge-fixing and ghost terms similar to the ones in QCD,
cf. eqs. (2.20) and (2.21), have to be added to the classical Lagrangian upon quantisation.

We will start with the bosonic piece,

Lboson
EW = −1

4
W a
µνW

a,µν − 1

4
BµνB

µν , (2.30)

It determines the dynamics of the electroweak gauge bosons and consists of the field
strength tensor

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν (2.31)

Bµν = ∂µBν − ∂νBµ (2.32)

for the gauge boson Bµ of the (abelian) group U(1)Y. The Levi-Civita symbol in the
definition of W a

µν corresponds to the structure constants of su(2), the Lie algebra of
SU(2), given by the commutator

[
σa, σb

]
= iεabcσc (2.33)

of the Pauli matrices σa, which act as the generators of the SU(2) Lie group. Following
the Yang-Mills construction principle in section 2.1, the gauge fields W a

µ and Bµ induce
a gauge-covariant derivative,

Dµ = ∂µ + ig
σa

2
W a
µ + ig′

Y

2
Bµ , (2.34)

where the second term corresponds to the SU(2)W group and the third term corresponds
to the abelian U(1)Y. Due to the non-abelian nature of the SU(2)W gauge group, the
bosonic piece Lboson

EW introduces self-interaction vertices between the SU(2) gauge bosons,
just as is the case for gluons in QCD,

γ

W+

W−

Z0

W+

W−

W+W+

W− W−

(2.35)

The fermionic part of the EW Lagrangian is given by

Lfermion
EW =

3∑

i=1

iQ̄i /DQi +
3∑

i=1

iūi /Dui +
3∑

i=1

id̄i /Ddi +
3∑

i=1

iL̄i /DLi +
3∑

i=1

iēi /Dei (2.36)
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where
Qi =

(
ui
di

)

L

, Li =

(
νi
ei

)

L

(2.37)

denote the left-handed quark and fermion field doublets, respectively, and

ui ≡ (ui)R , di ≡ (di)R , ei ≡ (ei)R (2.38)

denote the right-handed up-type, down-type, and charged-fermion field singlets, respec-
tively. In this notation, the corresponding fields of the three particle generations are
simply enumerated, such that u1 denotes the up-quark field, d2 the strange-quark field,
e3 the τ−-lepton field, etc. The fermionic piece of the EW Lagrangian introduces vertices
between the gauge bosons and leptons,

γ

`−

`+

Z0

`−

`+

W−

`−

ν̄`

W+

ν`

`+

(2.39)

and gauge bosons and quarks,

γ

q

q̄

Z0

q

q̄

W±

q

q̄′

(2.40)

We will now turn to the Higgs piece of the EW Lagrangian. Since it is a scalar field,
the Higgs contributes the simplest piece,

LHiggs
EW =

(
Dµφ

)†
(Dµφ)− µ2φ†φ− λ(φ†φ)2 . (2.41)

It introduces triple and quartic couplings between the Higgs and the massive gauge bosons,

H0

Z0

Z0

H0

W+

W−

Z0H0

H0 Z0

W−H0

H0 W+

(2.42)

Closely connected to the Higgs piece is the Yukawa piece of the EW Lagrangian,

LYukawa
EW = −

3∑

i,j=1

yu,ijQ̄i(iσ2φ†)uj −
3∑

i,j=1

yd,ijQ̄iφ
†dj −

3∑

i,j=1

y`,ijL̄iφ
†ej + h.c. , (2.43)
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which introduces couplings between the scalar field φ and (massive) fermions,

H0

`−

`+

H0

q

q̄

(2.44)

Note, that due to the absence of right-handed neutrinos, cf. e.g. [63], the mass term for
neutrinos is absent in eq. (2.43).

The masses of the electroweak gauge bosons and fermions are generated in a gauge-
invariant way via the Higgs mechanism1 [64–66]. If the parameter µ2 in eq. (2.41) is
chosen to be negative, the Higgs potential has an infinite set of minima for

φ†φ = −µ
2

2λ
. (2.45)

The EW symmetry can therefore be broken spontaneously, meaning, that it exists on the
level of the Lagrangian, but is broken by choosing one of the degenerate vacuum states.
As the vacuum must not be electrically charged, the minimum of the Higgs field is chosen
to be

〈φ〉0 =
1√
2

(
0
v

)
, (2.46)

with the vacuum expectation value (vev) v. Expanding the Higgs field around its vacuum
state

φ(x) =
1√
2

(
0

v + h(x)

)
, (2.47)

generates mass matrices for the gauge-boson fields W a
µ and Bµ through the covariant

derivative Dµ in eq. (2.41). Diagonalisation yields the four new fields

W±
µ =

1√
2

(
W 1
µ ±W 2

µ

)
, (2.48)

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
, (2.49)

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
, (2.50)

corresponding to the charged W± bosons, the neutral Z0 boson, and the photon γ, re-
spectively. The former acquire masses

mW± =
v

2
g ,mZ0 =

v

2

√
g2 + g′2 , (2.51)

while the latter remains massless, mγ = 0. An equivalent procedure generates the mass
matrices of the fermions, which in the case of the quarks is known as the CKM 2 matrix
[67,68] and in case of the leptons as the PMNS 3 matrix [69,70].

1To be precise it should be called the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism.
2Cabibbo-Kobayashi-Maskawa.
3Pontecorvo–Maki–Nakagawa–Sakata.
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a

b

1

2

·····
n− 1

n

S|a, b〉 |1, 2, . . . , n〉

t−∞←− −→ +∞

Figure 2.2: Illustration of the scattering matrix S.

2.3 From Lagrangians to Cross Sections
Having QFT and the Feynman rules of the Standard Model at hand, we are now in

a position to connect the fundamental theory with observable phenomena. As the most
basic quantity of interest, we may ask for the probability of a certain reaction a+ b→ n
to happen, i.e., for the probability that a final state comprised of the particles 1, 2, . . . , n
is created by the interaction of two initial-state particles a and b. Taking the quantum
nature of fundamental particles into account, we are interested in calculating the transition
rate for a quantum state |a, b〉 to evolve into a quantum state |1, 2, . . . , n〉, which we can
express via a scattering matrix Mab→n [71, 72]

Mab→n = 〈1, 2, . . . , n|S |a, b〉 . (2.52)

Here, the interaction taking place in the process ab → n is described by the operator
S, while |a, b〉 and |1, 2, . . . , n〉 are (non-interacting) asymptotically free states in the
distant past t→ −∞ and distant future t→ +∞ 4. As a consequence of conservation of
probability in quantum mechanics, the operator S has to be unitary. By application of
time-ordered perturbation theory, the scattering matrix elementsMab→n can be directly
related to the Feynman rules of the given QFT, giving a shortcut to the calculation of
the scattering matrix elements. A derivation of the Standard-Model Feynman rules from
time-ordered perturbation theory can be found e.g. in [57].

The cross section σ̂ab→n of the process ab→ n is calculated by integrating the matrix
element over the available phase space and normalising it by the flux of initial-state
particles,

σ̂ab→n =
1

4
√

(pa · pb)2 −m2
am

2
b

∫
dΦn |Mab→n|2 , (2.53)

where the n-particle Lorentz-invariant phase space measure is given by

dΦn ≡ dΦn(pa + pb; p1, . . . , pn) = (2π)4δ(4)

(
pa + pb −

n∑

i=1

pi

)
n∏

i=1

d4pi
(2π)3

δ(p2
i −m2

i ) .

(2.54)

For ideal point-like particles a and b eq. (2.53) would already provide the full answer
to the question after the interaction rate of ab→ n. Often, however, we are interested in
collisions where either one (deeply-inelastic scattering – DIS) or both (hadron-hadron col-
lisions) of the initial-state particles are hadrons, which intrinsically are extended objects.
Moreover, even point-like particles can behave like composite objects due to radiative
corrections. To give an example, an electron may radiate a photon, which in turn takes

4Mathematically, a decomposition of an “interaction state” into a direct product of one-particle states
is not possible, so that the in- and out-states have to be considered asymptotically free. Physically, this
implies that there is no particle interpretation of a scattering state.
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Figure 2.3: Visualisation of proton PDFs at hand of the NNPDF 2.3 leading-order PDF
set [80] evaluated at µF = 2 GeV (left) and µF = 100 GeV (right). Note that
the gluon PDFs are divided by a factor 10. Generated with the APFELweb
tool [81, 82] using the LHAPDF6 PDF library [83] and Rivet [84, 85].

part in the hard interaction; this could then be interpreted as a photon from “inside” the
electron.

Because cross sections are a combination of long- and short-distance phenomena. Fol-
lowing [73–79], we can obtain the hadronic cross section σ from the partonic cross section
σ̂ by means of factorisation, i.e., by assuming that the scattering takes place between
two quasi-free partons which do not depend on the other partons inside the hadron. This
yields the following master formula for the inclusive cross section

σh1h2→n =
∑

a,b

1∫

0

1∫

0

dxa dxb fa/h1(xa, µ
2
F)fb/h2(xb, µ

2
F)σ̂ab→n(µ2

F, µ
2
R) , (2.55)

where we have introduced the parton distribution functions (PDFs) fa/h1 and fb/h2 and
the factorisation scale µF. (The renormalisation scale µR was already introduced in
section 2.2.) Broadly speaking, the functions fa/h1 and fb/h2 represent the probability
to find a parton a in the hadron h1 with a fraction xa of its momentum, pa = xaph1 , at
the energy scale µF (a parton b in hadron h2 with fraction xb of its momentum, pb = xbph2
at scale µF). These functions account for the composite nature of hadrons. The sum over
a and b in eq. (2.55) takes into account all possible partonic channels, i.e., possible initial
states that can be formed from the hadronic constituents and yield the respective final
state.

Parton distribution functions have historically been introduced and measured in deeply
inelastic scattering (DIS), i.e., highly energetic lepton-hadron collisions. While they can-
not be computed from first principles, perturbative QCD gives a recipe to evolve PDFs in
the factorisation scale µF. Taking into account that partons may branch according to the
Feynman rules of QCD, cf. section 2.2.1, the scaling behaviour of PDFs is encapsulated
in an equation similar in spirit to the renormalisation group equation eq. (2.25),

µ2
F

dfj/h(x, µ2
F)

dµ2
F

=
αS(µ2

R)

2π

∑

i=q,g

1∫

x

dξ
ξ
fi/h(ξ, µ

2
F)Pij

(
x

ξ

)
, (2.56)

known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [73, 86, 87].
It has to be read as follows: the change of the probability to find a parton of flavour j in
hadron h with the energy scale µF is governed by the sum of all ways this flavour can be
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produced in a branching i 7→ jk weighted by the probability5 of this branching to occur,
represented by the splitting kernels Pij, cf. eqs. (3.59) to (3.61). These splitting kernels
and DGLAP evolution will be discussed in more detail in section 3.2.1. An illustration of
the scale evolution of proton PDFs is given in fig. 2.3. It is interesting to note that the
“valence quark” contributions to the proton peak at larger momentum fractions x, while
the bulk of the proton constituents is given by “sea quarks” at low x. This is in alignment
with the naive proton picture, because it means that a parton with large momentum
fraction is most likely to be an up or down quark. A parton with small momentum
fraction is more likely to be produced by a branching inside the hadron.

Although collinear factorisation builds upon a rigorous proof only for DIS and Drell-
Yan processes [73–79], the “divide-and-conquer” approach to factorise the full (hadronic)
process into partonic and hadronic contributions proved itself very successful, even for
processes where the validity has not yet been shown. The determination of factorisation-
breaking contributions, cf. e.g. [88], as well as so-called higher-twist contributions, i.e.,
corrections beyond the leading power which allow reactions with multiple partons simul-
taneously, cf. e.g. [89], remains an active field of research. Especially the latter becomes
relevant in the discussion of higher-order corrections to the leading-twist contribution, as
they may be of similar importance.

Mostly, we are interested in differential cross sections, i.e., the rate to observe a certain
reaction while also measuring further quantities, such as the particle momenta or angles.
Denoting the observable of interest by O, the differential cross section is given by

dσh1h2→n
dO

=
∑

a,b

1∫

0

1∫

0

dxa dxb fa/h1(xa, µ
2
F)fb/h2(xb, µ

2
F)

dσ̂ab→n(µ2
F, µ

2
R)

dO

=
1

2s

∑

a,b

1∫

0

1∫

0

dxa
xa

dxb
xb

fa/h1(xa, µ
2
F)fb/h2(xb, µ

2
F)

×
∫

dΦn |Mab→X |2(Φn;µ2
F, µ

2
R) δ (O −O(Φn)) , (2.57)

where we have used an approximated flux factor in the limit of massless initial-state
particles,

F =
1

4
√

(pa · pb)2 −m2
am

2
b

ma→0,mb→0−−−−−−−→ 1

4pa · pb
=

1

2s

1

xaxb
, (2.58)

and inserted the light-cone momentum fractions to express the result in terms of the
centre-of-mass energy squared s = E2

CM

2pa · pb = 2(xaph1) · (xbph2) = 2ph1 · ph2xaxb = xaxbs .

5Strictly speaking, a probability interpretation of the DGLAP kernels is only possible at leading order.





3
Monte Carlo Event Generators

Monte Carlo event generators [90] bridge the gap between the mathematically challeng-
ing Quantum Field Theory underlying modern particle physics and measurements at col-
lider experiments. Multi-purpose event-generation frameworks such as PYTHIA [91–102],
HERWIG [103–109], and SHERPA [110–112] and more specialised frameworks like WHIZARD
[113] and MADGRAPH_AMC@NLO [114, 115] provide exclusive descriptions of the com-
plex events produced in high-energy particle collisions. This means, an event generator
will produce a list of particles, an event record, just as it would have been measured in
a (perfect) detector, including their momenta, charges, and spins. As such, they provide
the means to describe and test our understanding of particle physics and as such our
understanding of the fundamental laws of physics.

This chapter firstly provides an overview of the methodology employed in particle
physics phenomenology, both theoretically and in terms of algorithmic implementations.
Secondly, an attempt is made to give a fair account of the existing literature, where
relevant. As such, this chapter shall put the research presented in the later chapters of
this thesis into broader perspective.

After an overview of the description of the hard scattering, particular emphasis will
be placed on the modelling of the perturbative cascade from the high energy scale of the
hard process down to the low energy scale at which experimentally measurable particles
emerge. Within this, numerical as well as analytical methods will be discussed, building
the foundation for the core theme of this thesis. Subsequently, the systematic improve-
ment of these approximations by fixed-order corrections (so-called matching and merging
schemes) will be discussed in similar detail. This chapter will be closed by a summary of
hadronisation models, the last step in the process of event generation.

Most of the theoretical basics discussed follow closely [116] and [117], while parts refer
to the introductions in [118,119].

3.1 The Hard Process
For processes that involve a hard scale, the event generation commences with the hard

process, i.e., the basic interaction of two beams producing a (small) number of outgoing
particles. To this end, the inclusive cross section σab→n has to be calculated according to
eq. (2.55). This is done by means of perturbation theory, which means that contributions
to the matrix element M are organised in a series expansion of the coupling constants,

19
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gS =
√

4παS and e =
√

4πα,

Mab→n =
∞∑

i=0

∞∑

k,`=0

M(k,`)
n+i (3.1)

=M(0,0)
n + gSM(0,0)

n+1 + g2
S

(
M(1,0)

n +M(0,0)
n+2

)

+ eM̃(0,0)
n+1 + e2

(
M(0,1)

n + M̃(0,0)
n+2

)
+ . . .

where lower indices represent additional legs due to QCD and QED/EW emissions (i.e.,
real contributions), while upper indices represent additional QCD and QED/EW loops
in the diagram (i.e., virtual contributions). Note that each coefficient M(k,`)

n+i contains
a fixed number of additional, process-dependent powers of e and gS, not made explicit
in the expansion. On the level of the squared matrix element, |Mab→n|2, the squared

n+ 1-particle tree-level amplitude
∣∣∣M(0,0)

n+1

∣∣∣
2

enters at the same order g2
S as the n-particle

tree-one-loop interference 2 Re
[
M(0,0)

n M(1,0)∗
n

]
(similarly for the QED/EW contributions).

The square of the n+ 2-particle contribution, on the other hand, enters only at order g4
S.

At leading order (LO), only the first term in the series above contributes, so that the
cross section reads

σLO
n =

1

2s

∑

a,b

1∫

0

1∫

0

dxa
xa

dxb
xb

fa/h1(xa, µ
2
F)fb/h2(xb, µ

2
F)

∫
dΦn

∣∣M(0,0)
n

∣∣2(Φn;µ2
F, µ

2
R) .

(3.2)
A numerical implementation of this consists of two parts: the implementation of tree-
level matrix elements (i.e., ones without internal loops) and a phase-space generator,
randomly sampling phase-space points to evaluate the matrix element on. The latter
will be the subject of section 3.1.1, while matrix-element calculations are discussed in
section 3.1.2. In the following, we will focus on higher-order QCD corrections and use the
notation M(`)

n ≡ M(`,0)
n , which implicitly amounts to the lowest-order in QED/EW, to

avoid clutter.

At next-to-leading order (NLO), i.e., to first order in the coupling beyond the leading
(Born) contribution, two new types of contributions enter the cross section: Born-one-
loop interferences and squared n+1 particle amplitudes. Restricting ourselves to the case
of QCD, the NLO cross section thus reads

σNLO
n =

∫
dΦB

[
Bn(ΦB;µR, µF) + Vn(ΦB;µR, µF)

]
+

∫
dΦR Rn(ΦR;µR, µF) , (3.3)

where we have introduced the notation

Bn(ΦB;µR, µF) :=
∣∣M(0)

n

∣∣2(ΦB;µR, µF) , (3.4)

Vn(ΦB;µR, µF) := 2 Re
[
M(0)

n M(1)∗
n

]
(ΦB;µR, µF) , (3.5)

Rn(ΦR;µR, µF) :=
∣∣∣M(0)

n+1

∣∣∣
2

(ΦR;µR, µF) ≡ Bn+1(ΦB;µR, µF) . (3.6)

and

dΦB :=
1

2s

∑

A,B

dxA
xA

dxB
xB

fA/h1(xA, µ
2
F)fB/h2(xB, µ

2
F) dΦn, (3.7)
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dΦR :=
1

2s

∑

a,b

dxa
xa

dxb
xb

fa/h1(xa, µ
2
F)fb/h2(xb, µ

2
F) dΦn+1 . (3.8)

In addition to tree-level matrix elements for the Born and Born + 1-parton state, an
NLO calculation requires a one-loop matrix element for the Born state, cf. section 3.1.3.
Because the virtual and real corrections in eq. (3.3) are separately divergent, a numerical
implementation necessitates the removal of these divergences. Techniques to do this will
be discussed in section 3.1.4.

Today, the calculation of cross sections and observables at NLO in QCD defines the
state of the art. It is a core part of the MADGRAPH_AMC@NLO [114,115], WHIZARD [113],
MATCHBOX [120, 121], and SHERPA [110–112] frameworks as well as dedicated particle-
level Monte Carlo codes such as MCFM [122–124], HELAC-NLO [125], or VBFNLO [126–
128], which is specialised on vector boson fusion processes and their backgrounds. The
MOCANLO + RECOLA framework [129–133] provides calculations of electroweak processes,
including both NLO QCD and EW corrections.

For most 2 → 2 and 2 → 3 processes it is also possible to calculate differential cross
sections up to the next-to-next-to-leading order (NNLO) in QCD, publicly available for
some processes1, e.g. in the public codes MATRIX [134] and MCFM starting from version
8 [135, 136]. The NNLOJET parton-level Monte Carlo generator [137–140] offers a wide
variety of processes at NNLO, facilitated by the use of the antenna subtraction formalism,
cf. section 3.1.4 below.

Most general-purpose Monte Carlo frameworks offer a selection of internal hard pro-
cesses at LO and NLO. Dedicated hard-process Monte Carlos, on the other hand, of-
ten do not offer descriptions of additional logarithmically enhanced radiation2 and non-
perturbative hadronisation models. The Les Houches accord [143, 144] defines a for-
mat to exchange “event records”, i.e., fully-differential lists of particles, between different
Monte Carlo programs, either in plain-text files or, more recently, via binary HDF5 event
files [145].

3.1.1 Monte Carlo Phase Space

Apart from the generation (or implementation) of matrix elements, a core part of hard-
process generators is the phase-space sampling, for which Monte Carlo methods are em-
ployed. Useful introductions can for instance be found in [146,147].

Monte Carlo integration builds upon the idea that the (hyper-)volume of an object
can be calculated by knowing an enveloping region and randomly sampling points inside
this area, counting the number of times a point landed inside the object. Formulating
this mathematically, we obtain

〈I(f)〉x =
V (Ω)

N

N∑

i=1

f(~xi)
N→∞−−−→ I =

∫

Ω

dD~x f(~x) , (3.9)

for an integrable function f . The convergence of the Monte Carlo estimator 〈I(f)〉x to the
true integral value I, indicated by the arrow in the equation above, is a consequence of
the law of large numbers. Assuming the function f is square-integrable, we can introduce

1Other codes (e.g. SHERPA) also offer limited NNLO functionality for a small number of processes.
2Some generators implement analytical resummation techniques, such as CuTe-MCFM [141] or

MATRIX + Radish [142].
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the Monte Carlo estimate of the variance σ2(f),

〈
σ2(f)

〉
x

=
1

N

N∑

i=1

f 2(~xi)−
(

1

N

N∑

i=1

f(~xi)

)2

=
〈
I(f 2)

〉
x
− 〈I(f)〉x , (3.10)

which gives a probabilistic estimation of the integration error. The above shows that
independently of the dimensionality of the phase space the integration error scales as
∼ 1/

√
N in the Monte Carlo method, which builds the foundation of its application in

event generators. While Monte Carlo integration is feasible for any integrable function,
the error estimate is only viable if the function is also square-integrable.

Simple and well-known techniques build up the phase space recursively by exploiting
the factorisation property of the phase-space measure [148,149],

dΦn(pa+pb; p1, . . . , pn) = dΦn−m+1(pa+pb; p1, . . . , pn−m+1, q)
dq2

2π
dΦm(q; pn−m+1, . . . , pn) ,

(3.11)
with a pseudo-particle q of mass q2. This allows to reduce an n-particle phase-space
measure to an iteration of two-particle phase spaces,

dΦ2(Q; pi, pj) =
λ(sij,m

2
i ,m

2
j)

16π sij
d cos θi

dφi
2π

, (3.12)

with the Källén function λ(a, b, c) = a2 +b2 +c2−2ab−2ac−2bc. This type of phase-space
generator is known as anM -generator, since massive pseudo-particles are inserted. A fast
and (for massless particles) flat phase-space generation algorithm is given by RAMBO
[150, 151], which samples the n-particle phase space isotropically. Since it is agnostic to
any kind of structure of squared matrix elements, RAMBO is mainly useful for testing
purposes and does not provide a competitive phase-space integrator.

Since phase-space integration is one of the major efficiency bottlenecks in the gen-
eration of the hard-scattering cross section, a lot of work has gone into improving the
sampling according the complex structure of matrix elements. Typical strategies can be
broadly divided into two classes: importance sampling and stratified sampling. The for-
mer samples phase-space points according to a distribution close to the squared matrix
element, while the latter divides the integration domain into a series of bins and samples
points according to different distributions in each bin. Examples of the former are the
SARGE [152] and HAAG [153] algorithms, which are well-suited for pure-QCD amplitudes,
as they distribute points according to the leading singularities of QCD antenna functions
(cf. section 3.1.4 and section 3.2.3). Well-known examples of the latter are adaptive
techniques, such as VEGAS [154, 155] and the metropolis algorithm [156, 157], which fa-
cilitate the integration by dividing the domain into regions according to their relative
importance. The above strategies have been automated in a series of implementations,
cf. e.g. [158–162], possibly employing parallelisation techniques [124,163].

Interesting alternatives are forward-branching phase space generators [164–168], which
start from the Born-level phase and generate the phase space of additional radiation by
successive momentum-conserving on-shell 2 7→ 3 mappings, akin to strategies routinely
employed in parton showers, cf. section 3.2. Such techniques have the strength that they
allow for unweighted NLO event generation, as every Born configuration can be assigned
a local NLO weight (“Born-local K-factor”). Recently, there has also been tremendous
interest in techniques utilising neural networks and machine learning, cf. e.g. [169–176].
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3.1.2 Tree-Level Matrix Elements

Feynman diagrams without internal loops are called tree-level diagrams and appear at
any perturbative order. Examples of 2 → 2 and 2 → 3 tree-level diagrams are given
in fig. 3.1. To facilitate efficient calculations of tree-level QCD matrix elements, it is
customary to make the colour factors, helicity dependence, and kinematical part explicit
in the amplitudes. Mathematically, this corresponds to decomposing the amplitude over
a (possibly overcomplete) spanning set,

M(0)
n ({hi}, {ci}) =

〈
c1, c2, . . . , cn;h1, h2, . . . , hn

∣∣M(0)
n

〉
, (3.13)

so that the projection onto the colour basis yields colour-ordered amplitudes [177],
〈
c1, c2, . . . , cn

∣∣M(0)
n

〉
= A(0)

n (p1, p2, . . . , pn) . (3.14)

and the projection onto the helicity basis yields helicity amplitudes, cf. e.g. [178] for a
review, 〈

c1, c2, . . . , cn;h1, h2, . . . , hn
∣∣M(0)

n

〉
= A(0)

n (ph11 , p
h2
2 , . . . , p

hn
n ) , (3.15)

Unless helicities are made explicit via superscripts, we will assume An to denote helicity-
averaged amplitudes.

In the case of a pure-gluon amplitude, the trace basis provides a simple spanning set
of the colour space,

M(0)
n =

∑

σ∈Sn−1

Tr(T a1T a2 . . . T an)A(0)
n (p1, pσ(2), . . . , pσ(n)) , (3.16)

For the implementation in event generators, the colour-flow basis is especially useful,
because it assigns each colour-ordered amplitude a distinct colour topology in terms of
fundamental and antifundamental indices (“quark lines”) [179–181]. Again for the case of
a pure-gluon amplitude,

M(0)
n =

∑

σ∈Sn−1

δ
jσ(2)

i1
δ
jσ(3)

iσ(2)
· · · δj1iσ(n)A

(0)
n (p1, pσ(2), . . . , pσ(n)) . (3.17)

The trace basis and colour-flow basis have the same dimensionality3 and can therefore be
related to each other. The basis transformation is given by the Fierz identity,

(T a)ij(T
a)k` = TR

(
δi`δ

k
j −

1

NC

δijδ
k
`

)
(3.18)

The most direct way to implement tree-level matrix elements in Monte Carlo codes is
by explicitly writing analytically calculated amplitudes into the source code. This strategy
is pursued for the internal matrix-element libraries in PYTHIA and HERWIG, as well as
the ALPGEN parton-level event generator [182]. Since this procedure quickly becomes
cumbersome and the construction and evaluation of Feynman diagrams follows simple
enough rules, it is possible to automate the calculation of tree-level matrix elements.
This can either be done by explicit Feynman-diagram generation as done in AMEGIC++

[183] or MADGRAPH [115, 184, 185] and O’MEGA [113, 186], which use (variants of) the
HELAS/HELAC algorithm [179, 187] to calculate wave functions for internal and external
particle lines, which are later squared. More efficient algorithms [188], such as the one
implemented in COMIX [161], are based on recursion relations [189,190], which recursively

3Which is a non-trivial statement, because both “bases” are overcomplete spanning sets.
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Figure 3.1: Born (top left), virtual correction (bottom left), and real-radiation correc-
tions (right) of the Drell-Yan process pp→ `+`−.

relate so-called “off-shell currents” with decreasing number of legs, In this context, an off-
shell current is defined as a colour-ordered n-gluon amplitude with n−1 on-shell momenta
and one on-shell momentum. Recursion relations mitigate much of the computational
overhead associated to tree-level matrix element calculations as any off-shell current in
the process has to be evaluated only once for each phase space point.

An important property of tree-level matrix elements is the infrared behaviour. Due to
the presence of propagators,

M(0)
n (. . . , pi, pj, . . .) ∝

1

(pi + pj)2 −m2
ĩj

massless−−−−→ 1

2pi · pj
=

1

2EiEj(1− cos θij)
, (3.19)

amplitudes are divergent whenever an internal particles goes on-shell, (pi + pj)
2 → m2

ĩj
.

This is the case when an emission becomes unresolved, i.e., when the n+ 1-particle state
becomes indistinguishable from the n-particle state. In the case where the emitted particle
is massless, cf. eq. (3.19), this happens when the energy of the emission vanishes, the
so-called soft limit Ej → 0, or the two particles travel along the same axis, the so-called
collinear limit θij → 0. In these limits, (colour-ordered) amplitudes factorise into a
reduced amplitude and universal collinear and soft splitting functions [191–194],

A(0)
n (. . . , phii , p

hj
j , . . .)

i‖j−→
∑

h=±
Split

(0)
−h(pi, pj)A

(0)
n−1(. . . , phij, . . .) , (3.20)

A(0)
n (. . . , pi, pj, pk, . . .)

pj→0−−−→ Soft(0)(pi, pj, pk)A(0)
n−1(. . . , pi, pk, . . .) . (3.21)

A similar factorisation holds also in the quasi-collinear limit, in which two massive par-
tons travel along the same axis with energies much larger than their masses. The squared
collinear and soft splitting functions build the basis for NLO subtraction schemes and
parton showers and will therefore be discussed in more detail in section 3.1.4 and sec-
tion 3.2. Similar factorisation properties hold in double-unresolved limits, in which two
particles become simultaneously unresolved [195–199]. These become relevant for NNLO
calculations and subleading-logarithmic corrections to parton showers.
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Figure 3.2: Diagrammatic representation of a generic n-point one-loop integral. Arrows
indicate the momentum flow through the diagram. Inspired by [117,200].

3.1.3 Loop Matrix Elements

Starting from the first order in the coupling constant4, diagrams with closed internal loops
contribute to the perturbative series in eq. (3.1), cf. fig. 3.1.

Since momenta of internal lines in Feynman diagrams cannot be measured, those can
take any numerical value, constrained only by four-momentum conservation. For loop
amplitudes such as the generic one sketched in fig. 3.2, this implies an integration over
every loop momentum `, so that one-loop amplitudesM(1)

n contain integrals of the form

IDn ∝
∫

dD`
(2π)D

1

(`−m2
1)((`+ p1)2 −m2

2)((`+ p12)2 −m2
3) · · · ((`+ p1···(n−1))2 −m2

n)
,

(3.22)
where the notation p1...m =

∑m
i=1 pi is used. Here, we have reproduced only the simplest

case of a scalar loop integral, while in general higher-rank integrals in which also the
numerator depends on the loop momentum are required as well. The integral is written
in D ≤ 4 space-time dimensions as it is ill-defined in 4 dimensions, because the loop
momentum ` can have arbitrary values and in particular may become infinitely large or
vanish.

Within dimensional regularisation with D = 4− 2ε [201], the former leads to explicit
poles of the form 1/ε. These ultraviolet (UV) divergences can be removed by suitable
redefinitions of all fields and couplings appearing in the Lagrangian, a method referred
to as renormalisation, which introduces an arbitrary scale µR. The invariance of any
physical observable on the choice of this scale gives rise to the renormalisation group
equation eq. (2.25). Since for practical purposes, the perturbative series is truncated
at finite order, residual dependencies on the renormalisation scale choice remain. It is
therefore customary to estimate the size of these effects by scale variations of the form
µR → kRµR, where typically kR ∈ {1/2, 2}.

The latter type of divergences, appearing in the infrared limit `2 → 0, cannot be
removed by such procedures. Instead, these are intrinsic to loop amplitudes and take
universal forms in terms of explicit soft poles in 1/ε2 and collinear poles in 1/ε. Following
the notation introduced in [192], these universal infrared poles can be characterised as

4There exist so-called loop-induced processes, which have a loop already in the “Born” process. An
example of such a process is the decay of a Higgs boson to two gluons, H0 → gg, which proceeds via an
internal top-quark loop. Such amplitudes are, however, typically finite.
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[192,202,203]
M(1)

n (Φn;µR, µF) = I(1)(Φn, µR, ε)M(0)
n +M(1),finite

n , (3.23)

with the one-loop singularity operator

I(1)(Φn, µR, ε) =
1

2

eεγE

Γ(1− ε)
∑

i

1

T2
i

(
T2
i

1

ε2
+ γi

1

ε

)∑

j 6=i
Ti ·Tj

(−sij
µ2

)−ε
. (3.24)

Here, Ti denotes the colour charge associated with the gluon emission off leg i and the
anomalous dimensions γi are given by

γg =
11

6
CA −

2

3
TRnF , γq = γq̄ =

3

2
CF . (3.25)

A similar characterisation formula exists for two-loop amplitudes [204].

The calculation of (the finite part of) one-loop matrix elements has been automated
in publicly-available tools like OPENLOOPS [205], RECOLA [131,133], and MADLOOP [206],
using integral libraries [207–209] or integrand reduction tools [210–213]. These can be
interfaced to event generators via the Binoth Les Houches Accord (BLHA) [214, 215],
which defines a standard for the exchange of information between one-loop providers and
event-generation frameworks. The central objective of such interfaces is to calculate the
Born-one-loop interference in terms of a Laurent series expansion,

Vn(Φn, µR, µF) ≡ 2 Re
[
M(0)

n M∗(1)
n

]
(Φn, µR, µF)

=
V−2(Φn, µR, µF)

ε2
+
V−1(Φn, µR, µF)

ε
+ V0(Φn, µR, µF) +O(ε) (3.26)

for phase-space points Φn = {p1, . . . , pn} defined by the event generator. A new BLHA in-
terface to the extensive library of analytic one-loop amplitudes in MCFM will be presented
in chapter 6.

As is the case for tree-level amplitudes, one-loop amplitudes factorise when emissions
become unresolved. In the single-unresolved limits, the equivalent of eqs. (3.20) and (3.21)
reads [198,216–218]

A(1)
n (. . . , phii , p

hj
j , . . .)

i‖j−→
∑

h=±

(
Split

(1)
−h(pi, pj)A

(0)
n−1(. . . , phij, . . .)

+ Split
(0)
−h(pi, pj)A

(1)
n−1(. . . , phij, . . .)

)
, (3.27)

A(1)
n (. . . , pi, pj, pk, . . .)

pj→0−−−→ Soft(1)(pi, pj, pk)A(0)
n−1(. . . , pi, pk, . . .)

+ Soft(0)(pi, pj, pk)A(1)
n−1(. . . , pi, pk, . . .) , (3.28)

with the tree-level splitting functions Split(0), Soft(0) given in eqs. (3.20) and (3.21) and
new one-loop splitting functions Split(1), Soft(1). Here, A(0)

n and A(1)
n again denote colour-

ordered amplitudes. Note that for one-loop ampitudes, “disconnected” colour topologies
contribute, which, for pure-gluon amplitudes in the trace basis, are of the form [219]

Tr(T a1 . . . T aj−1) Tr(T aj . . . T an) . (3.29)

The “squared” products of tree-level and one-loop splitting functions become relevant in
the context of real-virtual corrections in NNLO calculations as well as virtual corrections
to parton-shower branching kernels.
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3.1.4 Subtraction Schemes

As stated in the previous two subsections, real-radiation and virtual matrix elements are
separately divergent in four dimensions, with the latter exhibiting explicit poles in the
dimensional regularisation parameter ε. A priori, it is thus not possible to perform NLO
or higher-order calculations numerically in four dimensions. The Bloch-Nordsieck [220]
and Kinoshita-Lee-Nauenberg [221,222] theorems imply, however, that these divergences
cancel between real and virtual corrections for infrared-safe observables. The numerical
evaluation may thus be considered rather a technical difficulty than a prohibiting factor.
The difficulty arises, because the virtual and real corrections are evaluated on different
phase spaces: the former on the Born phase space, the latter on the real-radiation phase
space.

Two distinct approaches have been derived to overcome this problem: phase-space
slicing [202, 223] and subtraction [191, 192, 224–226]. While the former avoids danger-
ous regions in phase space by explicitly introducing an infrared cutoff (i.e., “slicing” the
phase space into resolved and unresolved regions), the latter explicitly subtracts singu-
larities by utilising that amplitudes factorise in singular limits, cf. eqs. (3.20) and (3.21).
Schematically, the subtracted O(αS) corrections to a differential Born cross section Bn

read

∫
dΦB

[
Vn(ΦB;µR, µF) + In(ΦB, µR, µF)

]

ε=0

+

∫
dΦR

[
Rn(ΦR;µR, µF)− Sn(ΦR;µR, µF)

]
, (3.30)

where In denotes the (analytical) integral of the subtraction term Sn over the factorised
real-radiation phase space, schematically,

In(ΦB;µR, µF) =

∫
dΦ+1 Sn(ΦR(ΦB,Φ+1);µR, µF) , (3.31)

Here, dΦ+1 denotes the real-radiation phase-space measure which enters the factorised
phase space,

dΦR = dΦB × dΦ+1 . (3.32)

The precise form of the mapping from the real-radiation phase space ΦR to the Born
phase space ΦB depends on the subtraction scheme. Upon subtraction, the virtual and
real correction terms in eq. (3.30) are separately finite in D = 4 dimensions.

The two most widely-used NLO subtraction schemes are the Frixione-Kunszt-Signer
scheme [224, 225], which is automated in MADGRAPH_AMC@NLO [227], WHIZARD [228],
and POWHEGBOX [229, 230]; and the Catani-Seymour scheme [191, 192, 231], which has
been automated in MADGRAPH_AMC@NLO [232, 233], SHERPA [234], as well as in other
packages [235–237]. Both schemes have been extended to treat NLO EW corrections
[238, 239] and processes with coloured resonances [230, 240, 241]. In either method, the
subtraction term is constructed based on the factorisation of squared matrix elements
in single-unresolved limits, which follows directly from the amplitude-level factorisation
eqs. (3.20) and (3.21).
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As a result of eq. (3.20), a squared tree-level matrix element behaves as

∣∣M(0)
n (. . . , pi, pj, . . .)

∣∣ i‖j−→
8παS

(pi + pj)2 −m2
ĩj

〈
M(0)

n−1(. . . , pĩj, . . .)
∣∣∣ P̂ij(z)

∣∣∣M(0)
n−1(. . . , pĩj, . . .)

〉
(3.33)

in the (quasi-)collinear limit. The scalar product is to emphasise spin correlations for
gluon splittings g 7→ gg and g 7→ qq̄ and the functions P̂ij denote the spin-dependent
DGLAP splitting kernels, cf. e.g. [191]. It should be noted that the mass terms shield
the singularity in the quasi-collinear limit. In the soft limit, it follows from eq. (3.21) that
squared matrix elements behave like

∣∣M(0)
n (. . . , pi, pj, pk, . . .)

∣∣ pj→0−−−→
− 4παS

∑

i<k

Sik(j)
〈
M(0)

n−1(. . . , pi, pk, . . .)
∣∣∣TiTk

∣∣∣M(0)
n−1(. . . , pi, pk, . . .)

〉
, (3.34)

where the non-abelian structure of QCD introduces non-trivial colour correlations via the
insertion operator TiTk, cf. also eq. (3.24). We have here introduced the eikonal factor,
which, in the massive case, is given by

Sik(j) =
2sik
sijsjk

− 2m2
i

s2
ij

− 2m2
k

s2
jk

=
2(pi · pk)

2(pi · pj)2(pj · pk)
− 2p2

i

(2pi · pj)2
− 2p2

k

(2pj · pk)2
. (3.35)

In the Catani-Seymour scheme, the soft eikonal factor is partitioned so that dipole
functions Vij,k can be defined, accounting for the i−j (soft-)collinear limit. Together with
a suitable recoil scheme, i.e., a prescription for how to recombine momenta pi + pj + pk =
pĩj + pk̃, Catani-Seymour dipole subtraction terms are constructed as [191,192,231]

Sij,kn =

− 8παS

(pi + pj)2 −m2
ĩj

〈
M(0)

n−1(. . . , pĩj, pk̃, . . .)
∣∣∣ TijTk

T2
ij

Vij,k(pi, pj, pk)
∣∣∣M(0)

n−1(. . . , pĩj, pk̃, . . .)
〉
,

(3.36)

The full subtraction term Sn is then constructed as a sum of Sij,kn over all dipoles and
In as a sum of dipole functions, analytically integrated over their respective dipole phase
space in D = 4− 2ε dimensions,

Vij,k(ε) =

∫
d4−2εΦij,k

+1 (pi, pj, pk)Vij,k(pi, pj, pk) (3.37)

where we have used the exact phase-space factorisation

d4−2εΦn = d4−2εΦij,k
+1 dΦn−1 . (3.38)

A set of spin-averaged final-final dipole functions Vij,k will be given in section 3.2.2.

A particularly appealing subtraction scheme is given by the antenna formalism [226],
as the NLO scheme [242–244] naturally extends to the NNLO [245–250]. The basic idea
is to use colour-ordered decay matrix elements as subtraction terms, since these naturally
include all single- and double-unresolved limits. The NLO antenna functions are thus



3.1. THE HARD PROCESS 29

defined by [245]

X0
3 (pi, pj, pk) =

∣∣∣A(0)
3 (pi, pj, pk)

∣∣∣
2

g2
S

∣∣∣A(0)
2 (pI , pK)

∣∣∣
2 . (3.39)

As opposed to the dipole functions described above, antenna subtraction starts from
the soft limit and fractions the collinear limit into neighbouring antennae. As such, the
antenna functions defined by eq. (3.39) are typically decomposed into a linear combination
of sub-antenna functions (global antenna functions), each of which contains the full soft,
but only part of the collinear limit in a given antenna i − j − k. Equivalent to the case
for dipole subtraction, the full subtraction term Sn is constructed as a sum of antenna
subtraction terms,

Sj/IKn = 4παSCj/IKX0
3 (pi, pj, pk)

∣∣∣M(0)
n−1(. . . , pI , pK , . . .)

∣∣∣ , (3.40)

where Cj/IK denotes the colour factor of the branching IK 7→ ijk. The virtual subtraction
term In is again constructed as the sum over integrated antenna functions,

X 0
3 (ε) =

∫
d4−2εΦ

j/IK
+1 (pi, pj, pk)X

0
3 (pi, pj, pk) , (3.41)

with the (4 − 2ε)-dimensional antenna phase space d4−2εΦ
j/IK
+1 , for which the exact fac-

torisation
d4−2εΦn = d4−2εΦ

j/IK
+1 dΦn−1 , (3.42)

holds. Similarly, at NNLO, the double-real and real-virtual antenna functions are defined
as [245]

X0
4 (pi, pj, pk, p`) =

∣∣∣A(0)
4 (pi, pj, pk, p`)

∣∣∣
2

∣∣∣A(0)
2 (pI , pK)

∣∣∣
2 , (3.43)

X1
3 (pi, pj, pk) =

∣∣∣A(1)
3 (pi, pj, pk)

∣∣∣
2

∣∣∣A(0)
2 (pI , pK)

∣∣∣
2 −X0

3 (pi, pj, pk)

∣∣∣A(1)
2 (pI , pK)

∣∣∣
2

∣∣∣A(0)
2 (pI , pK)

∣∣∣
2 (3.44)

Antenna functions for quark-antiquark parents can be calculated from off-shell photon
decays γ∗ → qq̄ [251–254], quark-gluon antennae from neutralino decays to a gluino5 and
a gluon χ̃ → g̃g [255], and gluon-gluon antennae from Higgs decays to two gluons in the
Higgs effective theory6 H0 → gg [256]. Antenna functions for configurations containing
initial-state partons can be derived from these by crossing invariance, i.e., by crossing
final-state legs into the initial state, flipping their momenta pi → −pi. An extensive
review of the full subtraction formalism up to the NNLO can be found in [257]. Shower
models based on the antenna formalism will be discussed in section 3.2.3.

5In supersymmetric extensions of the Standard Model, the gluino is the fermionic partner of the gluon.
In any collinear limit it thus behaves like a quark, although it transforms as an octet under the colour
group and as such contains a colour and an anticolour index in the colour-flow basis. This fact leads to
spurious singularities in the quark-gluon antenna functions which have to be accounted for when using
them as subtraction terms.

6In the Higgs effective theory (HEFT), the top-quark loop is integrated out, leaving an effective
H0 − g − g vertex.
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Figure 3.3: Illustration of MPIs interleaved with the evolution of the primary and fur-
ther hard processes in a common measure of transverse momentum (left).
Importance of MPIs in the description of the charged particle density com-
pared to the distribution measured in the ATLAS experiment [264]. Taken
from [262] and [90], respectively.

3.1.5 Multiple Hard Interactions

When thinking of hadrons as containers for quarks and gluons, it might seem counter-
intuitive to restrict a hadron-hadron collision only to a single parton-parton collision
process. In fact, for some observables the effect of additional (semi-) hard processes can
be significant, as shown in the right-hand pane of fig. 3.3. Multi-purpose event generators
therefore usually include the modelling of multi-parton interactions (MPIs).

The first model to take into account the composite nature of protons was devel-
oped in [258] and assumed fairly independent interactions between the proton composita.
Nowadays, MPI models in PYTHIA and SHERPA are based on pT-ordered Sudakov evo-
lution [259, 260] based on the observation that the cross section of pure-QCD processes
behaves as

dσQCD ∝
dp2

T

p4
T

, (3.45)

whereas the model implemented in HERWIG is based on eikonal factorisation [261].

In PYTHIA, the generation of MPIs is interleaved with the parton showers [262, 263],
i.e., both initial- and final-state showers and MPIs compete for the highest scale and any
subsequent hard process is colour-connected to the primary one and its shower emissions.
This procedure is schematically depicted in fig. 3.3. The models in SHERPA and HERWIG
are independent of the rest of the event simulation. In all of the three generators, MPIs
are subject to parton-shower radiation.

While all of the above-mentioned MPI models are based on judicious assumptions,
they are not derived from first principles, as is the case for (the single-parton interac-
tion) fixed-order calculations discussed previously in this section. A rigorous approach
to double-parton scattering as the simplest MPI has been developed in [265–269] and
recently implemented in a Monte Carlo program, including an NLO subtraction scheme
which is matched to a parton shower [270,271].
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t0 = m2
Z0 t1 t2 · · ·

Figure 3.4: Illustration of a parton shower in hadronic Z0 decays Z0 → qq̄ (left) and
associated colour flow in the large-NC limit (right).

3.2 Parton Showers and Resummation
In hard scattering processes described in the previous subsection, a handful of par-

tons are created at high energies and with large momenta. The detector signal, on the
other hand, contains a large number of particles. The transition from the former to the
latter occurs via successive bremsstrahlung, a process in which the initially hard partons
lose energy through parton branchings. According to the Feynman rules of QCD, cf. sec-
tion 2.2.1, three such branchings may occur for a final-state parton7: g 7→ gg, g 7→ qq̄,
and q 7→ qg. In the latter, one may be distinguish between the branching q 7→ qg in
which the gluon can become soft and q 7→ gq, where the gluon is considered the hard
radiator. Similar 1 7→ 2 branchings can be derived for the QED/EW case. In Monte Carlo
event generators, this evolution between the high- and low-energy regime is described by
a parton shower. An illustration of a parton shower describing final-state radiation (FSR)
in the decay Z0 → qq̄ is shown in fig. 3.4. If the beam particles are hadrons or QED/EW
evolution is considered, particle branchings may also occur in the initial state, a process
called initial-state radiation (ISR). In parton showers, ISR is typically modelled as a con-
ditional backwards evolution [272], i.e., starting with the hard process and evolving the
initial-state legs backwards in time under the condition that any occurring branching must
not change the original initial-state parton configuration (flavour, momentum, colour, and
spin).

Parton-shower algorithms build upon the factorisation of squared matrix elements8 in
the soft and collinear limits, cf. eqs. (3.33) and (3.34),

dσn+1
single-unresolved−−−−−−−−−→

∑

j

Kj/IK dΦj
+1 dσn , (3.46)

where Kj/IK denotes a generic branching kernel

Kj/IK(t, ζ, φ) = 4παS(t)RPDF(t, ζ) Cj/IK K̄j/IK(t, ζ, φ) (3.47)

for the branching IK 7→ ijk and K̄j/IK its colour- and coupling-stripped equivalent.
We have here introduced shower variables {t, ζ, φ}, in terms of which we can write the
radiation phase space dΦ+1 in the factorisation of the n-parton phase-space, cf. eq. (3.32),

dΦn(pa, pb; p1, . . . , pn) = dΦj
+1(pi, pj, pk) dΦn−1(pa, pb; p̃1, . . . , p̃n) , (3.48)

7We will denote branchings by a 7→ bc to distinguish them from reactions a→ bc.
8Recently, parton evolution on the amplitude level has been considered, cf. e.g. [273,274].
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dΦj
+1(pi, pj, pk) ≡ dΦj

+1(t, ζ, φ) =
1

16π2
|J(t, ζ, φ)| dt dζ dφ . (3.49)

In this context, the variable t denotes some “singularity measure”, i.e., a measure of
softness or collinearity, typically defined such that t → 0 in the unresolved limits. It
follows that the probability P(t0, t) for a branching to occur at any scale t′ with t0 ≥ t′ > t
can be written as

P(t0, t) =
∑

j

t0∫

t

ζmax∫

ζmin

2π∫

0

dt′ dζ ′ dφ′ |J(t′, ζ ′, φ′)|Kj/IK(t′, ζ ′, φ′) . (3.50)

Naively, eq. (3.50) could be applied iteratively to approximate the cross section of higher-
multiplicity states. Such a procedure would, however, lead to a diverging inclusive cross
section and is therefore not useful. This can be circumvented by imposing unitarity on
the shower evolution, made explicit in terms of a no-branching probability, often called
Sudakov (form) factor, Πj/IK(t0, t), so that

Pj/IK(t0, t) + Πj/IK(t0, t) = 1 . (3.51)

Assuming a Markovian branching process, i.e., that successive branchings have no memory
of the previous ones, the no-branching probability between the shower starting scale t0 and
the branching scale t can be written as the limit of a product of no-branching probabilities
over decreasingly small evolution windows [m(t0−t)

N
, (m+1)(t0−t)

N
],

Πj/IK(t0, t) = lim
N→∞

N−1∏

m=0

(1− P(tm, tm+1)) = exp



−

t0∫

t

dt′
dP(t′)

dt′



 . (3.52)

As we shall see below, the branching kernels Kj/IK involve terms inversely proportional
to t, so that the term in the exponential above is of the form

dP(t)

dt
∝ dt

t
, (3.53)

where a potentially complicated function of t, ζ, and φ multiplies the right-hand side.
Equation (3.52) therefore resums9 logarithmic terms of the form log(t0, t), which become
large if t0 � t. Moreover, considering a gluon emission q 7→ qg or g 7→ gg, in the limit of
the emission being collinear and soft, the splitting kernels behave like 1/(1− ζ), assuming
that the splitting variable ζ denotes a measure of the momentum fraction of the emission
in this limit. The integration over ζ therefore introduces a further logarithm, so that the
leading logarithms in this limit are given by a term of the form αS log2(t0/t).

Generalising eq. (3.52) to the evolution of an n-parton state at scale tn to an (n+ 1)-
parton state at scale tn+1 yields

Πn(tn, tn+1) = exp



−

∑

j

tn∫

tn+1

ζmax∫

ζmin

2π∫

0

dt′ dζ ′
dφ′

2π

1

16π2
|J(t, ζ, φ)|Kj/IK(t′, ζ ′, φ′)





=
∏

j

exp



−

tn∫

tn+1

ζmax∫

ζmin

2π∫

0

dt′ dζ ′
dφ′

2π

1

16π2
|J(t, ζ, φ)|Kj/IK(t′, ζ ′, φ′)



 (3.54)

9Resummation here refers to reorganising, i.e., re-summing, the perturbative series in αn
S into terms

of the form αn
S logm(t0/t).
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=
∏

j

Πj/IK(tn, tn+1) ,

for which we introduce the shorthand

Πn(tn, tn+1) = exp



−

tn∫

tn+1

dΦ+1(t′, ζ ′, φ′) Kn7→n+1(Φ+1(t′, ζ ′, φ′))



 . (3.55)

To describe successive emissions by a (unitary) parton shower, we introduce a generating
functional Sn, the so-called shower operator, which is recursively defined by

Sn(t, O) = Πn(t, tc)O(Φn) +

t∫

tc

dΦ+1(t′, ζ ′, φ′) Kn7→n+1Πn(t, t′)Sn+1(t′, O) . (3.56)

We have here introduced a shower cut-off scale tc ≈ Λ2
QCD ≈ 1 GeV2 to ensure that

partonic processes are calculated only in the regime of perturbative QCD10 and to make
the parton-shower algorithm amenable to Monte Carlo methods. Below the cut-off scale
singularities of unresolved real contributions cancel with the ones of virtual corrections, cf.
section 3.1.4. Above the cut-off scale, real corrections are explicitly modelled by the parton
shower and virtual corrections are implicitly modelled by assuming that they exactly
cancel the real contributions. In addition, the shower evolution defined by eq. (3.56) is
required to be strongly ordered, i.e., successive branching scales have to be decreasing, t0 >
t1 > t2 > · · · > tc, cf. fig. 3.4. In this way, the shower algorithm accounts for the dominant
contributions of any given amplitude, namely the ones in which propagators of successive
branchings become more and more on-shell. These also correspond to the leading single-
unresolved singularities. First approaches to include unordered contributions in parton
showers have been developed based on direct double-branchings [275,276]. These become
important in the context of matching parton showers to NNLO calculations, as will be
discussed in chapter 7.

Adding the effect of a parton shower to the LO calculation of an infrared-safe observ-
able O, cf. eq. (2.57), therefore gives

〈O〉PS
n =

∫
dΦB Bn(ΦB;µR, µF)Sn(t, O) . (3.57)

That the shower operator, eq. (3.56), is manifestly unitary can be seen as follows. Ignoring
for the time being the recursive appearance of the shower operator, the first term in
eq. (3.56) describes the probability that no branching happens between the scales t and
the shower cutoff tc, while the second term in eq. (3.56) describes the probability that a
branching occurs at any scale t′ ∈ [t, tc]. As such, eq. (3.56) is equivalent to eq. (3.51).
To prove that this holds to all orders, this argument can be repeated by induction. In
practice, unitarity is implemented in shower Monte Carlos by explicitly evolving an n-
parton state to an (n + 1)-parton state upon a branching. This means, that whenever
a parton in the n-parton state branches, this state is “destroyed” and replaced by the
(n+ 1)-parton state.

Commonly, parton showers are formulated in a large-NC limit, often referred to as
the leading colour limit, cf. the right hand pane in fig. 3.4. This means that, before
the shower evolution commences, the colour structure of the hard process is projected

10This does not apply e.g. to QED showers, which can be continued below the hadronisation scale.
There, a cut-off scale is needed to ensure termination of the algorithm and to avoid proliferation of
unresolvable emissions.
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onto a planar colour flow (cf. section 3.1.2 for a discussion of the colour flow basis),
i.e., one which can be drawn in 2D without crossing colour lines. In the shower, only
emissions off neighbouring colour-anticolour pairs (colour dipoles) are considered. While
empirically this procedure has been shown to give reasonable predictions in many cases,
it systematically misses some contributions which are suppressed by 1/N2

C relative to the
leading-colour factor. In terms of the colour matrix TiTk introduced in section 3.1.3
and section 3.1.4, this means that the shower only considers branchings happening along
its diagonal. To finite order, the effect of sub-leading colour correlations can be taken
into account by matrix-element corrections [277–282] (cf. section 3.3.1 for a discussion
of matrix-element corrections), i.e., by iteratively reweighting branchings to the correct
colour structure. This does not generically account for colour correlations in the full
shower, i.e., to infinite order. Approaches addressing the issue to all orders have been
presented in [283, 284], where the “most important” sub-leading colour corrections are
systematically included, and [285], which is based on arguments stemming from soft-gluon
resummation. Since colour correlation matrices TiTk quickly become intractable, work
has begun to formulate parton showers directly on the amplitude level [273, 274, 286]. In
any of the approaches, hadronisation corrections (cf. section 3.4) require special attention,
as current hadronisation models are intrinsically linked to the large-NC limit and no
generalisation with an exact colour treatment exists yet.

A lot of recent research has considered the logarithmic accuracy of parton showers
[281, 282, 287–293]. As we have seen above, showers account for large logarithms in a
reorganised (resummed) perturbative series. It is, however, usually not clear which terms
exactly a certain shower algorithm resums in this series. To understand this statement,
let us consider the cumulative distribution Σ(L), i.e., the probability for an observable
to have a value smaller than exp(−L), where L denotes a logarithm that depends on the
ratio of the hard scale t0 and the resolved scale t. For a certain class of observables11,
Σ(L) can be written as [288,295]

Σ(L) = exp {Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . .} . (3.58)

Here, the first term resums the leading logarithms (LL) of the form αnSL
n+1, the second

term the next-to-leading logarithms (NLL) αnSLn, etc. Returning to the question of the
logarithmic accuracy of parton showers, it is often assumed that they generically perform
an LL resummation, independently of the observable considered. Since it has been shown
that this is not always true [281,282,288,289,291], the assessment of the shower accuracy
has become an important aspect of precision physics.

In the following three subsections, common parton-shower implementations will briefly
be discussed and compared. The discussion is organised in terms of the different factori-
sation paradigms employed in different showers, although this does not take the choice of
ordering variables, recoil schemes, and the treatment of colour correlations into account.
We will not describe parton showers derived from quantum density matrices, as imple-
mented in the Deductor program [296]; an exhaustive review of that formalism can be
found in [297].

3.2.1 DGLAP Evolution

Historically, parton showers were first constructed based on collinear factorisation. In
traditional parton showers, the branching kernels are the DGLAP splitting kernels [73,

11Typically many so-called “event shapes” and some “jet rates”, cf. e.g. [294] for more details.
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86,87], in the massless version given by

Pqq(z) = CF

[
2

1− z − (1 + z)

]
, (3.59)

Pgg(z) = 2CA

[
1

1− z +
1

z
+ z(1 + z)− 2

]
, (3.60)

Pgq(z) = TR [1 + 2z(1− z)] , (3.61)

where the notation PIi is used to denote the branching I 7→ ij, i.e. the emitted particle
is kept implicit. The evolution equations take the form

dPIi(t) =
αS(t)

2π

dt
t

zmax∫

zmin

dzPIi(z) , (3.62)

dPIi(x, t) =
αS(t)

2π

dt
t

zmax∫

zmin

dz
z

fI/h(x/z, t)

fi/h(x, t)
PIi(z) , (3.63)

where the evolution variable t may be chosen proportional to the virtuality of the branch-
ing particle, the transverse momentum of the emission, or a generalised (energy-weighted)
emission angle. Equation (3.63) has already been given in the context of PDF evolution
in eq. (2.56) in slightly different form. As such, DGLAP-based parton showers may be
viewed as a numerical implementation of the parton evolution encoded in the DGLAP
equation eq. (2.56). There is, however, an important subtlety: typically, parton showers
require an on-shell evolution, meaning that at each step in the branching sequence, ev-
ery parton is on its mass shell. This cannot be fulfilled by 1 7→ 2 branchings unless the
emission and the emitter are exactly collinear. Therefore, typically some momentum is
taken from the colour-partner of the branching parton (“local recoil”) or the whole event
(“global recoil”) in order to ensure momentum conservation in the branching process.

There is a related subtlety: because DGLAP showers derive from the collinear limit,
they are a priori not accurate for soft, wide-angle emissions. On average, these effects
can be taken into account by angular ordering, which implies that the effect of the soft
eikonal, eq. (3.35), is limited to a cone of opening angle ∼ 2θ around the emitting leg.
In case a soft gluon is emitted off a collinear gluon-gluon pair, the emission interferes
destructively outside this cone. A coherent emission pattern may therefore be restored in
DGLAP showers either by ordering emissions in angle [298, 299] or by explicitly vetoing
emissions at too large angles [300].

Parton showers based on DGLAP splitting kernels have previously been implemented
in SHERPA’s APACIC++ [301, 302] shower and still form the basis of HERWIG’s angular
ordered q̃ shower [303] and PYTHIA’s p⊥-ordered shower [262].

3.2.2 Dipole Showers

The idea of Catani-Seymour dipole showers, often simply called dipole showers, is to
use the dipole subtraction terms introduced in section 3.1.4 as shower branching kernels.
Because of this, dipole showers are particularly suited for matching showers to NLO
calculations [304,305]. This topic will be discussed in more detail in section 3.3.2.

For final-state branchings with a final-state spectator, the massless, spin-averaged
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dipole functions12 are given by

Vqigj ,k(yij,k, zi) = CF

[
2

1− zi(1− yij,k)
− (1 + zi)

]
, (3.64)

Vgigj ,k(yij,k, zi) = 2CA

[
1

1− zi(1− yij,k)
+

1

1− (1− zi)(1− yij,k)
+ zi(1 + zi)− 2

]
,

(3.65)
Vqigj ,k(yij,k, zi) = TR [1− 2zi(1− zi)] , (3.66)

expressed in terms of the two invariants

yij,k =
sij

sij + sjk + sik
, zi =

sik
sik + sjk

. (3.67)

The full set of massless and massive dipole functions can be found in [192] and [231],
respectively. Dipole showers are typically evolved in a measure of transverse momentum
k⊥, which in the case of massless final-state branchings is given by

k2
⊥ = yij,kzi(1− zi)Q2 , Q2 = (pi + pj + pk)

2 . (3.68)

The kinematics are constructed as exact inverses of the dipole kinematics in the sub-
traction scheme, cf. section 3.1.4. For massless final-state branchings with final-state
recoilers, the local dipole kinematics are constructed according to the following Sudakov
parametrisation

pi = zip̃ij +
k2
⊥

ziQ2
p̃k + k⊥ , (3.69)

pj = (1− zi)p̃ij +
k2
⊥

(1− zi)Q2
p̃k − k⊥ , (3.70)

pk = (1− yij,k)p̃k . (3.71)

As for DGLAP-based showers, cf. section 3.2.1, in the case of initial-state branchings
with initial-state spectators, a global recoil scheme has to be employed to ensure that
the initial-state partons remain aligned with the beam axis. Global recoil schemes are
sometimes also employed in other kinematical setups [290,291,306,307].

Dipole showers along the lines described above are implemented in SHERPA [308] and
HERWIG [120,309].

There is an alternative formulation of dipole showers, which is more akin to traditional
parton showers, while borrowing concepts from antenna showers, cf. section 3.2.3. It has
been derived in the context of the DIRE 13 shower [310], implemented as non-default
shower options in PYTHIA 8.3 14 as well as SHERPA. The massless final-final branching
kernels in DIRE can be written analogously to eqs. (3.59) to (3.61),

Pqq(z, κ2) = CF

[
2(1− z)

(1− z)2 + κ2
− (1 + z)

]
, (3.72)

Pqg(z, κ2) = CF

[
1 + (1− z)2

z

]
, (3.73)

12We systematically exclude coupling factors in branching kernels.
13Dipole-Resummation
14With the release of PYTHIA 8.3, DIRE for PYTHIA was incorporated into the main PYTHIA code, but

was maintained as a plug-in to PYTHIA 8.2 before.



3.2. PARTON SHOWERS AND RESUMMATION 37

Pgg(z, κ2) = 2CA

[
1− z

(1− z)2 + κ2
+

1

z
+ z(1 + z)− 2

]
, (3.74)

Pgq(z, κ2) = TR [1 + 2z(1− z)] , (3.75)

with the shower ordering and splitting variables

κ2 =
sijsjk
Q4

, z = 1− (1− zi)(1− yij,k) (3.76)

where the former here has a similar effect as the regulator in principal-value regularisa-
tion [311]. Note that this definition is different to eq. (3.68), but identical to (a dimen-
sionless version of) the evolution variable in antenna showers eq. (3.84). Due to the close
connection with both DGLAP parton evolution and the dipole framework, it has been pos-
sible to implement NLO DGLAP [312], including triple-collinear splitting functions [276],
and two-loop soft corrections [313] in DIRE.

3.2.3 Antenna Showers

Historically the first “dipole” shower was the Lund dipole model implemented in ARIADNE
[314, 315]. The formalism, nowadays referred to as (dipole-) antenna showers, has been
revived in the VINCIA [277,316,317] plug-in to PYTHIA and the Krauss-Winter shower [318]
in an early version of SHERPA.

In contrast to DGLAP and dipole showers, cf. sections 3.2.1 and 3.2.2, antenna showers
do not start from the factorisation in the collinear limit but from the soft factorisation
eq. (3.34). As such, the starting point is the soft eikonal eq. (3.35) and antennae are
intrinsically agnostic to the assignment of a recoiler and an emitter. Instead, both parent
partons act simultaneously as both, the emitter and recoiler. While this treatment is
adverse to the parton-evolution picture maintained in DGLAP and dipole showers, it
allows for coherence to be incorporated into the evolution in a simple way. Moreover,
since always a parton pair emits at a time, cross sections factorise into a smaller number
of branching kernels/subtraction terms Kj/IK in the antenna formalism.

The branching kernels, called antenna functions in this context, can be derived from
the definition eq. (3.39). In terms of the two dimensionless invariants

yij =
sij
sijsjk

, yjk =
sjk
sijsjk

, (3.77)

and the antenna mass sIK = sij + sjk + sik, a set of massless final-final (FF) antenna
functions is given by

Āgj/qI q̄K (yij, yjk) =
1

sIK

[
(1− yij)2 + (1− yjk)2

yijyjk
+ 1

]
, (3.78)

Āgj/qIgK (yij, yjk) =
1

sIK

[
(1− yij)3 + (1− yjk)2

yijyjk
+ 2− yij −

yjk
2

]
, (3.79)

Āgj/gIgK (yij, yjk) =
1

sIK

[
(1− yij)3 + (1− yjk)3

yijyjk
+ 3− 3yij

2
− 3yjk

2

]
, (3.80)

Āqj/gIXK (yij, yjk) =
1

sIK

1

2yij

[
y2
jk + (1− yij − yjk)2

]
, (3.81)

where we have omitted colour factors. The assignment of these for gluon-emission an-
tenna functions is less straight-forward, because they cannot be derived from the collinear
limit (as for DGLAP and dipole kernels) and the soft limit generally involves non-trivial
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colour correlations. While it is clear that gluon splittings come with a factor of TR,
one possibility to assign gluon-emission colour factors is as follows: quark-quark emis-
sions get a colour factor of 2CF, gluon-gluon antennae a factor of CA, and quark-gluon
antennae an interpolation (CA + 2CF)/2. As for dipole showers, the attribution of
colour factors in this way yields incorrect subleading-NC factors even for leading loga-
rithms [277,281–283,288–291,319–322].

It must be emphasised that antenna functions are not unique in the choice of constant
and finite terms vanishing in the soft or collinear limits, i.e., yij → 0, yjk → 0. Differ-
ent choices are possible, depending on whether the antenna functions are derived from
physical matrix elements [245, 251, 255, 256], helicity amplitudes [323–326], or amplitude
factorisation (cf. eqs. (3.20) and (3.21)) [193, 194, 197, 198, 217]. Regarding the latter, it
should be highlighted that antenna factorisation holds on the amplitude level. Initial-final
(IF) and initial-initial (II) antenna functions can be derived from eqs. (3.78) to (3.81) by
crossing invariance, i.e., by crossing one (IF) or two (II) final-state particles into the initial
state, pi → −pi.

From the form of eqs. (3.78) to (3.80), it is obvious that the antenna functions recover
the eikonal factor eq. (3.35) in the soft limit

sij → λsij , sjk → λsjk λ→ 0. (3.82)

In the (i− j) collinear limit,

sij → λsij , sjk → (1− z)(sik + sjk) , λ→ 0 , (3.83)

on the other hand, the antenna functions eqs. (3.78), (3.79) and (3.81) yield the full
DGLAP kernels eqs. (3.59) to (3.61) only in the case of q − g collinear limits, while in
case of g−g and q− q̄ collinear limits, the collinear singularity is partitioned between two
neighbouring antennae, which are related in the collinear limit by z ↔ 1− z. This is the
case, because eqs. (3.78) to (3.81) are global (or sub-) antenna functions, constructed so
that they correspond to a single antenna (colour dipole) with a unique kinematic mapping
pI + pK = pi + pj + pk. There exists an alternative formulation of the antenna framework,
which uses so-called sector antenna functions [193, 194, 323–325], which reduce to both
the eikonal factor eq. (3.35) in the soft limit as well as the appropriate DGLAP kernel
eqs. (3.59) to (3.61) in any collinear limit. A final-state shower based on sector antennae
was presented in [327]. A full-fledged implementation of sector showers in VINCIA, includ-
ing initial-state radiation and coloured-resonance decays will be presented in chapter 4.

Antenna showers are ordered in a symmetric notion of transverse momentum, for
final-final emissions known as the ARIADNE p⊥ defined by

p2
⊥ =

sijsjk
sIK

= yijyjksIK , sIK = sij + sjk + sik (3.84)

which can be generalised to the massive case with initial-state partons as

p2
⊥ =

q̄ij q̄jk
s

, q̄ij =

{
sij +m2

i +m2
j −m2

I if i final
sij −m2

i −m2
j +m2

I if i initial
, s =





sij + sjk + sik FF
sij + sik IF
sij II

(3.85)
Following the idea of recoiler-emitter agnostic evolution, the branching recoil is shared
with both parent partons at the same time, possibly constrained by one (IF) or two (II)
partons remaining aligned with the beam axis. Note that this treatment is different than
in dipole showers, section 3.2.2, because both initial-state partons are evolved at the same
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Figure 3.5: Illustration of the recoiler-emitter agnostic antenna recoil for a final-final
q− q̄ antenna. Taken from [277].

time in the II case, cf. also [242, 244]. In any case, the antenna kinematics contain
the dipole recoil schemes in the limit of collinear kinematics. For FF branchings, this is
visualised in fig. 3.5.

To date, the VINCIA antenna shower in PYTHIA 8.3 15 includes initial- and final-
state showers [317], showers in coloured resonance decays [328], interleaved coherent QED
branchings [329,330], and electroweak showers16 [331].

3.3 Combining Parton Showers with Fixed-Order Calculations
Resummation (both analytical and numerical) is accurate in the regions of phase space

in which emissions are soft or collinear, but becomes inaccurate in the “hard” regions of
phase space, which is dominated by highly-energetic, well-separated jets. In the latter
region, fixed-order calculations provide reliable and precise predictions. In other words,
fixed-order calculations describe hard jets, while resummation techniques account for the
jet substructure. Moreover, parton showers a priori only retain the inclusive (LO) accuracy
of the Born-level calculation, while fixed-order calculations typically obtain higher (NLO,
NNLO, . . . ) accuracy.

Given that fixed-order calculations and (parton-shower) resummation are largely com-
plementary, it appears prudent to combine the two approaches and include higher-order
corrections in parton showers. In practice, this is complicated by the fact that there
exists a partial overlap, so that simply adding the two types of calculations overcounts
emissions. This overcounting has to be avoided by a systematic combination, for which
two strategies exist: matching and merging. The distinction between what is referred
to as a matching scheme and what is called a merging scheme is not always clear. To
disambiguate the terminology, we will use the terms in the following way:

Matching describes the combination of a fixed-order (typically NLO) calculation with a
parton shower, avoiding double-counting in overlap regions (often analytically).

Merging describes the combination of multiple inclusive (N)LO event samples into a sin-
gle inclusive one, dressed with additional shower radiation, accounting for Sudakov

15With the release of PYTHIA 8.3, VINCIA was incorporated into the main PYTHIA code and the plug-in
structure discontinued.

16VINCIA’s EW shower is based on (quasi-)collinear factorisation and not based on full antenna func-
tions.
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Figure 3.6: Schematic overview of different methods to combine fixed-order calculations
with parton showers. Adapted from [327].

suppression and avoiding double-counting in overlap regions (often via phase-space
slicing).

However, as will become apparent later, even this distinction is not always suitable to
describe a given fixed-order-plus-parton-shower combination scheme.

An (incomplete) overview of different matching and merging techniques is schemat-
ically sketched and contrasted to the simple LO+PS treatment in fig. 3.6. The ideas
behind the schemes visualised in the figure will be described in the following subsections.

3.3.1 Matrix-Element Corrections

Historically the first method was that of matrix-element corrections (MECs) [332–335],
where the shower kernel itself is corrected to the full matrix element after the first emission,

ΠMEC
n (tn, tn+1) = exp



−

tn∫

tn+1

dΦ+1(t′, ζ ′, φ′)
Rn(ΦB,Φ+1(t′, ζ ′, φ′))

Bn(ΦB)



 . (3.86)

Including only the first emission, the expectation value of an infrared-safe observable O
reads

〈O〉MEC
n =

∫
dΦB Bn(ΦB;µR, µF)

×


ΠMEC

n (t, tc)O(ΦB) +

t∫

tc

dΦ+1(t′, ζ ′, φ′)
Rn(Φn,Φ+1)

Bn(Φn)
ΠMEC
n (t, t′)O(ΦR)


 . (3.87)

It is straight-forward to see that this corrects the Born+1j prediction to the real-radiation
matrix element, so that now both, the exclusive Born and Born + 1j predictions obtain
LO precision. This method has later been extended to correct further emissions as well
[277,316,317,327,336].
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An important feature of MECs is that they rely on the parton shower to generate
the (Sudakov-weighted) phase space of all multiplicities, so avoid the need of non-trivial
and inefficient high-multiplicity phase space generators, cf. section 3.1.1. This does
not come without a price, however, since conventional showers are at most17 able to
fill the phase space of the first emission due to the strong ordering criterion, cf. sec-
tion 3.2. Matrix-element-corrected showers therefore systematically miss potentially im-
portant higher-multiplicity corrections. Related to this, there is a further subtlety in the
case of initial-state radiation, where the factorisation theorem, cf. section 2.3, implies that
the resummation scale, i.e., the scale at which showers are started, should be the factori-
sation scale µF. Again due to the strong ordering condition, a “wimpy” shower starting at
the factorisation scale is incapable of filling the full phase space, even of the first emission.
This leads to visible effects e.g. in the transverse-momentum distribution of the Z0 boson,
where the high-pT tail is entirely missed, cf. e.g. [308]. So-called “power showers” [337]
avoid this by letting the shower start at the phase space maximum. This, however, extends
the resummation region beyond its applicability in disagreement with the factorisation
theorem and introduces spurious PDF ratios of the form fa/h1(xa, µPS)/fa/h1(xa, µF).

3.3.2 NLO Matching

Two general and widely applied NLO matching schemes have been developed, namely
MC@NLO [338] and POWHEG [339–341], with the former being automated in the SHERPA
[342] and MADGRAPH_AMC@NLO [115] event-generation frameworks and the latter avail-
able through the POWHEGBOX program [229] 18.

The first method to match showers to NLO calculations has been described for the
case of final-state radiation in [345] and is since routinely employed for resonance decays
in PYTHIA. Today, this scheme is known under the name of POWHEG and extends MECs,
cf. eq. (3.86), to NLO accuracy in the Born,

〈O〉POWHEG
n =

∫
dΦB k

POWHEG
NLO (ΦB;µR, µF)Bn(ΦB;µR, µF)

[
ΠMEC
n (t, tc)O(ΦB)

+

t∫

tc

dΦ+1(t′, ζ ′, φ′)
Rn(ΦB,Φ+1)

Bn(ΦB)
ΠMEC
n (t, t′)O(ΦR)

]
(3.88)

by introducing a Born-differential NLO K-factor

kPOWHEG
NLO (ΦB;µR, µF) = 1 +

Vn(ΦB;µR, µF)

Bn(ΦB;µR, µF)
+

In(ΦB;µR, µF)

Bn(ΦB;µR, µF)

+

∫
dΦ+1

[
Rn(ΦB,Φ+1;µR, µF)

Bn(ΦB;µR, µF)
− Sn(ΦB,Φ+1;µR, µF)

Bn(ΦB;µR, µF)

]
. (3.89)

While the POWHEG method is guaranteed to yield positive-definite event weights as long
as the NLO correction is smaller than the LO prediction, there are two noteworthy sub-
tleties. Just as for tree-level MECs, eq. (3.86), the POWHEG method requires the parton
shower to generate the one-emission phase space, extending the parton-shower resumma-
tion to the region t > µ2

F. Furthermore, using the ratio R/B as shower branching kernels
exponentiates process-dependent finite terms in the no-branching probability, which may

17Angular-ordered parton showers contain a dead zone even in the phase space of the first emission.
18The POWHEG method was implemented in previous versions of the SHERPA framework as well [341],

but has been discontinued starting from the 2.0 series [342]. Similar multiplicative matching strategies
are also implemented in WHIZARD [343] and HERWIG/MATCHBOX [120,344].
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be regarded as inelegant since it makes the shower resummation process-dependent. In
chapter 7, a method extending the POWHEG scheme to NNLO is presented.

The above-mentioned subtleties are not present in MC@NLO, because the real cor-
rection is divided into an infrared-singular (soft) and an infrared-finite (hard) part19,
R = R(S) + R(H) [342],

〈O〉MC@NLO
n =

∫
dΦB B̄n(ΦB;µR, µF)

[
Π(S)
n (t, tc)O(ΦB)

+

t∫

tc

dΦ+1(t′, ζ ′, φ′)
R

(S)
n (Φn,Φ+1)

Bn(Φn)
Π(S)
n (t, t′)O(ΦR)

]

+

∫
dΦR

R
(H)
n (Φn,Φ+1)

Bn(Φn)
O(ΦR) (3.90)

with

B̄n(ΦB;µR, µF) = Bn(ΦB;µR, µF) + Vn(ΦB;µR, µF) + In(ΦB;µR, µF)

+

∫
dΦ+1

[
R(S)
n (ΦB,Φ+1;µR, µF)− Sn(ΦB,Φ+1;µR, µF)

]
(3.91)

and

Π(S)
n (tn, tn+1) = exp



−

tn∫

tn+1

dΦ+1(t′, ζ ′, φ′)
R

(S)
n (ΦB,Φ+1(t′, ζ ′, φ′))

Bn(ΦB)



 (3.92)

It must be noted that due to the intimate interplay between the shower branching kernels
and the NLO subtraction terms, the MC@NLO method is shower-dependent and has to be
implemented explicitly for every shower algorithm it is supposed to be used with. Related
to this, it should also be mentioned that practical implementations differ in precisely the
treatment of the R

(S)
n −Sn term. While the SHERPA (S-MC@NLO) implementation amends

the shower by subleading-colour branchings (with negative weights) to match the in-
frared singularity structure of R

(S)
n exactly, this is avoided in the MADGRAPH_AMC@NLO

(aMc@Nlo) implementation.

3.3.3 Merging

In multi-jet merging, multiple event samples are combined into a single inclusive sample.
In order for this to be done safely without double counting any emissions, the initially
inclusive event samples first have to be made exclusive and shower emissions have to be
constrained to the resummation region. In the CKKW [346,347] and derived schemes, the
latter is achieved by the introduction of a (somewhat arbitrary) merging scale kMS, which
separates the shower region (k < kMS) from the matrix-element region (k > kMS). Up to
the first emission, merging an n-jet and (n + 1)-jet calculation thus takes the schematic
form

〈O〉Me1Ps
n =

∫
dΦBn Bn(ΦB;µR, µF)

[
Πn(tn, tc)O(ΦBn) (3.93)

19A similar (but not identical) division of the real correction into a hard and soft part is possible also
in the POWHEG scheme via the “hdamp” parameter.
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+

∫
dΦ+1 Kn 7→n+1(ΦBn ,Φ+1)Πn(tn, tn+1)θ(kMS − kn+1)O(ΦBn+1)

]

+

∫
dΦBn+1 Bn+1(ΦBn+1 ;µR, µF)Π̃n(tn, tn+1)θ(kn+1 − kMS)O(ΦBn+1) ,

with the Heaviside step function θ. The first two lines describe the Born state including
the effect of a truncated and vetoed shower, i.e., a shower which is truncated after the
first emission with branchings above the merging scale vetoed. The interesting part is the
third line, which describes the addition of the hard matrix element in the region above the
merging scale cut kMS. While it is clear that states Bn+1 with kn+1 > kMS can be excluded
from the calculation by simply calculating the scale kn+1 and vetoing the state if the result
falls below the merging scale cut, the meaning of the no-branching probability Π̃n is a
priori undefined, because this state was not generated by the parton shower. To make
this meaningful, a shower history is defined, i.e., a sequence of on-shell configurations,

{SBorn, SBorn+1, SBorn+2, . . . , SBorn+m}

which corresponds to a sequence of the parton-shower evolution variable {t0, t1, t2, . . . , tm}.
This procedure now allows to define no-branching probabilities Πm(ΦBm ; tm, tm+1) be-
tween every adjacent pair of nodes in the shower history. It is the construction of the
shower history and the treatment of the no-branching probability where different merging
approaches differ. In the original CKKW scheme, the history was simply constructed
using a kT clustering algorithm and analytic NLL Sudakov factors used as Π̃n. This is
not ideal because of three reasons: in general, the shower evolution variable will not be
identical to the kT variable used in the clustering algorithm; similarly, the no-branching
probabilities in the shower are not identical to the analytically calculated ones; lastly,
the shower will also generate sequences which do not correspond to the ones defined in
the deterministic clustering algorithm. Taken together, these three issues can potentially
lead to overcounted or missed regions in phase space. The first two problems have been
overcome by various refinements of the CKKW algorithm. To this end, the CKKW-L
method [348–350] and MeTs [351] account for the mismatch between the shower or-
dering variable and the variable in terms of which the merging scale is defined and use
numerical no-branching probabilities, generated by truncated showers. The latter point
ensures that Π̃m(ΦBm ; tm, tm+1) = Πm(ΦBm ; tm, tm+1) in eq. (3.93), i.e., that the same
no-branching probabilities are used in the shower and the merging. In this context, trun-
cated showers are showers that are started on any node Sm and are stopped after the
first emission has been generated. A subtlety is, however, still present in the definition
of the shower history. In the CKKW-L algorithm, a proper shower history is generated
by considering all possible branching sequences the shower at hand may have generated
to arrive at the given hard configuration Sn. Then, the most likely sequence is picked
by maximising over the product of shower branching kernels. While this is guaranteed
to generate Sudakov factors in exactly the same way the shower would have done, this
procedure quickly becomes cumbersome, as the number of shower paths grows at least
factorially with the number of legs. A method that overcomes this problem of CKKW-L
is presented in chapter 5.

In the CKKW-L algorithm, multiple event samples are combined according to the
following formula

〈O〉CKKW-L
n =

∫
dΦBn wnBn(ΦBn ;µR, µF)O(ΦBn)

+

∫
dΦBn+1 wn+1Bn+1(ΦBn+1 ;µR, µF)θ(kn+1 − kMS)O(ΦBn+1)
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+ . . .

+

∫
dΦBn+k wn+kBn+k(ΦBn+k ;µR, µF)θ(kn+k − kMS)O(ΦBn+k) , (3.94)

where the weights wm reweight inclusive events to exclusive ones and ensure a smooth
merging with the shower by additional αS and PDF weights,

wm =
fam/h1(xm, tm)

fam/h1(xm, µ
2
F)

fbm/h2(xm, tm)

fbm/h2(xm, µ
2
F)

×
m−1∏

i=0

αs,PS(ti+1)

αs,ME

fai/h1(xi, ti)

fai/h1(xi, ti+1)

fbm/h2(xi, ti)

fbm/h2(xi, ti+1)
Πi(ti, ti+1) . (3.95)

It is straight-forward to see from eq. (3.94) that the CKKW-L scheme changes the in-
clusive Born-level cross section by the addition of (weighted) higher-multiplicity samples.
The inclusive cross section of the Born-level event sample can be restored by so-called
unitarised merging schemes (UMePs) [352, 353] via the explicit subtraction of higher-
multiplicity events from lower-multiplicity events just as the shower operator eq. (3.56)
dictates it.

As NLO calculations have become widely available and experimental precision in-
creases, multiple refinements of the above LO merging schemes have been developed to
extend it to NLO. The first NLO merging scheme, called NL3, was developed in [354] and
is based on CKKW-L. The MeNloPs scheme [355, 356] extends the MeTs scheme to
combine an NLO calculation for the Born multiplicity with multiple LO calculations at
higher multiplicities and has been further refined to include NLO calculations at higher
multiplicities under the name MePs@Nlo [357, 358]. The UNloPs scheme [359, 360]
may either be viewed as an NLO extension of UMePs or a unitarised version of NL3.
Within UNloPs, NLO accuracy is obtained for exclusive higher-multiplicity predictions,
while the inclusive NLO cross section of the lowest-multiplicity sample is retained.

It may be viewed as inelegant that merging schemes require the introduction of an ad-
ditional parameter, the merging scale. In the method presented in [336], dubbed MOPS,
this is avoided by a judicious combination of the CKKW-L algorithm with a matrix-
element corrected parton shower, cf. section 3.3.1. In that scheme, higher-order matrix
elements are only merged into the shower when the associated particle configuration can-
not be produced by a strongly-ordered shower (so-called incomplete histories). As such,
no merging scale is required to decide when the fixed-order calculation is ought to be used
over the shower approximation. An alternative CKKW-based scheme has been developed
under the name MiNlo [361, 362] as an extension of the POWHEG matching scheme, cf.
section 3.3.2. It avoids the introduction of a merging scale in the NLO merging via the
use of analytic Sudakovs, which regularise singularities in higher-multiplicities, so that
these can be performed at very low resolution scales.

A tree-level merging algorithm that does not fall into the category of the ones described
so far is the MLM scheme [363, 364], which utilises a simple jet-matching20 algorithm to
remove the radiation overlap, i.e., checks whether new hard jets compared to the Born
process have been generated after the shower evolution has stoppped. It has been extended
to NLO in the FxFx scheme [365], using analytic Sudakov weights akin to the CKKW
and MiNLO methods.

Because of the way merging schemes avoid singularities pertaining to higher-order
matrix elements (either through a merging scale or Sudakov weights), it has been possible

20The term “matching” here is not to be confused with the term used in NLO matching strategies.
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to define merging-based NNLOmatching schemes. Instead of a differential matching of the
shower kernels with the fixed-order calculation, such approaches merge NNLO-accurate
Born calculations with NLO Born + 1-jet calculations and LO Born + 2j calculations,
utilising available (NLO) merging techniques. The UN2LOPS scheme [366–369] extends
the UNloPs merging to the second order, while the MiNNLOPS [370, 371] and other
approaches [361,362,372–377] extend the MiNlo procedure. Recently, a proof of concept
for an UNloPs-based N3LO+PS matching strategy has been presented in [378].

3.4 Hadronisation
Once the particles in the simulation reach a scale of ΛQCD ≈ 1 GeV, perturbative QCD

is no longer applicable due to the growing value of the strong coupling at low energies, cf.
fig. 2.1, and the parton-shower evolution has to be stopped. The simulation then transfers
to the hadronisation or fragmentation phase, during which the transition from coloured
partons to composite, colour-singlet hadrons is made. If unstable hadrons are formed,
they decay further into stable particles afterwards. As a perturbative treatment of this
process is prohibited, these hadronisation models cannot be derived from first principles
but have to be based on judicious, QCD-inspired assumptions. Hadronisation models are
therefore intrinsically non-perturbative.

Among the first hadronisation models was the Field-Feynman model [379, 380] based
on independent fragmentation [381], meaning that partons fragment into hadrons indepen-
dently of each other. It modelled fragmentation as iterative branchings q1 7→ h1q2 with
a Gaussian transverse momentum distribution for each branching, disrespecting four-
momentum conservation. Despite its simplistic nature, it facilitated the construction
of early Monte Carlo generators for e+e− collisions [382, 383]. To date, two paradigms
build the foundations of fragmentation modules in Monte Carlo simulations: the (Lund)
string model implemented in PYTHIA [384–388] and the cluster fragmentation model im-
plemented in HERWIG [389] and SHERPA [390]. These two models are illustrated in fig. 3.7
and will be discussed briefly in the following two subsections.

3.4.1 String Fragmentation

As the basis of the early Lund Monte Carlos [91–97], the string model [384–388] is still one
of the cornerstones of modern-day PYTHIA [101,102,391]. While the Lund string model is
the best known, other string-based fragmentation models have been developed [392–396].
In fact, the Artru-Mennessier model [394, 395], which already provided a Monte Carlo
implementation, was the first-ever hadronisation model (even before the Field-Feynman
one mentioned above), but went mostly unnoticed.

String fragmentation is based on the linear confinement property of QCD, which
describes the potential between a quark and an antiquark at large spatial separation by
a flux tube, meaning a confined “tube” of colour-field lines, as indicated by lattice QCD
studies [397–400]. The potential energy between two static quarks is thus described by a
Cornell potential [401],

V (r) = κr − a

r
, (3.96)

which behaves like a Coulomb potential at small separation r → 0, while approximating
a linear potential with increasing separation r & 1 fm. The parameter κ is known as the
string tension with a value of about 1 GeV/fm. In the practical implementation of the
Lund string model in PYTHIA, the Coulomb term a

r
is ignored, as it is believed to be less

important for the hadron creation process but rather for the internal structure of hadrons.
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String Model Cluster Model

Figure 3.7: Illustration of the string (left) and cluster (right) hadronisation models in
e+e− → jets. Note that in the latter gluons are split into quarks just before
the cluster formation. Inspired by [116].

While being derived from considering the QCD potential between a quark-antiquark
pair, it is simple to incorporate gluons in the string model. In momentum space, these
are represented by “kinks” in the string. With this picture in mind, it is simple to see
that string fragmentation is infrared safe: for a q− g − q̄ string, the kink vanishes if the
gluon has infinitely soft momentum or is infinitesimally close to one of the string ends,
reducing the string to a q− q̄ one21.

In the string model, hadrons are created by string breaks on average along a hyperbola
in space-time. These occur as the two quarks move away from each other, such that the
energy stored in the string becomes large enough to create a new quark-antiquark pair.
These are created in a single point and the quarks then quantum-mechanically tunnel to
the classically-allowed region, allowing them to obtain transverse momentum, which is
created from the field energy between them. Following the rationale of e+e− pair creation
in a constant electric field within the WKB approximation [402], this process happens
with probability

P ∝ exp

(
−πm2

⊥
κ

)
= exp

(
−πp2

⊥
κ

)
exp

(
−πm2

q

κ

)
, (3.97)

which implies that heavier quarks are less likely to be produced by string breaks. From
the space-like separation and the constant string tension it follows that every two string
breaks are spacelike separated, i.e., causally disconnected. The string breaks are, however,
connected by the constraint that the invariant mass of the string between the two breaks
corresponds to an on-shell hadron. There is no particular order in which hadrons should
be created from a string, so that string breaks can be simulated iteratively. Requiring
that an iteration starting on the q side yields the same answer as one starting on the q̄
side, gives the Lund symmetric fragmentation function [385],

f(z) ∝ (1− z)a

z
exp

(
−bm

2
⊥
z

)
, (3.98)

with free parameters a and b. It describes the distribution of the light cone momentum
fraction z taken by the new hadron from the string (which is left with a fraction 1− z).

21While this is true physically, there might still be numerical issues related to this in practice if the
string contains too many adjacent soft gluons.
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Baryon formation proceeds in three ways in the string model. Firstly, instead of q− q̄
pairs, occasionally so-called diquarks, i.e., q− q states, in an (anti-)triplet representation
are pair-produced in string breaks [403,404],

(q1q̄1) 7→ (q1(q2q3)(q̄3q̄2)q̄1) = (q1q2q3)(q̄3q̄2q̄1) .

Secondly, baryons can be produced by what is known as the “popcorn” mechanism [405,
406], in which no diquarks are needed. Instead, a new qq̄ is produced in such a way that
it does not break the string, which only happens upon a secondary quark-pair creation,
i.e.,

(q1q̄1) 7→ (q1(q2q̄2)q̄1) 7→ (q1(q2(q3q̄3)q̄2)q̄1) = (q1q2q3)(q̄3q̄2q̄1) .

Thirdly, vertices in which three strings meet, so-called string junctions, can lead to the
production of baryons. String junctions exist due to the presence of a non-vanishing
Levi-Civita symbol in QCD.

In the context of high-energy hadron collisions, we will rarely (if at all) encounter
events in which only a single colour string is present. While the model was originally
developed with such a situation in mind (which might be a good approximation e.g. for
electron-positron collisions), collective effects are taken into account by various refine-
ments of the original model, cf. e.g. [407–413].

3.4.2 Cluster Fragmentation

To date, models based on cluster fragmentation provide the default hadronisation modules
of the HERWIG and SHERPA event generators [389, 390], with slightly different specific
implementations. Historically the first cluster hadronisation models were developed and
implemented in Monte Carlo codes by Fox, Field, and Wolfram [414,415] following the idea
of the local parton-hadron duality [416,417], implying that the distribution of final-state
hadrons follows closely the one of partons at the end of a parton cascade.

Cluster fragmentation is based on a property of QCD known as preconfinement [418],
which states that the mass distribution of colour-singlet “clusters” at the end of a parton
cascade decouples from all other scales in the event (except ΛQCD) once a (small) “pre-
confinement scale” is reached. In particular, the cluster mass distribution is independent
of the resummation scale at which the parton shower has been started and has a sharp
peak at low masses. Because of this, cluster hadronisation is initiated by non-perturbative
gluon splittings, g 7→ qq̄, cf. fig. 3.7. They ensure that only colour-anticolour pairs are
present in the event, from which then colour-singlet clusters are produced by combining
adjacent colour pairs. This is a sensible procedure, as in the large-NC limit, adjacency
in colour implies adjacency in phase space, especially for angular-ordered showers where
branchings become decreasingly close in angle at the end of the shower. Because of the
way they are formed, the initial clusters will have a phase-space distribution similar to the
partons after the shower evolution has ceased. As such, the imposed gluon splittings may
be seen as a direct implementation of the local parton-hadron duality mentioned above.

As a consequence of the procedure to enforce gluon splittings to start the fragmentation
process, gluons have to be assigned a constituent mass of around mg ≈ 1 GeV. Because
strange quarks have a larger constituent mass, ms ≈ 450 MeV, than up and down quarks,
which are chosen roughly as a third of the proton mass mu/d ≈ 330 MeV, the flavour
distribution in clusters is biased towards the lighter quarks, with non-perturbative gluon
splittings to heavy flavours (charms and bottoms) entirely forbidden.

Baryons can be produced either via cluster decays to baryon-antibaryon pairs or via
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non-perturbative gluon decays to diquarks, g 7→ (q1q2)(q̄1q̄2) [419]. In addition to cluster
decays to hadrons, heavy clusters may undergo cluster fissioning beforehand, allowing
them to produce lighter clusters by quark-pair creation, similar in spirit to string breaks
in the string model. During this phase, strangeness production may be enhanced [420] to
increase agreement with experimental observations as e.g. by the ALICE collaboration,
cf. [421].



4
Sector Showers for Hadron Collisions

Parton shower algorithms are iterative, i.e., starting from the Born configuration, further
emissions are generated successively according to branching probabilities derived from
the soft and collinear limits, cf. eqs. (3.33) and (3.34). As multiple partons exist on the
Born level (at least two if any QCD evolution is to be performed) and each may emit
bremsstrahlung, this evolution is not unique but probabilistic. In an n-parton config-
uration, all possible branchings transforming this state into a state with an additional
parton, n 7→ n+ 1, compete for the next emission scale tn+1 and the one with the highest
scale defines the evolution step that is performed. This procedure generates a self-similar
branching tree, which is inherent to all common parton shower models, cf. section 3.2.

Looking at such a fractal tree with n branches, it is generally not possible anymore
to tell from which (n − 1)-parton configuration it was generated. The inversion of the
evolution up to a configuration with n partons thus gives rise to ∼ n! paths of the form

n 7→ (n− 1) 7→ (n− 2) 7→ · · · 7→ 2. (4.1)

This means that conventional shower algorithms have a factorially growing number of
so-called shower histories, i.e., sequences of intermediate states leading to a given config-
uration. As far as the shower evolution itself is concerned, this does not pose any problems,
but shower histories are an important input for matching and merging schemes, cf. sec-
tions 3.3.1 to 3.3.3. Accounting for a large number of histories may therefore heavily
impede efficient higher-accuracy calculations for processes with many particles.

The situation is different in so-called deterministic jet algorithms. Given an n-particle
configuration, the purpose of a jet algorithm is to define well-separated objects called jets,
corresponding to a collimated bundle of contiguous particles. A typical way to achieve this
is to define a measure of proximity and a resolution scale in terms of this measure, so that
a pair of particles is clustered to a single particle whenever their measure of proximity falls
below the resolution scale. If always those two particles in a configuration are clustered
first that have the lowest resolution, this defines a deterministic algorithm to generate the
sequence in eq. (4.1). In contrast to parton-shower algorithms, which are often based on
on-shell 2 7→ 3 mappings, jet-clustering algorithms utilise off-shell 2 7→ 1 recombinations.
Acting on a shower-generated n-parton configuration with a deterministic jet algorithm
will therefore generally not yield the correct shower history.

An alternative to the conventional dipole/antenna framework, cf. sections 3.1.4, 3.2.2
and 3.2.3, is the sector-antenna formalism [193,194,323–325]. Within this framework, the
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branching phase space is decomposed into non-overlapping sectors, each of which corre-
sponds to a certain, well-defined branching. This phase-space decomposition allows for
the definition of a shower-based jet algorithm, which exactly inverts the shower kinematics
in an on-shell 3 7→ 2 clustering. Such a jet algorithm was proposed long time ago in the
context of the ARIADNE Lund-dipole/antenna shower [422].

In the publication included in section 4.1, the implementation of a full-fledged sector
shower in the VINCIA antenna shower in PYTHIA 8.3 will be presented. The implementa-
tion builds upon an early proof-of-concept final-state sector shower in VINCIA [327] and
promotes VINCIA’s initial-state showers [317] and coloured-resonance decay shower [328]
to sector showers.

4.1 Published Material
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1 Introduction

General-purpose Monte Carlo event generators such as Herwig [1], SHERPA [2], and

PYTHIA [3] have become indispensable tools to study the complex event structures pro-

duced in highly energetic hadronic collisions. At the heart of these tools, parton showers

resum all leading-logarithmic (LL) terms in the perturbative expansion of QCD, thereby

connecting the perturbative, high-energy hard scale with the intrinsically non-perturbative,
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low-energy soft scale, at which the strong coupling becomes large enough to invalidate per-

turbation theory.

Early parton showers were built upon the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) splitting kernels [4–6], which are suitable for describing collinear (small-angle)

radiation off a hard partonic leg, but which fail to describe the interference of soft wide-

angle radiation. To incorporate coherent (wide-angle) emissions in the DGLAP formalism,

one can either order emissions decreasing in angle, cf. [7], or veto emissions which are not

ordered in angle, cf. [8].

Alternatively, coherence effects can be directly taken into account (to leading power in

1/N2
C) by considering colour dipoles, that is by considering particle emissions as stemming

from colour-anticolour pairs. The first shower model based on this concept was ARIADNE [9,

10], with VINCIA following a similar approach many years later [11, 12]. In the meantime,

an alternative type of dipole showers, based on the Catani-Seymour (CS) approach [13,

14], also appeared [15–19]. We will not give a complete comparison between all of these

approaches here. It will suffice to say that:

• For final-state showers, the original formulation of the Lund dipole model [9] (as

implemented in ARIADNE) is equivalent to the “global” antenna subtraction and

antenna shower framework (as implemented in VINCIA) [20].

• For initial-state showers, VINCIA is based on a backwards-evolution paradigm [21, 22],

whereas ARIADNE uses a forwards-evolution picture.

• In the Lund-dipole/antenna formalisms, the soft singularity associated with each

parton pair is captured by a single “antenna function” and an associated kinematics

map in which both of the parents in general share the (transverse and longitudinal)

recoil. In the CS dipole formalism, the radiation from each colour-connected parton

pair is instead partitioned into two separate terms, in which each of the parents in

turn act as the “emitter” while the other, the “recoiler”, recoils purely longitudinally

along the dipole axis.

• In all of the dipole/antenna formalisms, the collinear g 7→ gg singularity is partitioned

into two terms, one for each colour-connected partner of the parent gluon. This

partitioning is done such that the g 7→ gg DGLAP kernel is obtained by summing

over the two neighbouring dipoles/antennae. The exact form of the partitioning

factor differs between different models/implementations.

To improve the precision away from the collinear and soft limits, showers are usually

matched or merged to fixed-order calculations. Examples of well-established approaches

include MC@NLO [23] and POWHEG [24, 25] in the case of the former, and CKKW(-

L) [26–28], MLM [29, 30], in the case of the latter. In recent years there has been a

proliferation of refinements to merging algorithms, such as UMEPS [31], UNLOPS [32],

MEPS@NLO [33, 34], FxFx [35], MINLO [36], and MINNLOPS [37].

Matching algorithms correct the hardest emission of the parton shower to the stated

fixed-order accuracy, typically next-to-leading order (NLO). Merging algorithms instead
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Number of histories for n branchings

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

CS Dipole 2 8 48 384 3840 46080 645120

Global Antenna 1 2 6 24 120 720 5040

Table 1. The number of possible shower/clustering histories (ordered + unordered) that can

contribute to a given (colour-ordered) parton configuration, after n branchings starting from a

single colour-anticolour pair.

combine inclusive event-samples, each of a given accuracy but of increasing multiplicity.

Merging is typically favoured where it is desirable to describe multijet final states. To

consistently combine multiple event samples with the parton shower, it is necessary to

reweight each event with a Sudakov factor, which in turn requires obtaining a sequence

of scales that represents the “parton shower history”. It is possible to obtain these scales

through “winner-takes-it-all” clustering methods, as is done in the case of CKKW. However,

this does not correspond to a direct inversion of the parton shower and potentially results

in missed areas of phase space. Ideally one would obtain all paths of possible clusterings

back to the Born topology (and selecting one with its relative probability) as in CKKW-L.

This, however, comes at the price of a significant computational overhead, rendering such

calculations intractable for many legs (see, e.g., [38–40]).

Owing to the very formulation of both DGLAP and dipole showers, namely that every

colour charge in the event can radiate another parton, successive radiation leads to a

proliferation of terms in the cascade from the initial scale down to the hadronisation scale.

For a process with n shower branchings, there are thus in general 2nn! histories in a CS

dipole shower. Conventional antenna (and Lund-dipole) showers reduce this number by 2n,

as there is now only one term for each pair of colour-connected partons, but the scaling1 still

goes like n!. Multileg merging therefore to date remains impeded by the sheer number of

possible histories. This is especially true for CS-style approaches while antenna-based ones

(see, e.g., [39]) should be expected to exhibit a somewhat lower computational overhead,

see table 1.

A promising alternative that could reduce the complexity even further is the sector

antenna formalism [38, 43–46]. In the context of the early VINCIA final-state shower,

it was shown in [38] that an antenna-shower history can be made unique if instead of

the conventional (henceforth called global) shower algorithm, a sector formulation of the

antenna framework is used, in which only a single shower term is allowed to contribute

to each specific (n + 1)-parton phase-space point; all other potential contributions are

vetoed. In this framework, each antenna splitting kernel must incorporate both the full

soft and collinear limits of the respective phase-space sectors, in contrast to global antenna

functions (such as those used in Ariadne and in earlier versions of Vincia) which smoothly

partition the collinear g 7→ gg singularities between two neighbouring antennae. Although

1This can in principle be reduced to just n terms after the n-th branching by imposing a strictly

Markovian ordering condition [12]. This is, however, likely to lead to undesired side effects [41, 42] and

hence is not considered here.
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there remains an ambiguity in how to treat cases with multiple interfering Born processes,2

the potential number of these remains small for all n.

In the sector framework, the sharing of the gluon-collinear limits is viewed as a discrete

partitioning of phase space into two sectors, which in the collinear (DGLAP) limit corre-

spond to z < 1/2 and z > 1/2 respectively; in this picture, the gluon with lower energy

fraction z is always regarded as the emitted one. To generalise this sector decomposition,

we use a notion of transverse momentum (p2
⊥) which tends to zQ2 in the collinear limits

(with Q2 the virtuality of the branching particle), so that it remains unique, well-defined,

and exact outside the singular limits. It is then the gluon with the lowest p2
⊥ which is

regarded as the emitted one. Inside each sector only one antenna, which captures the full

soft singularity of the respective phase-space sector and the full z < 1
2 collinear singular-

ities for quarks and gluons respectively, is allowed to contribute. This brings the number

of possibilities to go from a given final state all the way back to the Born configuration

down to one (modulo the question of interfering Born processes already alluded to), thus

creating a unique shower history. Sector showers thus have great potential for speeding up

matched and merged multijet calculations.

Helicity- and mass-dependent sector antenna functions for initial- and final-state ra-

diation were already presented in [45, 46], although without a dedicated implementation

in a shower algorithm. We here present a new implementation of a sector shower based

on the VINCIA antenna shower in the Pythia 8.3 framework,3 including helicity depen-

dence [47, 48], mass corrections [20], initial-state radiation [22, 49], resonance decays [50],

and interleaved coherent QED branchings [51]. We define a full set of helicity-dependent

sector antenna functions for initial- and final-state radiation entirely based on crossings and

sums of global final-final antenna functions and validate the new shower against leading-

order matrix elements, the global VINCIA shower, PYTHIA 8.3, and experimental data.

The paper is structured as follows. After reviewing the foundations of the VINCIA

antenna shower in section 2, the sector-shower implementation is explained in detail in

section 3. The implementation is validated in section 4 and we conclude and give an

outlook on matching and merging applications in section 5.

2 The Vincia antenna shower

In this section, the main focus is on aspects that are common to both sector and global

showers, including phase-space factorisations, kinematics maps (a.k.a. recoil strategies),

and our choices of evolution variables. In addition to providing the starting point for our

2An example of two such interfering Born processes is H → gg and H → bb̄, which mix at the H → bb̄g

level, via the gg 7→ bb̄g and bb̄ 7→ bb̄g branchings, respectively. Note that we use the slightly different

symbols → and 7→ to distinguish between hard processes and shower evolution steps.
3We note that, at the technical level, the major undertaking of integrating the VINCIA shower model

fully within Pythia 8.3 (where previously it was developed a stand-alone plugin to Pythia 8.2) was just

recently completed. To simplify this work, only a minimal subset of VINCIA — which only includes the

global antenna-shower model — was incorporated into Pythia version 8.301. The sector shower, along

with other features such as matrix-element corrections, will be included in forthcoming updates in the

near future. The results we present in this paper are obtained with a development version that essentially

represents Pythia 8.301 + sector shower.
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discussion of sector showers in section 3, the material in this section therefore also serves

as an up-to-date summary of the current implementation of VINCIA’s global showers in

Pythia 8.3.

The starting point for antenna showers is the factorisation of QCD amplitudes in the

soft-gluon limit,

|Mn+1(1, . . . , i, j, k, . . . , n + 1)|2 gj soft−→ aj/IK(sij , sjk)|Mn(1, . . . , I,K, . . . , n)|2 , (2.1)

where we adopt the convention of [49] and label parent or “pre-branching” partons (i.e.,

ones in the n-parton configuration) by capital letters and daughter or “post-branching”

partons (i.e., ones in (n+ 1)-parton configuration) by lowercase letters. Furthermore, legs

that are in the initial state will be denoted with letters from the beginning of the alphabet,

a, b, while final-state legs are denoted with letters starting from i, j, k. Dimensionful

invariants, regardless of whether the partons are incoming or outgoing, are cast in terms

of dot products

sjk ≡ 2pj · pk , (2.2)

while invariant masses for final-final (FF) and initial-initial (II) antennae are denoted as

m2
jk = (pj + pk)

2 = m2
j +m2

k + sjk , (2.3)

and momentum transfers for initial-final (IF) and resonance-final (RF) antennae as

q2
ai = (pa − pi)2 = m2

a +m2
i − sai . (2.4)

Energy-momentum conservation then implies:

FF : sIK +m2
I +m2

K = sij + sik + sjk +m2
i +m2

j +m2
k (2.5)

RF & IF : sAK −m2
A −m2

K = saj + sak − sjk −m2
a −m2

j −m2
k (2.6)

II : sAB +m2
A +m2

B = sab − saj − sjb +m2
a +m2

j +m2
b (2.7)

and we define dimensionless invariants y ∈ [0, 1]

yij =
sij
s

µ2
j =

m2
j

s
(2.8)

by scaling by the largest dynamical invariant,4 s:

s =





sIK FF

saj + sak RF and IF

sab II

. (2.9)

It should be emphasised that parton j is always in the final state, as we do not consider

emission into the initial state. In section 2.3 on branching kinematics below, we provide

4In [49, 50] the normalisation sAK + sjk was used, which differs from eq. (2.9) only for the case of

massive splittings. The alternative normalisation used here was chosen in order to have better uniformity

of conventions.
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some translations between the explicitly Lorentz-invariant y variables defined here and the

z or x energy fractions that are used in other shower formalisms and in PDFs. Note also

that for the specific case of gluon emission, mj = 0 and the masses of the pre-branching

partons are the same as those of the post-branching ones, hence all the m2 terms in eqs. (2.5)

and (2.7) cancel. Those terms are only relevant for branching processes involving a change

in the number of massive quarks.

Considering it a better approximation to use massless kinematics for incoming heavy-

flavour legs than to assign them their nominal on-shell values, the current treatment of

initial-state mass effects in Vincia is a compromise, with all initial-state legs forced to

have massless kinematics. This is similar to the choice made in Pythia’s default show-

ers [52]. Nevertheless, to maintain maximum generality and to avoid needlessly obscuring

the crossing relations between initial- and final-state antennae, we maintain a general lan-

guage where possible, which at least in principle allows for massive initial-state partons.

Mass terms for initial-state partons are therefore included in the antenna functions, cf.

appendix A, and in our evolution and sector resolution variables, cf. sections 2.5 and 3.3.

When interpreting these in the context of massless initial-state kinematics, we use the

following conventions:

• Motivated by [53], we include mass terms for both quarks in initial-state qA 7→ gaqj
branchings, which, from the forward-evolution point of view, look like the gluon

splitting ga 7→ q̄Aqj . We justify this choice by noting that this branching is a crossing

j → a of the final-state gluon emission process qI 7→ qigj , with gluon gj being

crossed to be identified with ga, and therefore no massive parton is crossed into the

initial state.

• Following the same logic, we include mass terms only for the final-state quark in

quark conversion gA 7→ qaqj , which, from the forward-evolution point of view, looks

like an initial-state quark is radiating a gluon. There, the massive quark qi in the

gI 7→ q̄iqj splitting had to be crossed into the initial state to become the massive

quark qa.

Although some initial-state mass effects might be implemented without major inconsis-

tencies in the near future, a full-fledged and consistent treatment of massive initial-state

legs depends upon the availability of massive PDFs and is outside the scope of this work.

First steps towards a consistent inclusion of initial-state mass effects have been presented

in [54], where an implementation in the Catani-Seymour dipole shower in SHERPA has been

outlined. As antennae can effectively be thought of as the sum of two CS dipoles, a similar

scheme might be implemented in the VINCIA antenna shower.

2.1 Antenna functions

The antenna function aj/IK in eq. (2.1) acts as the splitting kernel of the coherent 2 7→ 3

branching IK 7→ ijk and may formally be represented as

aj/IK(sij , sjk,m
2
i ,m

2
j ,m

2
k) =

|M3(i, j, k)|2
|M2(I,K)|2 . (2.10)
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in the factorised form of the integral over the three-body matrix element

|M3(i, j, k)|2dΦ3 = |M2(I,K)|2dΦ2 aj/IK(sij , sjk,m
2
i ,m

2
j ,m

2
k)

dΦ3

dΦ2
. (2.11)

By construction, it reproduces the full eikonal factor in the limit of gluon gj becoming soft,

aj/IK(sij , sjk,m
2
i , 0,m

2
k)

gj soft−→ g2
s Cj/IK

[
2sik
sijsjk

− 2m2
i

s2
ij

− 2m2
k

s2
jk

]
, (2.12)

with a process-dependent colour factor Cj/IK . When gj becomes (quasi-)collinear with a

quark i, it reproduces the full (quasi-collinear) DGLAP splitting kernel P (z) (or P (z)/z

for an initial-state parton),

aj/IK(sij , sjk, 0, 0, 0)
i‖j−→ g2

s Cj/IK
P (z)

sij
, (2.13)

where z is the energy fraction taken by quark i.

For the branchings g 7→ gg, however, the treatment of the collinear limits differs

between the global and sector formalisms. For the global antenna functions, the DGLAP

splitting kernel is partitioned onto two neighbouring (colour-adjacent) antennae, whose

collinear limits are related by z ↔ 1 − z so that one of them incorporates the 1/(1 − z)

part of the DGLAP kernel while the other incorporates the 1/z part. For each value of z

the full collinear singularity is only recovered after summing over these two terms. In the

sector formalism, instead, the shared gluon-collinear singularity is fully incorporated into

both of the neighbouring antenna functions; these are then supplemented by a phase-space

veto such that the z ≤ 1/2 part of the collinear boundary is covered by only one of them

and the z > 1/2 part by the other. We return to this point in section 3.1.

By contrast, due to the lack of a soft singularity, gluon splittings are handled somewhat

differently in the antenna framework. In gluon splittings, a clear distinction between the

splitter and spectator is possible; therefore these could in principle be treated differently to

gluon emissions. However, since energy and momentum conservation for on-shell partons

requires at least a 2 7→ 3 phase-space factorisation and since we want to generate a com-

mon (interleaved) sequence in which all types of evolution steps are evolved in a common

resolution measure [52], we use the same phase-space and kinematics maps and ordering

variables as for gluon emissions.5

To distinguish between global and sector antenna functions, and between which partons

are initial- and which are final-state ones, we label them as follows:

astate,type
j/IK (sij , sjk,m

2
i ,m

2
j ,m

2
k) , (2.14)

with “state” ∈ [II, IF, FF, RF], “type” ∈ [glb,sct].

Note that since 2 7→ 3 antenna functions have dimension -2 in natural units, we

usually cast them in terms of a dimensionless function of the y and µ variables defined in

5We note that this choice differs from that of the previous version of Vincia [49], in which gluon emissions

were evolved in p⊥ while gluon splittings were evolved in virtuality.
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eq. (2.8) multiplied by a single (constant) dimensionful quantity,6 cf. appendix A. Moreover,

throughout we use colour- and coupling-stripped antenna functions ā,

aj/IK(sij , sjk,m
2
i ,m

2
j ,m

2
k) = 4παs Cj/IK āj/IK(yij , yjk, µ

2
i , µ

2
j , µ

2
k) . (2.15)

Below, we will often let the mass dependence be implicit to avoid clutter. The colour factor

Cj/IK is chosen in a convention in which both CF and CA tend to NC in the large-NC limit

and where TR is unity. In this convention, the ambiguity related to the colour factor of a

qg antenna is explicitly a subleading-colour effect [11].

The complete set of antenna functions used in VINCIA are collected in appendix A,

including both mass and helicity dependence.

2.2 Phase-space factorisation

The Lorentz-invariant (n+ 1)-particle phase space measure in four dimensions,

dΦn+1(pa, pb; p1, . . . , pn+1) = (2π)4δ(4)

(
pa + pb −

n+1∑

`=1

p`

)
n+1∏

`=1

d4p`
(2π)3

δ(p2
` −m2

` ) , (2.16)

exactly factorises into the (n − m + 1)-particle phase-space measure dΦn−m+1 and the

m-particle branching measure d̃Φm,

dΦn+1(pa, pb; p1, . . . , pj , . . . , pn+1) = dΦn−m+1(pA, pB; p1, . . . , pn+1)d̃Φm . (2.17)

FF branchings. The branching measure d̃Φm is proportional to the three-particle phase

space measure dΦ3 which can be factorised into the product of the two-particle pre-

branching phase space and the FF antenna phase space measure,

dΦ3(pA, pB; pi, pj , pk) = dΦ2(pA, pB; pI , pK)dΦFF
ant(pi, pj , pk) . (2.18)

In terms of the dimensionless invariants yij , yjk and an angle φ between the branching

plane and the parent dipole, the final-final antenna phase space can be written as [20]

dΦFF
ant =

1

16π2
fFF

KällénsIKΘ(Γijk)dyijdyjk
dφ

2π
, (2.19)

with the dimensionless three-body Gram determinant expressing boundaries of the physical

phase space

Γijk = yijyjkyik − y2
jkµ

2
i − y2

ikµ
2
j − y2

ijµ
2
k + 4µ2

iµ
2
jµ

2
k , (2.20)

again scaled by the appropriate normalisation according to eq. (2.8). Note that for massless

partons, the Θ(Γ) factor just reduces to the standard triangular phase space defined by

yij ≥ 0, yjk ≥ 0, yij + yjk ≤ 1, while for massive ones it defines a smaller region inside

this hull, see, e.g. [20]. The volume of the two-particle phase-space of the parent antenna

is taken into account by the Källén factor,

fFF
Källén =

sIK√
λ(m2

IK ,m
2
I ,m

2
K)

, (2.21)

6Specifically we normalise by s−1
IK , s−1

AK and s−1
AB for the FF, IF(RF) and II antenna functions respectively.
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in terms of the Källén function

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc) . (2.22)

Note that fFF
Källén = 1 if either or both of partons I and K are massless, while when both

are massive we have fFF
Källén > 1. This does not present a problem for generating numerical

overestimates in the shower; fFF
Källén is just an overall constant and can be factored out of

the branching integrals.

RF branchings. The phase space factorisation for resonance-final branchings is largely

unchanged relative to the final-final case [50]:

dΦRF
ant =

1

16π2
fRF

Källén

sAK +m2
j +m2

k −m2
K

(1− yjk)3
Θ(Γajk)dyajdyjk

dφ

2π
, (2.23)

where now the Källén factor is given by:

fRF
Källén =

sAK +m2
j +m2

k −m2
K√

λ(m2
A,m

2
AK ,m

2
K)

. (2.24)

IF branchings. Keeping initial-state partons explicitly massless but allowing for massive

final-state ones, the factorisation eq. (2.18) is replaced by the convolution [22, 53, 55]

∫
dxa
xa

Θ(1− xa)
dxB
xB

Θ(1− xB)dΦ3(pa, pB; pj , pk, pR) =
∫

dxA
xA

Θ(1− xA)
dxB
xB

Θ(1− xB)dΦ2(pA, pB; pK , pR)dΦIF
ant(pa, pj , pk) , (2.25)

where the IF antenna phase space measure can be written in terms of dimensionless invari-

ants yaj , yjk, and the angle φ as [56]

dΦIF
ant =

1

16π2

1

1− yjk
sAKΘ(Γajk)dyajdyjk

dφ

2π
. (2.26)

II branchings. With a massive emitted final-state parton, the branching measure is

given by the convolution [22, 55]

∫
dxa
xa

Θ(1− xa)
dxb
xb

Θ(1− xb)dΦ2(pa, pb; pj , pr)

=

∫
dxA
xA

Θ(1− xA)
dxB
xB

Θ(1− xB)dΦ1(pA, pB; pR)dΦII
ant(pa, pj , pb) , (2.27)

where again, the antenna phase space can be written in terms of dimensionless invariants

yaj , yjb, and the angle φ as [56]

dΦII
ant =

1

16π2

1

1− yaj − yjb
sABΘ(Γajb)dyajdyjb

dφ

2π
. (2.28)
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Common form. In general the antenna phase space can be written more compactly as

dΦant =
1

16π2
FΦΘ(Γijk)dyijdyjk

dφ

2π
, (2.29)

where we have introduced the (possibly dynamical) phase space factor FΦ defined by

FΦ =





fFF
KällénsIK FF

fRF
Källén

sAK +m2
j +m2

k −m2
K

(1− yjk)3
RF

sAK
1− yjk

IF

sAB
1− yaj − yjb

II

. (2.30)

2.3 Branching kinematics

In the antenna-shower formalism both of the parents I and K in an FF branching IK 7→ ijk

act collectively as emitters, and the transverse recoil of parton j is shared between them.

In IF or II branchings, this picture is changed slightly by the requirement that initial-

state partons must be aligned with the beam axis. In these cases, the kinematic mappings

are closer related to those used in the CS-type dipole picture [16]. In RF branchings,

the on-shell momentum of the initial decaying resonance is fixed; in the resonance rest

frame, the transverse recoil is shared between the two daughters directly involved in the

branching, with all remaining decay products taking the longitudinal recoil required to

preserve the decaying resonance’s mass [50]. In all cases, all partons remain on-shell and

all four-momenta are conserved at every step in the antenna shower evolution.

Although we derive all of our antenna functions for general masses of the involved

partons, cf. appendix A, we construct the kinematics for massless initial-state partons in

order to not contravene the assumptions of collinear PDF evolution. We do however let

any emitted final-state quark, denoted by j, acquire a finite mass if required and refer the

reader to section 2 for our conventions on massive quarks in initial-state gluon splittings.

Should it become feasible to incorporate initial-state masses in the future, the kinematics

maps below could be altered for instance by means of the kinematic maps in [19].

FF branchings. The post-branching momenta are constructed in the centre-of-mass

frame of the parent antenna in two steps. In the first step, the momenta are defined in a

way that is agnostic to the overall orientation of the parent partons. Choosing (arbitrarily)

to align parton i with the z axis of this temporary coordinate system [20], we have:

pµi = (Ei, 0, 0, |~pi|) , (2.31)

pµj = (Ej ,−|~pj | sin θij , 0, |~pj | cos θij) , (2.32)

pµk = (Ek, |~pk| sin θik, 0, |~pk| cos θik) , (2.33)
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with energies, E, (and energy fractions, xE)

Ei =
sij + sik + 2m2

i

2mIK
, Ej =

sij + sjk + 2m2
j

2mIK
, Ek =

sik + sjk + 2m2
k

2mIK
, (2.34)

=⇒ xEi ≡
2Ei
mIK

= 1− yjk −
µ2
k

1 + µ2
k

(2− yjk) , same for xEk with i↔ k , (2.35)

and angles

cos θij =
2EiEj − sij

2|~pi||~pj |
, cos θik =

2EiEk − sik
2|~pi||~pk|

, (2.36)

and the on-shell conditions for |~pi,j,k| =
√
E2
i,j,k −m2

i,j,k.

In the second step, the branching plane is rotated by an angle φ, uniformly sampled in

[0, 2π], in the x-y-plane, and by the angle ψ between the mother parton I and the daughter

parton i. It is this latter rotation by ψ, which establishes the relative orientation of the

post-branching partons with respect to the axis defined by the pre-branching ones. The

choice of ψ is not unique outside of the collinear limits7 and a few different options for the

choice of ψ are implemented in VINCIA, see [11, 20]. The ambiguity in the choice of ψ can

be expressed in terms of a single free parameter r, as

cosψ =
2EIEi − 2cim

2
i − rsij − (1− ck)sik
2|~pI ||~pi|

, (2.37)

where the (kinematics-dependent) constants ci,k are determined by requiring on-shellness

of all particles in the {I,K} 7→ {i, j, k} mapping, cf. [20, 43],

pI = cipi + rpj + (1− ck)pk , (2.38)

pK = ckpk + (1− r)pj + (1− ci)pi . (2.39)

It is worth noting that in the limit r → 1, these expressions imply that any transverse

momentum carried by parton j is fully absorbed by parton i, hence we require that any

sensible choice of r should tend to unity in the I-collinear limit. Similarly, r should vanish

in the K-collinear limit. The phase space boundaries are given by 0 ≤ yij ≤ 1 and

0 ≤ yjk ≤ 1− yij as well as the roots of the Gram determinant.

For massless partons, our default choice for r is:

r =
sjk

sij + sjk
→

{
1 I-collinear limit, sij � sjk

0 K-collinear limit, sjk � sij
, (2.40)

which therefore obeys the requirement given above. For massive partons, the form is more

involved, see [20].

7In the K-collinear limit, ψ → 0 ensures that parton i recoils purely longitudinally along the direction

of parton I, and similarly ψ → π − θik in the I-collinear limit.
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RF branchings. The post-branching kinematics are constructed according to the pre-

scription in [50]. With the invariant mass of the resonance being kept fixed, the post-

branching momenta are constructed in the resonance rest frame, such that

pµA = pµa = (mA, 0, 0, 0) , (2.41)

pµk =
(
Ek, 0, 0,

√
E2
j −m2

k

)
, (2.42)

pµj =
(
Ej ,

√
E2
j −m2

j sin θjk, 0,
√
E2
j −m2

j cos θjk

)
, (2.43)

pµX′ =
(
mA − Ek − Ej ,−

√
E2
j −m2

j sin θjk, 0,−
√
E2
j −m2

k −
√
E2
j −m2

j cos θjk

)
, (2.44)

where

Ej =
saj
2ma

, Ek =
sak
2ma

, cos θjk =
2EbEg − sjk

2
√

(E2
k −m2

k)(E
2
j −m2

j )
, (2.45)

and where {X ′} denote the remainder of the resonance decay system. The frame orientation

is chosen such that the z-axis is defined along pK . These momenta are rotated about the y-

axis such that the set of recoilers are along -z, so that only j and k receive transverse recoil.

The momenta are subsequently rotated by a flatly sampled azimuthal angle φ about the

z-axis. Finally, the original orientation of K with respect to z is recovered, before boosting

back to the lab frame.

The conservation of the invariant mass of the system of recoilers, pX =
∑

i∈{X} pi is

automatically ensured by imposing eq. (2.6) and the positivity of the Gram determinant

Γajk defined in eq. (2.20). (Note, however, that this statement no longer applies if only a

subset of X are chosen to receive the longitudinal recoil.)

IF branchings. For massless initial-state partons, A and a, and general final-state ones,

K, j, and k, and requiring that the beam axis defined by the pre-branching incoming

parton A remains the same post-branching, the post-branching momenta in the A-K rest

frame are given by [56]

pµa =
1

yAK
pµA , (2.46)

pµj =
(yak + µ2

j − µ2
k) + (yak − yaj)µ2

K − yAKyak
yAK

pµA + yaj p
µ
K +

√
Γajk q

µ
⊥max , (2.47)

pµk =
(yaj − µ2

j + µ2
k) + (yaj − yak)µ2

K − yAKyaj
yAK

pµA + yak p
µ
K −

√
Γajk q

µ
⊥max , (2.48)

where qµ⊥max is a space-like four-vector in the transverse direction, perpendicular to both

pA and pK , with q2
⊥max = −(saj + sak). The angle about the branching plane is uniformly

distributed in [0, 2π].

In the massless case, this reduces to the form given in [49]. The phase space boundaries

are given by 0 ≤ yaj ≤ 1 and 0 ≤ yjk ≤ 1−xA
xA

yAK − µ2
j − µ2

k + µ2
K as well as the roots of

the Gram determinant.
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In the a-collinear limit, we see trivially that

zA ≡
xA
xa

= yAK =
sAK

saj + sak
, (2.49)

while in the k-(quasi)-collinear limit, we find

zK = 1− yaj = yak =
sak

saj + sak
. (2.50)

We note that in addition to the “local” map discussed here, there is also a “global”

map implemented in VINCIA, where instead of the final-state parton, it is the initial-state

parton which recoils transversely. Moreover, VINCIA offers the possibility to interpolate

between these two maps by choosing one of the two maps according to some probability

imposed by comparison to matrix elements [56]. While this procedure ties in better with

the recoiler-emitter-agnostic antenna formalism, we leave a dedicated study regarding the

effect of choosing either of the latter two alternatives in the sector shower to future studies

and here only use the local map for IF branchings.

II branchings. In an initial-initial branching, both partons a and b are assumed to stay

aligned with the beam momenta pA and pB, respectively and only the emitted final-state

parton j acquires mass, the post-branching momenta can be constructed to be [56]:

pµa =

√
1

yAB

1− yaj
1− yjb

pµA , (2.51)

pµj =

√
y2
jb

yAB

1− yaj
1− yjb

pµA +

√
y2
aj

yAB

1− yjb
1− yaj

pµB +
√
yajyjb − µ2

jq
µ
⊥max , (2.52)

pµb =

√
1

yAB

1− yjb
1− yaj

pµB , (2.53)

pµr = pµa + pµb − p
µ
j , (2.54)

again with qµ⊥max a space-like four-vector perpendicular to pA and pB with q2
⊥max = −sab

and the angle about the branching plane is uniformly distributed in [0, 2π]. The transverse

momentum obtained by the emitted parton j is compensated for by the recoiler r, which

denotes the rest of the system. Again, in the massless case, this is identical to the recoil

scheme used in [49]. The phase space boundaries are 0 ≤ yaj ≤ 1−xAxB
xAxB

yAB + µ2
j and

0 ≤ yjk ≤ 1−xAxB
xAxB

yAB + µ2
j as well as the roots of the Gram determinant.

The condition that partons a and b stay aligned with the beam axis leads to the identity

xAxB
xaxa

=
sAB
sab

= yAB . (2.55)

We round off by noting that eq. (2.55) implies that the z fractions on sides A and B are

related by

zA = zB
1− yjb
1− yaj

. (2.56)
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2.4 No-branching probability

Like other parton showers, the VINCIA antenna shower is built around the no-branching

probability, i.e., the probability that no branching occurs between two scales Q2
n > Q2

n+1,

given by [22, 49]

Πn(Q2
n, Q

2
n+1) = exp


−

∑

i∈{n 7→n+1}
Ai
(
Q2
n, Q

2
n+1

)

 , (2.57)

where

Ai(Q2
n, Q

2
n+1) =

∫ Q2
n

Q2
n+1

4παs(Q
2)Cāi(Q2, ζ)RfdΦant , (2.58)

with a PDF ratio for each initial-state leg,

Rf =





1 FF & RF

fa(xa, Q
2)

fA(xA, Q2)
IF

fa(xa, Q
2)

fA(xA, Q2)

fb(xb, Q
2)

fB(xB, Q2)
II

. (2.59)

When starting the evolution at a scale Q2
n, the probability for a parton to branch at scale

Q2
n+1 is therefore given by

Pbranch(Q2
n, Q

2
n+1) =

dΠn(Q2
n, Q

2
n+1)

d log(Q2
n+1)

. (2.60)

Branchings are then generated by solving eq. (2.60) by means of the veto algorithm [57],

by overestimating the antenna function by a larger trial function ātrial, for which a trial

integral with an ansatz like R̂f = const or R̂f ∝ (xAxB)/(xaxb) can be analytically solved

to give simple expressions. By accepting each trial branching with a probability

Paccept =
αs

α̂s

C
Ĉ
Rf

R̂f

ā

ātrial
, (2.61)

the full integral is recovered post-facto. The additional ratios

αs

α̂s
,
C
Ĉ
, and

Rf

R̂f
, (2.62)

where hats denote trial quantities, take into account that nominally larger values than the

physical ones may be used during the trial generation, cf. section 3.2.

2.5 Evolution variables

Both gluon emissions and gluon splittings are evolved in a scaled notion of off-shellness

based on the ARIADNE transverse momentum, which we denote by p2
⊥. An alternative (hy-

pothetical) treatment permitting different definitions for the evolution measures of emis-

sions and splittings (see, e.g., [49]) would in principle allow to use sector resolution variables,

cf. section 3.3, as evolution variables for the sector shower. However in this case one would

also have to address how this would impact the interleaving of the shower branchings; we

therefore leave a dedicated study regarding this possibility to forthcoming work.

– 14 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
2

FF branchings. We evolve in

p2
⊥,FF =

(m2
ij −m2

I)(m
2
jk −m2

K)

sIK
=





sijsjk
sIK

g-emission

m2
ij(sjk +m2

j )

sIK
gI -splitting

, (2.63)

For gluon emissions, this evolution variable is identical to the ARIADNE p2
⊥. For gluon

splittings, the previous version of VINCIA [49] used the virtuality of the splitting gluon,

m2
ij , as the evolution variable, while we have here instead made the choice to evolve all

branchings in a common measure of p2
⊥ which, unlike m2

ij , vanishes in the limit that the

remaining jk colour dipole becomes unresolved.

RF branchings. Crossing partons I and i into the initial state to become partons A and

a, we define the evolution variable for RF branchings as:

p2
⊥,RF =

(m2
A − q2

aj)(m
2
jk −m2

K)

saj + sak
=





sajsjk
saj + sak

g-emission

m2
jk(saj −m2

j )

saj + sak
gK-splitting

. (2.64)

IF branchings. In principle, the evolution variable for IF branchings is chosen to be

the same as for RF ones, but with the additional cases of initial-state splittings and gluon

conversions that are not present for RF branchings:

p2
⊥,IF =

(m2
A − q2

aj)(m
2
jk −m2

K)

saj + sak
=





sajsjk
saj + sak

g-emission

m2
jk(saj −m2

j )

saj + sak
gK-splitting

(saj −m2
j )(sjk +m2

j )

saj + sak
qA-conversion

saj(sjk +m2
j )

saj + sak
gA-splitting

, (2.65)

where initial-state partons are treated as massless, mA = ma = 0, except for the case of a

initial-state gluon splittings, where ma = mj , as alluded to above.

II branchings. We take into account that both parents, A and B are in the initial state,

so that our choice of the evolution variable reads:

p2
⊥,II =

(m2
A − q2

aj)(m
2
B − q2

jb)

sab
=





sajsjb
sab

g-emission

(saj −m2
j )(sjb −m2

j )

sab
qA-conversion

saj(sjb −m2
j )

sab
gA-splitting

, (2.66)
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with the same convention for massive partons in the initial state as in the IF case; i.e. both

parton A and B are treated as massless, mA = mB = 0, except for splittings of initial-state

gluons ga or gb, where ma = mj or mb = mj , respectively.

3 The sector shower algorithm

In this section, we discuss the differences between the global antenna-shower implementa-

tion in Pythia 8.3, and the sector-shower model we have developed, including all aspects

that are relevant for a full implementation of the sector-shower algorithm.

In section 3.1 we derive the physical sector antenna functions from the corresponding

global ones. We then describe the overestimates used for trial generation and the compo-

nents of the trial-generation algorithm in section 3.2. We close by reviewing our choice for

the resolution variable used to discriminate between phase-space sectors in section 3.3.

3.1 Sector antenna functions

In conventional (global) showers, each radiation kernel is allowed to radiate into any phase-

point that is kinematically accessible to it, subject only to the following requirements: (i)

strong ordering (the evolution variable should be below the scale of the previous branching),

(ii) perturbativity (it should be resolved with respect to the IR cutoff of the shower),

and, potentially, (iii) that it should pass any angular-ordering or equivalent vetoes that

are imposed in the given algorithm. Consequently, every phase-space point can receive

contributions from multiple different parton-shower histories, which must be summed over

to compute the “shower weight” for the phase-space point in question.

In the sector approach however, the phase space is divided into distinct sectors in each

of which only a single antenna is allowed to contribute, cf. figures 3 and 4. In collinear

limits corresponding to g 7→ gg or g 7→ qq̄ branchings, a single sector antenna function must

therefore contain the same collinear singularity structure as the sum of two neighbouring

global ones.

For g 7→ qq̄ branchings, there is no overlap with any soft singularity to worry about as

far as the antenna functions are concerned,8 and the sector antenna function can simply

be taken to be twice the global one.

For g 7→ gg branchings, global antenna functions only contain explicit poles in 1/(1−z),

not in 1/z. However, since the collinear limits of neighbouring antennae are related by

z ↔ 1− z, the full DGLAP kernel (which is symmetric under z ↔ 1− z),

Pg 7→gg(z) =
(1− z(1− z))2

z(1− z)
=

z

1− z +
1− z
z

+ z(1− z) , (3.1)

is recovered after summing over the two contributions,9 see e.g. [49]. A sector antenna

function on the other hand, must contain the full pole structure on its own, at least within

8There is a subtlety concerning how to choose the boundary between g 7→ qq̄ and q 7→ qg sectors however,

which we return to below.
9One consequence of this is that global antenna functions are only unique up to terms that are antisym-

metric under z ↔ 1− z, with e.g. ARIADNE and GGG making different choices, while the global shower in

VINCIA allows a user-defined choice; see [12, 48].
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Figure 1. Illustration of the three different sectors of a gg 7→ ggg antenna, corresponding to the

emission of gluon gj (black), gluon gi (blue), or gluon gk (red). The sectors are shown in the

respective antenna phase spaces, with the axes labelled such that the associated soft singularity

is always located in the bottom left corner. Note that zi = 1 − yjk in any i-collinear limit, and

similarly for the j- and k-collinear limits.

the phase-space region the given sector is meant to cover. As we will discuss below, this

corresponds to z < 1
2 in the collinear limit since, in the sector context it is always the softer

of the two gluons that is perceived of as the “emitted” one.

To illustrate this situation, take for instance the decay process H → gg followed by

an FF branching process gg 7→ ggg. There are three distinct shower histories contributing

to the H → ggg final state (or six, in CS-style dipole approaches), illustrated by the three

diagrams shown above the phase-space triangles in figure 1. In a global shower, each of the

corresponding antenna functions (or, equivalently, CS dipole functions) radiates over all

of the available phase-space region yij + yjk ≤ 1, and for each value of z the full collinear

singularity involves an explicit sum over the antennae (or dipoles) which share the given

collinear pair.

From the sector point of view, the phase space for the same H → ggg final state is

regarded as composed of three distinct sectors, in which either gi, gj , or gk, is considered

as the emitted gluon, respectively. These sectors are illustrated by the differently shaded

regions in the phase-space triangles shown in figure 1, using the p2
⊥,FF variable defined

in eq. (2.63) as the sector resolution criterion (discussed further in section 3.3). The

phase-space sector which corresponds to, and is covered by, the antenna clustering shown

above each triangle is shown with full shading, while the other two sectors are shown with

partial shading.

Focusing on the left-hand plot, for instance, we see that the sector representing emission

of gluon j (shown with full black shading) contains the entire singularity associated with

gluon j becoming soft (yij → 0 and yjk → 0) as well as the z < 1
2 parts of the ij and jk

collinear singularities (yjk = 1−zi > 1
2 and yij = 1−zk > 1

2 respectively). In our approach,

we nominally include the entire (n + 1)-parton singularity structure in all three antenna

functions, but only one of them is allowed to contribute in each sector.

Similar arguments apply to the gluon-collinear singularities in antennae with quark-

gluon or gluon-antiquark parents. In such antennae, the global antenna functions already
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Figure 2. Illustration of the effect of the sector damp parameter β. For β → 1, the unphysical

singularity, marked in orange, is pushed away from the hard phase-space boundary sij + sjk = sIK
in the final-final phase-space (left) and sjk = saj − sAK in the initial-final phase-space (right).

contain the full quark-collinear singularities, but again the gluon-collinear side only contains

the 1/(1− z) poles, which must be summed together with 1/z ones from the neighbouring

antenna to reproduce the full DGLAP kernel, phase-space point by phase-space point. In

the sector approach, the full DGLAP limit is incorporated into both of the neighbouring

antennae, but only the one corresponding to emission of the softer of the two gluons

is allowed to contribute in each phase-space point. In the collinear limit, this is again

equivalent to imposing a boundary at z = 1
2 between the two histories.

We start from the global VINCIA FF antenna functions, cf. appendix A; global RF,

IF, and II antenna functions are derived from these by crossing symmetry. Among these

crossings are, formally, ones representing crossings of the emitted parton, j, into the initial

state. Antennae corresponding to such crossings (emission into the initial state) are not

part of the current VINCIA shower framework; instead the collinear singularities associ-

ated with these crossings are added onto the initial-state legs of the II and IF antennae,

such that already in the global case the initial-state legs contain the full gluon-collinear

singularities [22, 49].

To derive sector antenna functions based on global ones, we distinguish between gluon

emissions and gluon splittings. As mentioned above, for the latter, simply a factor of two

has to be included if the splitting happened in the final state, to account for the fact that

the gluon is part of two global antennae. For gluon emissions, we include the missing

gluon-collinear parts by symmetrising over each final-state gluon-gluon pair. For instance,

the eikonal component of the global antenna function for gIgK 7→ gigjgk, becomes

Global:
2sik
sijsjk

→ Sector:
2sik
sijsjk

+
2sij

sjk(sik + βsjk)
+

2sjk
sij(sik + βsij)

, (3.2)

where the soft eikonal remains unchanged and the two additional terms correspond to

the “missing” collinear parts in the ij- and jk-collinear limits. The auxiliary “sector

damp” parameter β ∈ [0, 1], we have introduced here, allows to push the singularities

for sik → 0, that would result from an exact symmetrisation, away from the phase-space

boundaries, cf. figure 2. Although this is not necessary for the construction of sector

– 18 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
2

antenna functions, it ensures numerical stability in phase space configurations where the

sector boundaries become close to the phase space boundary sik = 0. Moreover, as will

be alluded to in section 3.2, it permits to generate trials over all of phase space with

an a-posteriori imposed sector veto. Hence, our default choice is β = 1, but it can be

changeed with Vincia:sectorDamp. We note that choosing β 6= 0 is not in disagreement

with leading-logarithmic resummation as long as the sector resolution criterion reflects

the singularity structure of the QCD matrix element, a point we return to in detail in

section 3.3. For the example eq. (3.2) considered here, this implies that phase space points

for which sik → 0 always have to be assigned to the antenna where k is the emitted

parton. This situation is shown in figure 1 for a simple three-parton configuration, where

the radiation phase space is covered by three antennae, each of which is constrained to a

unique region.

A further subtlety concerns the treatment of terms in the global antenna functions

that are antisymmetric under z ↔ 1 − z. As mentioned previously, the contributions of

such terms to the collinear limits cancel in the sum over two neighbouring global antennae.

Outside of those limits, however, nonsingular differences can remain. In VINCIA, this

ambiguity is parameterised by a parameter called the octet-partitioning parameter10 α

with default choice α = 0, cf. appendix A. To ensure positivity of the sector antenna

functions over all of their respective phase spaces, our sector antennae are based on global

ones with α = 1.

Below, we define our set of sector antenna functions derived from the above principles.

For FF branchings, there are only slight differences with respect to the earlier sector-shower

implementation of [38] while the IF, II, and RF aspects are new. The construction principles

are applied to both helicity-averaged and, if the helicities of two collinear gluons match,

helicity-dependent antenna functions — and helicity-dependence is implicitly understood.

We discuss validating the collinear limits of sector antenna functions in appendix B.

FF branchings. For final-final gluon emission, we symmetrise over each gluon pair,

āFF,sct
gj−emit(yij , yjk) = āFF,gl

gj−emit(yij , yjk)

+ δIgδhIhj ā
FF,gl
gi−emit(yij , 1− yjk − (1− β)yij)

+ δKgδhKhj ā
FF,gl
gk−emit(1− yij − (1− β)yjk, yjk),

(3.3)

with δIg and δKg being one if I or K is a gluon, respectively, and zero otherwise. Similarly,

δhIhj and δhKhj are one if the helicity hI or hK of the parent gluon matches the one of

the emitted gluon hi. For β → 1, the symmetrised invariants reduce to 1− yjk and 1− yij
for i ↔ j and j ↔ k, respectively, ensuring that the additional, unphysical i-k-singularity

is tamed.

For gluon splittings, we multiply by a factor of two,

āFF,sct
g−split(yij , yjk) = 2āFF,gl

g−split(yij , yjk) (3.4)

where the gluon may either be gI or gK .

10It can be set with Vincia:octetPartitioning.
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RF branchings. Although in principle the antenna shower formalism can handle reso-

nances of any spin and colour representation, so far only the antenna functions for spin- 1
2 ,

resonances in the fundamental representation (e.g. top quarks) have been included.11 Thus

in this case, the sector antenna functions for RF branchings are essentially unchanged with

respect to the IF ones, discussed below, with the only restriction that the resonance cannot

“backwards-evolve” (i.e., a = A).

IF branchings. In initial-final antennae, only final-state legs have to be sectorised, as

there is no radiation into the initial state. For gluon emissions, we therefore have

āIF,sct
gj−emit(yaj , yjk) = āIF,gl

gj−emit(yaj , yjk)

+ δKgδhKhj ā
IF,gl
gk−emit(1− yaj + βyjk, yjk),

(3.5)

where again the additional, unphysical a-k-singularity resulting from the j ↔ k symmetri-

sation is tamed for β → 1.

For gluon splittings we include a factor of two only if the gluon was in the final state,

āIF,sct
gK−split(yaj , yjk) = 2āIF,gl

gK−split(yaj , yjk), (3.6)

and use global antenna functions for initial-state gluon splittings and quark conversions,

āIF,sct
gA−split(yaj , yjk) = āIF,gl

gA−split(yaj , yjk), (3.7)

āIF,sct
gA−conv(yaj , yjk) = āIF,gl

gA−conv(yaj , yjk). (3.8)

II branchings. As already discussed, by construction initial-state legs are already sec-

torised, and so we can readily use VINCIA’s global antenna functions in the sector shower

without modifications,

āII,sct(yaj , yjb) = āII,gl(yaj , yjb). (3.9)

3.2 Trial generation

Compared to the global case, sector antenna functions contain additional terms to incor-

porate the full gluon-collinear singularity in each sector. In the context of trial functions

for gluon emissions, we note that the ij collinear limit of the eikonal overestimate used in

VINCIA’s global showers ∝ 1/p2
⊥ is 1/(Q2

ij(1− zi)). This is sufficient to overestimate global

antenna functions, since the 1/zi part of the I-collinear singularity are contained in the

neighbouring antenna, with the ij collinear limits of the two related by zi ↔ 1− zi. For a

sector shower, however, the eikonal 1/p2
⊥ does not overestimate the 1/z parts of the phys-

ical sector antenna functions. The sector shower therefore requires further trial generators

for the collinear parts of the antennae, as we describe below.

We start by rewriting the antenna integral eq. (2.58) in the no-branching probability,

eq. (2.57), in terms of dimensionless “shower variables”, x⊥ and ζ,

A(x⊥1, x⊥2) =
1

16π2

∫ x⊥1

x⊥2

4παs C ā(x⊥, ζ)Rf FΦ |J(x⊥, ζ)| dx⊥dζ. (3.10)

11Although it should be straightforward to include these, we postpone such a study of such hypothetical

coloured scalar (e.g. gluinos) or vector (e.g. squark) resonances to future work.
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with the (dimensionless) variable x⊥ defined by

x⊥ =
p2
⊥
s
, (3.11)

where p2
⊥ is the evolution variable as defined in eqs. (2.63) to (2.66), and a complementary

phase-space variable ζ which must be chosen such that the mapping

(yij , yjk)→ (x⊥, ζ) (3.12)

is one-to-one. The factor FΦ is the phase-space factor defined in eq. (2.30) and |J(x⊥, ζ)|
denotes the Jacobian associated with the above variable transformation. As long as the

Jacobian is properly accounted for, the choice of ζ does not affect physical observables.

Below, this freedom in choosing ζ is exploited to produce relatively simple expressions for

the trial integrals and to optimise the phase-space sampling for trial branchings.

From a given starting scale, x⊥1, the next branching scale in the downwards evolution

is found by solving

R = exp(−A(x⊥1, x⊥2)) (3.13)

for x⊥2 with a uniformly distributed random number R ∈ [0, 1]. In general, this is not

feasible analytically, hence we work instead with simple overestimates of the integrand

in eq. (3.10) and use the Sudakov veto algorithm to ensure that the correct integral is

recovered post-facto. That is, we replace physical antenna functions ā by simpler trial

functions ātrial that overestimate the physical antenna function everywhere in phase space

and overestimate the PDF ratio Rf by

R̂f =

(
xA
xa

xB
xb

)γ fa(xA, p
2
⊥min)fb(xB, p

2
⊥min)

fA(xA, p2
⊥min)fB(xB, p2

⊥min)
=:

(
xA
xa

xB
xb

)γ
R̃f , (3.14)

with p2
⊥min the minimal scale for the current trial and γ ∈ {0, 1}. The additional

momentum-fraction ratio takes into account that for many cases (in particular for gluon

and sea-quark distributions), an assumption that the PDFs fall off as some power of 1/x for

higher x is a reasonable starting approximation. Where possible (except for valence-type

flavours), our default choice is to use γ = 1.

We further assume αs depends only on p2
⊥ and define the one-loop running coupling

α̂s(x⊥) =
1

b0 log
(
x⊥
xΛ

) , (3.15)

where

b0 =
33− 2nf

12π
and

x⊥
xΛ

=
kRp

2
⊥

Λ2
QCD

(3.16)

with an arbitrary scaling factor kR to adjust the effective renormalisation scale. We note

that two-loop running of the physical coupling is also implemented, via a simple modifica-

tion of the veto probability, as done in [12].
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We overestimate all singular parts of the antenna functions individually and let dif-

ferent trials compete for the highest branching scale. A branching is then accepted

with probability

P sct
accept =

αs

α̂s

C
Ĉ
Rf

R̂f

ā∑
trials ātrial

, (3.17)

Currently, we also utilise the veto algorithm to restrict branchings to the respective phase-

space sectors, i.e., we generate trial branchings over all of phase space and accept only the

one with minimal sector resolution variable of the post-branching configuration.

After accepting a branching, the complementary phase-space variable is generated

by solving

Rζ =
Iζ(ζmin, ζ)

Iζ(ζmin, ζmax)
(3.18)

for ζ with a second uniformly distributed random number Rζ ∈ [0, 1]. Here, Iζ denotes

the integral over the ζ-dependence in A, which is carried out over a larger region than the

physically allowed phase space with simpler ζ boundaries. If this generates a value outside

the physical boundaries,

ζ < ζmin(x⊥) ∨ ζ > ζmax(x⊥), (3.19)

the trial is vetoed and a new branching is generated with starting scale x⊥.

To solve eq. (3.13) numerically, we rewrite the trial integral eq. (3.10) in terms of the

function

A(x⊥1, x⊥2, χ(ζ)) =

∫ x⊥1

x⊥2

∫ ζmax(x⊥)

ζmin(x⊥)
αs(x⊥)χ(ζ)dζ

dx⊥
x⊥

. (3.20)

for χ(ζ) a function of ζ. For a one-loop running coupling, the solution to eq. (3.13) is then

given by

x⊥2 = xΛ

(
x⊥1

xΛ

)R
4πb0

CR̃f I(ζmin,ζmax)

, (3.21)

while for a constant trial coupling, it is given by

x⊥2 = x⊥1R
4π

α̂sCR̃f I(ζmin,ζmax) , (3.22)

or alternatively

x⊥2 = exp

(
−
√

log2(x⊥1)− 4π

fFF
KällénαsC

log(R)

)
. (3.23)

if the zeta-integral can be evaluated to

Ilog(x⊥) = log

(
1

x⊥

)
. (3.24)

Explicit expressions for eq. (3.20) are collected in appendix C.
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Figure 3. Illustration of the sectors in the antenna phase spaces for a final-final qg 7→ qgg antenna

(left) and a final-final gg 7→ ggg antenna (right), with the sector resolution according to eq. (3.25).

Figure 4. Illustration of the sectors in the antenna phase spaces for an initial-final qg 7→ qgg

antenna (left) and an initial-final gg 7→ ggg antenna (right), with the sector resolution according

to eq. (3.27). The sector accounting for a as the emitted gluon, shown in the right pane, is not

considered during the shower evolution, as emission into the initial state is not accounted for.

3.3 Choice of sector resolution variables

As the antenna phase space is divided into sectors corresponding to the radiation from

different antennae, cf. figures 3 and 4, a criterion to decide which branching IK 7→ ijk to

perform has to be chosen. When thinking in terms of inverting the shower, this variable

then determines which clustering ijk 7→ IK to perform. The obvious choice would be to

simply chose the ordering variables eqs. (2.63) to (2.66), as its proportionality to yijyjk
ensures that the most singular sector is picked if in gluon emissions either the soft or a

collinear singularity is approached.

However, this choice is not unique and for LL accuracy it must only ensure that the

antenna function with the correct divergent terms is picked. Different choices will then

have different subleading logarithmic behaviour.

We follow the choice made in [38] and take the dimensionful evolution variables p⊥
to discriminate between sectors for gluon emissions and a p⊥-weighted virtuality for gluon

splittings, as summarised in eqs. (3.25) to (3.28). We refrain from choosing the dimension-

less equivalents, as it was shown in [38] to yield worse subleading-logarithmic behaviour

for final-state gluon emissions.
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Figure 5. Illustration of all different histories (bottom row) leading to the same colour-ordered

process gg → qq̄g (top row). Going from left to right we have: a final-state gluon splitting, an

initial state gluon splitting, and an initial-final gluon emission.

The particular choice for quark pairs can be understood by considering the colour-

ordered process gg → qq̄g, with a colour-ordering as shown in figure 5. Three different

histories contribute to this final state. Firstly, the emission of gluon k could have hap-

pened before or after the creation of the q-q̄ pair. Secondly, this splitting could have

both happened in the initial or final state. In total, this leads to four different possible

clusterings,

• final-state gluon splitting: ijk 7→ IK, aij 7→ AJ

• initial-state gluon splitting: aib 7→ AB

• gluon emission: jkb 7→ JB

However, while the q̄j-gk-gb antenna contains the qj-gk-collinear singularity, the qi-q̄j-gk
antenna only contains the quark-antiquark-collinear singularity and is finite for qj and gk
becoming collinear. Hence, by comparing only the transverse momentum p⊥ for yjk → 0,

one is prone to pick the wrong clustering, if the invariant on the i-j-side is smaller than the

one on the k-b-side. Using an interpolation between the geometric mean of the transverse

momentum p⊥ and the virtuality of the quark pair as collected below in eqs. (3.25) to (3.28)

reflects this subtlety and guarantees that the entire q̄j-gk-collinear limit is classified to

belong to the q̄j-gk-gb antenna.

FF branchings. For final-final configurations, we choose the sector resolution variables:

Q2
resjFF =





sijsjk
sIK

if j is a gluon

(sij + 2m2
j )
√
yjk + µ2

j if (i, j) is a quark-antiquark pair

, (3.25)

with the respective choice for i↔ k.
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RF branchings. The RF sector resolution variables are virtually the same as the

FF ones,

Q2
resjRF =





sajsjk
saj + sak

if j is a gluon

(sjk + 2m2
j )
√
yaj − µ2

j if (j, k) is a quark-antiquark pair

, (3.26)

with the difference only in the sign of the mass correction to yaj , due to the different

momentum conservation, cf. eq. (2.6).

IF branchings. For IF configurations, we choose the sector resolution variables to be

the same as the RF ones, complemented by additional ones treating initial-state gluon

splittings and conversions, not present in RF branchings:

Q2
resjIF =





sajsjk
saj + sak

if j is a gluon

(saj − 2m2
j )
√
yjk + µ2

j if (a, j) is a quark-quark pair

saj

√
yjk + µ2

j if (a, j) is a gluon-(anti)quark pair

(sjk + 2m2
j )
√
yaj − µ2

j if (j, k) is a quark-antiquark pair

. (3.27)

II branchings. For initial-initial configurations, we choose the resolution variables

Q2
resjII =





sajsjb
sab

if j is a gluon

(saj − 2m2
j )
√
yjb − µ2

j if (a, j) is a gluon-(anti)quark pair

saj

√
yjb − µ2

j if (a, j) is a quark-quark pair

, (3.28)

with the respective choice for a↔ b.

4 Validation and preliminary results

We validate the sector shower in two stages: first in section 4.1 by comparing its tree-

level expansion to tree-level matrix elements (see [12, 38, 49] for equivalent plots for global

showers), and second in section 4.2 by comparing the full-fledged sector shower to experi-

mental data. For the latter, comparisons are also included to the global VINCIA and default

PYTHIA 8.3 showers. Both RIVET [58] and an internal VINCIA analysis package were used

for performing analyses.
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Figure 6. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for Z → qq̄+ 2g

and H → 3g in a flat phase space scan.

strong
unordered (∼ 0.3%)

bigjgk 7→ bIgK
tagkgj 7→ tAgJ

-3 -2 -1 0 1 2 310−4

10−3

10−2

10−1

1

ta → Wbigjgk

log10(R
sct
4 )

Fr
ac
tio

n
of

Ph
as
e
Sp

ac
e

strong
unordered (∼ 34.5%)

qagigj 7→ qAgJ
q̄bgJgI 7→ q̄BgI

-3 -2 -1 0 1 2 310−4

10−3

10−2

10−1

1

qaq̄b → Zgigj

log10(R
sct
3 )

Fr
ac
tio

n
of

Ph
as
e
Sp

ac
e

Figure 7. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for gluon emis-

sions off t→W+b (left) and qq̄ → Z (right) in a flat phase space scan.

4.1 Comparison to tree-level matrix elements

To probe the quality of our sector antenna functions as well as our sector resolution criteria,

we define the parton-shower-to-matrix-element ratio

Rsct
n =



n−nBorn∏

ordered
i

∑

j∈{p}n−i
Θ(Q2

min({p}n−i)−Q2
resj )g

2
s Cj āsct

j


 |MBorn|2
|Mn|2

=



∏

ordered
i

g2
s Ciāsct

i


 |MBorn|2
|Mn|2

,

(4.1)

where Q2
min({p}n−i) is the minimal sector resolution over the state {p}n−i and the symbol∏

ordered
is meant to impose strong ordering, i.e., that p2

⊥,n < p2
⊥,n−1 < p2

⊥,n−2 < . . . < Q2
F

for each clustering sequence, where Q2
F denotes the factorisation scale. By construction,

only a single clustering contributes at each n-parton phase space point, as indicated by the

second line in eq. (4.1).
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Figure 8. Ratios Rsct
3 of the sector-shower approximation to LO matrix elements for gg-fusion

processes in a flat phase space scan.
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Figure 9. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for qq̄-annihilation

processes in a flat phase-space scan.

For a fixed colour ordering, we compare the sector antenna shower approximation to

leading-colour tree-level matrix elements from the MADGRAPH5 aMC@NLO matrix element

generator [59]. Using Vincia’s implementation of Rambo [60], we generate large samples

of the n-parton phase space in a flat phase-space scan. Initial-state momenta are fixed

by a flat sampling of the momentum fractions for partonic scattering processes and to

the pole mass for resonance decays. We cluster the state back to the Born configuration

according to the exact inverses of the corresponding 2 7→ 3 kinematic maps, cf. section 2.3,

and determine the sector-shower history according to the resolution variables eqs. (3.25)

to (3.28).

In figure 6, we plot Rsct
n for the resonance decay processes Z → qggq̄ and H → ggg,

while in figure 7, we show it for gluon emissions off the resonance decay t→W+b and the

Drell-Yan process qq̄ → Z. In figures 8 and 9, we consider 2 → 3 gluon-gluon and quark-

antiquark scattering processes respectively. We here denote light (i.e. effectively massless)

quarks by q and denote heavy flavours explicitly by t and b; unequal flavours are denoted

by dashes, q′. For all cases, we show the shower approximations in both the ordered (solid)

and unordered (dashed) regions of phase space. (The latter is shown for completeness; it

would be vetoed in a strongly ordered shower.) In the ordered regions, we also include the
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breakdown per contributing sector (coloured lines). In figures 15 to 20 in appendix D, we

present Rsct
n for higher multiplicities.

The patterns we observe are the following. For gluon emissions, we see quite narrow

distributions centred on log(Rn) = 0, indicating a generally very good agreement between

the sector-shower approximation and the LO matrix elements. This is particularly true in

the ordered regions of the phase space for each hard process. Branching processes involving

gluon splittings (including initial-state splittings and quark conversions) are significantly

less well approximated. This is due to a combination of two factors, as follows. Firstly,

gluon-splitting kernels only contain single poles which hence are expected to dominate

over a smaller fraction of phase space compared with the double poles of gluon-emission

ones. Secondly, the numerator of the single poles of the g → qq̄ branchings has a signifi-

cant dependence on the (linear) polarisation of the splitting gluon (which is currently not

accounted for in our sector shower), while the polarisation dependence of gluon-emission

processes is much milder [61]. The overall quality of the approximations are consistent

with those seen for global showers in [12, 49] and for the final-final sector shower in [38].

Furthermore, for several of the QCD scattering processes, we observe that even the

distributions of unordered histories are peaked close to Rsct
n = 1. Many of these “good”

unordered paths are, however, only unordered in the first emission, i.e., the first emission

appears at a higher scale than the factorisation scale. Although this suggests to let the

shower evolution start at a nominally larger scale than the factorisation scale, we refrain

from doing so for now and leave a study of such “power-shower” effects, cf. [62], in sector

showers to future work.

4.2 Comparison to experimental data

We here present first results with the VINCIA sector shower, comparing it to experimental

measurements and to the global VINCIA and PYTHIA 8.3 showers. Although we included a

large set of observables in our study, we here show only a minimal set which were deemed

to be the most physically relevant and/or representative ones.

With the splitting kernels and kinematics maps fixed, the main quantity governing

the perturbative shower evolution is the strong coupling. For both of the VINCIA showers,

we evolve the coupling at two-loop order with an MS value of αs(mZ) = 0.118. Since our

shower model is coherent, we take the CMW scheme [63] as the baseline scheme for defining

the effective value of αs for shower branchings, i.e., we use

αCMW
s = αMS

s

(
1 +

αMS
s

2π

[
CA

(
67

18
− π2

6

)
− 5nf

9

])
, (4.2)

which is technically imposed via an nf -dependent rescaling of the ΛQCD parameter. The

CMW factor is derived for gluon emissions in the infinitely soft limit. To reflect remaining

ambiguities in the scale definition and to allow the effective value of αs used for physical

branchings to deviate from this, we further allow renormalisation-scale prefactors kR to

modify the evolution-scale p⊥ argument of the running coupling, so that:

αVincia
s (p2

⊥) = αCMW
s (kRp

2
⊥) . (4.3)

– 28 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
2

From preliminary tuning studies comparing VINCIA’s global shower to LEP event shapes

and Drell-Yan p⊥ spectra, the default values for the additional scale prefactors are chosen as

kF
R,Emit = 0.66 , kF

R,Split = 0.8 , (4.4)

kI
R,Emit = 0.66 , kI

R,Split = 0.5 , kI
R,Conv = 0.5 . (4.5)

We note that these choices roughly double the effect of the CMW scheme translation. We

plan to return to an investigation of the seemingly large 1/kR values needed to reproduce

data in a future study including higher-order virtual effects (e.g., along the lines of [41])

but for the moment note that the combined effect is similar to that of the rather large

effective value of αs(MZ) = 0.1365 chosen in the baseline tune of PYTHIA [64].

The complete set of parameters changed relative to the default PYTHIA tune are col-

lected in appendix E.

Electron-positron annihilation. As a first test of the sector shower implementation

and specifically as a test of its FSR component, in figure 10 we show event-shape distribu-

tions for hadronic Z decays (see [67–72] for definitions) compared to L3 measurements at√
s = 91.2 GeV [65] for light- and heavy-flavour tagged samples separately.

Although we are considering only pure shower predictions here, i.e., without matching

or merging to fixed-order calculations, we find that both the sector and global showers in

Vincia give very good agreement with data. All three showers considered here describe the

thrust and C parameter distributions equally well; the sector-shower predictions in decays

to light flavours are in slightly closer agreement with data than the global shower. The

default PYTHIA 8.3 shower is slightly closer to the experimentally measured distributions

for the D parameter in Z decays to light flavours. We note, however, that its first emission

is corrected to LO matrix elements and the second includes an approximate treatment of

gluon-polarisation effects, whereas no such corrections are imposed on the VINCIA showers.

Given that the latter two agree with each other, we suspect this difference to mainly

stem from the additional corrections that are implemented in PYTHIA. This argument is

supported by a study of the distribution obtained with the unmatched PYTHIA 8.3 shower

and the fact that the LO matched VINCIA 1 shower agreed better with data as well as

PYTHIA, cf. [12]. We plan to return to (iterative) matrix-element corrections and (multi-

leg) matching/merging for VINCIA in a separate follow-up study.

Drell-Yan. To test the ISR component of the sector shower with minimal interplay with

the FSR shower, we consider Drell-Yan processes as measured by the D∅ experiment [66]

at
√
s = 1.96 TeV in figure 11. We study the angle φ∗η, defined in [74], which relates to the

opening angle of the Drell-Yan lepton pair and is sensitive to the Z transverse momentum.

It is known that a pure unmatched parton shower with the evolution starting at the

factorisation scale ∼ mZ is incapable of describing these observables well, as they are

sensitive to phase-space regions with p⊥,jet > mZ . We here follow the default choice in

both PYTHIA and VINCIA and start showers off configurations containing no final-state

(QCD) partons at the phase-space maximum. As alluded to before, cf. section 4.1, we

leave a dedicated study of the impact of so-called “power showers” in sector showers as

well as matching and merging in the sector-shower framework to future work.
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Figure 10. Normalised event shape distributions in Z decays to light flavours (left) and b quarks

only (right) in e+e− collisions at a centre-of-mass energy of
√
s = 91.2 GeV. Comparison of the

sector shower against the default (global) VINCIA shower, Pythia 8.3, and L3 data [65].
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Figure 11. Distribution of the φ∗
η angle in the electron channel (left) and muon channel (right) for

different rapidity bins in pp̄ collisions at a centre-of-mass energy of
√
s = 1.96 TeV. Comparison of

the sector shower against the default (global) VINCIA shower, Pythia 8.3 and D∅ data [66].

With this choice, the data is very well described by the sector shower, although there is

some larger deviation for large φ∗. This is, however, the region a “wimpy” shower starting

at the factorisation scale would not describe well at all and fixed-order corrections have a

great impact, cf. e.g. [19, 49]. A peculiarity of Drell-Yan processes is that the first emission

is described in the same way in the sector and global shower framework in VINCIA, as

initial-state legs are sectorised in the first place. Only starting from the second branching

do different initial-final sectors compete, and final-final ones do not show up until the third

branching. This is observed in figure 11, as there is virtually no difference between the

predictions of the sector and global shower.

QCD jets. As a test of the complete sector shower with full interplay between its ISR and

FSR components, we compare sector-shower predictions for dijet azimuthal decorrelations

in proton-proton collisions at
√
s = 7 TeV to measurements by the ATLAS experiment [73]

in figure 12.

Of all analyses considered here, the different shower predictions differ the most for

this observable. Systematically, the sector shower is shifted towards smaller values com-

pared to the global shower. However, already for the first emission, many different sectors

compete for the branching in the sector shower, cf. section 4.1, which may explain this

bigger difference to the global shower than seen in the pure FSR shower and showers off

Drell-Yan processes. Moreover, dijet azimuthal decorrelations are sensitive to higher-order

contributions and typically, NLO theory predictions are required to describe the data well,

cf. [76]; here however only shower predictions matched to at most LO for the first emission

are considered. The good agreement that we nevertheless see may be explained by noting

that the distributions are normalised to the cross section.
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Figure 12. Dijet azimuthal decorrelations in pp collisions at a centre-of-mass energy of
√
s = 7 TeV.

Comparison of the sector shower against the default (global) VINCIA shower, PYTHIA 8.3, and

ATLAS data [73].

Coloured resonance decays. As a final validation of the sector shower in resonance

decays, we consider two observables already studied in [50], known to be sensitive to RF

branchings. The first observable is the b-jet profile ρ(r) as measured by ATLAS for pp→ tt̄

at
√
s = 7 TeV [75]. As shown in figure 13 we find that the sector shower reproduces the

global shower results, namely that VINCIA gives rise to systematically narrower b-jets than

PYTHIA, and moreover that this is in closer agreement with the data.

The second observable we consider is the invariant mass of the t̄ decay system b̄j`
−ν̄`

in dileptonic pp→ tt̄ at
√
s = 8 TeV. As already noted in [50], this observable is sensitive

to numerous effects; therefore to isolate (and thereby highlight) any differences originating

from the parton shower alone, we do the following. The analysis is performed at “Monte

Carlo truth” level, namely the decay system is reconstructed with the correct pairing of

leptons and b-jets, and the four-momentum of the neutrino is presumed to be known. In ad-
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Pythia 8.3 for the b-jet profile as measured by ATLAS in pp→ tt̄ at
√
s = 7 TeV [75].
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dition, we switch off the simulation of MPI, beam-remnant modelling, and hadronisation.12

These actions strengthen our conclusion that the sector shower is consistent with the global

shower, as demonstrated in figure 14. Although there is again a small systematic shift of

the sector shower towards smaller invariant masses relative to the global shower, this is

well within an acceptable range of variation for showers of leading-logarithmic accuracy.

Indeed, the difference between the two VINCIA showers is significantly smaller than their

mutual difference with respect to the predictions of PYTHIA 8.3. The variation between

VINCIA and PYTHIA is interesting. It was discussed in some detail in [50]; here we produce

a brief summary. In the PYTHIA shower model, the recoil from each FSR emission must be

taken by a single final-state parton. For the first gluon emission in t→ bW , therefore, the

W is formally assigned to be the recoiler for emissions off the b quark. At this stage, this

choice is fully equivalent to VINCIA’s RF kinematics (since pt − pb = pW ). After the first

branching, the colour index of the top quark is now carried by the emitted gluon. In VINCIA,

the “recoiler” for further emissions off that colour index effectively remains the crossed top

minus the radiating parton, pt − pg = pW + pb. In PYTHIA, instead, one must choose it to

be either the W or the b. This choice is controlled by the flag RecoilToColoured whose

default value true means that in ambiguous cases like this one the coloured parton will be

picked over the uncoloured one. (This is to avoid imparting undesirably large recoil effects

from QCD branchings onto non-QCD partons.) Due to the collinear enhancement for the

preceding b → bg emission, however, the invariant mass of the bg dipole (and hence the

phase space for further radiation) tends to be small. This severely restricts further radia-

tion and results in less “out-of-cone” radiation loss in PYTHIA and hence a sharper peak

structure in figure 14. It should be clear from our discussion that we consider this effect

in PYTHIA to be an artefact of having to choose between two undesirable options; either

allowing an uncoloured parton to continue to receive the full recoil of further QCD branch-

ings in the RF dipole (RecoilToColoured = false) or choosing a coloured one with a tiny

phase space (RecoilToColoured = true) to receive it. We believe that VINCIA’s coherent

treatment of RF recoils is more physical. We also note that, since this difference arises in

the treatment of the second emission and beyond, it is of NNLO origin in a fixed-order

expansion and will persist even when the decay process is matched to NLO calculations,

see [50, 77].

5 Conclusion and outlook

We here presented the first implementation of an ISR and FSR parton shower that pos-

sesses only a single shower history. We extensively reviewed the shower algorithm which

is ordered in a generalised ARIADNE transverse momentum and presented the construc-

tion of all required sector antenna functions from VINCIA’s global final-final antenna func-

tions; we also defined a sector resolution variable, which enables us to uniquely invert the

shower algorithm.

The sector-shower implementation was validated against LO matrix elements and first

predictions for physical observables were made and compared to the global VINCIA antenna

12In addition, we set SigmaProcess:alphaSorder and SigmaProcess:alphaSvalue to their default values

in PYTHIA (such that the starting cross section is identical).
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shower, and to PYTHIA 8.3. Where relevant, we emphasised the expected impact of matrix-

element corrections, which are available in PYTHIA e.g. for resonance decays and Drell-Yan

processes, but are not yet available in the current version of VINCIA.

We found very good agreement of sector-shower predictions with experimental data

from LEP, Tevatron, and LHC experiments, taking into account that only “pure shower”

predictions, formally at LL accuracy, were considered. Moreover, we showed that, at least

for the observables studied here, there is no disadvantage of the sector shower in describing

data in comparison to the global VINCIA shower.

While this may appear to be “just another LL shower”, it is worth pointing out that

the sector-shower approach provides the means to significantly reduce the computational

overhead connected to matching and merging shower predictions to fixed-order calculations

and, moreover, to significantly reduce the complexity of shower algorithms. The presenta-

tion here may therefore be understood as a first step towards dedicated and highly-efficient

matrix-element-correction and merging schemes, which we discuss in separate forthcoming

publications. We also plan to explore whether the sector approach can facilitate the in-

clusion of direct higher-order splittings and one-loop antenna functions in the shower, e.g.

following a similar approach as those of [41, 42], with the ultimate goal of reaching higher

formal precision in parton showers, cf. [78–83].

The sector antenna shower presented here will be made publicly available as part of

the VINCIA antenna shower in a forthcoming update to PYTHIA 8.3.
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A Helicity-dependent antenna functions

In this section, we collect all helicity- and mass-dependent global antenna functions. The

corresponding sector antenna functions can be build by the considerations presented in

section section 3.1.

A.1 Final-final antennae

QQEmitFF. The helicity-averaged antenna function for the process qIqK 7→ qigjqk is

āFF,gl
g/qq̄ (yij , yjk) =

1

sIK

[
(1− yij)2 + (1− yjk)2

yijyjk
− 2µ2

I

y2
ij

− 2µ2
K

y2
jk

+ 1

]
(A.1)
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with the individual helicity contributions

āFF,gl
q+q̄+ 7→q+g+q̄+ =

1

sIK

[
1

yijyjk
− µ2

i

y2
ij(1− yjk)

− µ2
k

y2
jk(1− yij)

]
, (A.2)

āFF,gl
q+q̄+ 7→q+g−q̄+ =

1

sIK

[
(1− yij)2 + (1− yjk)2 − 1

yijyjk
+ 2 (A.3)

−µ
2
i (1− yjk)
y2
ij

− µ2
k(1− yij)
y2
jk

]
,

āFF,gl
q+q̄+ 7→q−g+q̄+ =

1

sIK

µ2
i y

2
jk

y2
ij

1

1− yjk
, (A.4)

āFF,gl
q+q̄+ 7→q+g+q̄− =

1

sIK

µ2
ky

2
ij

y2
jk

1

1− yij
, (A.5)

āFF,gl
q+q̄− 7→q+g+q̄− =

1

sIK

[
(1− yij)2

yijyjk
− µ2

i

y2
ij(1− yjk)

− µ2
k(1− yij)
y2
jk

]
, (A.6)

āFF,gl
q+q̄− 7→q+g−q̄− =

1

sIK

[
(1− yjk)2

yijyjk
− µ2

i (1− yjk)
y2
ij

− µ2
k

y2
jk(1− yij)

]
, (A.7)

āFF,gl
q+q̄− 7→q−g+q̄− =

1

sIK

µ2
i y

2
jk

y2
ij(1− yjk)

, (A.8)

āFF,gl
q+q̄− 7→q+g−q̄+ =

1

sIK

µ2
ky

2
ij

y2
jk(1− yij)

. (A.9)

QGEmitFF. The helicity-averaged antenna function for the process qIgK 7→ qigjgk is

āFF,gl
g/qg (yij , yjk) =

1

sIK

[
(1− yij)3 + (1− yjk)2

yijyjk
− 2µ2

I

y2
ij

(A.10)

+ (1− α)
(1− yjk)(yik − yij)

yjk
+ 2− yij −

yjk
2

]

with the individual helicity contributions

āFF,gl
q+g+ 7→q+g+g+

=
1

sIK

[
1

yijyjk
+ (1− α)(1− yjk)

(
1− 2yij − yjk

yjk

)
(A.11)

− µ2
i

y2
ij(1− yjk)

]
,

āFF,gl
q+g+ 7→q+g−g+

=
1

sIK

[
(1− yij)y2

ik

yijyjk
− µ2

i (1− yjk)
y2
ij

]
, (A.12)

āFF,gl
q+g+ 7→q−g+g+

=
1

sIK

µ2
i y

2
jk

y2
ij(1− yjk)

, (A.13)

āFF,gl
q+g− 7→q+g+g− =

1

sIK

[
(1− yij)3

yijyjk
− µ2

i

y2
ij(1− yjk)

]
, (A.14)

– 36 –



J
H
E
P
0
7
(
2
0
2
0
)
0
3
2

āFF,gl
q+g− 7→q+g−g− =

1

sIK

[
(1− yjk)2

yijyjk
+ (1− α)(1− yjk)

(
1− 2yij − yjk

yjk

)
(A.15)

−µ
2
i (1− yjk)
y2
ij

]
,

āFF,gl
q+g− 7→q−g+g− =

1

sIK

µ2
i y

2
jk

y2
ij(1− yjk)

. (A.16)

GGEmitFF. The helicity-averaged antenna function for the process gIgK 7→ gigjgk is

āFF,gl
g/gg (yij , yjk) =

1

sIK

[
(1− yij)3 + (1− yjk)3

yijyjk
+ (1− α)

(1− yij)(2yik − 2yjk + yij)

2yij

+ (1− α)
(1− yjk)(2yik − 2yij + yjk)

2yjk
(A.17)

+3− 3

2
yij −

3

2
yjk

]

with the individual helicity contributions

āFF,gl
g+g+ 7→g+g+g+

=
1

sIK

[
1

yijyjk
(A.18)

+(1− α)

(
(1− yij)

1− 2yjk − yij
yij

+ (1− yjk)
1− 2yij − yjk

yjk

)]

āFF,gl
g+g+ 7→g+g−g+

=
1

sIK

y3
ik

yijyjk
(A.19)

āFF,gl
g+g− 7→g+g+g− =

1

sIK

[
(1− yij)3

yijyjk
+ (1− α)(1− yij)

1− 2yjk
yij

]
, (A.20)

āFF,gl
g+g− 7→g+g−g− =

1

sIK

[
(1− yjk)3

yijyjk
+ (1− α)(1− yjk)

1− 2yij
yjk

]
. (A.21)

GXSplitFF. The helicity-averaged antenna function for the process gIXK 7→ qiq̄jXk

with an arbitrary coloured spectator X is

āFF,gl
q̄/gX(yij , yjk) =

1

sIK

1

2

1

yij + 2µ2
q

[
y2
ik + y2

jk +
2µ2

q

yij + 2µ2
q

]
(A.22)

with the individual helicity contributions

āFF,gl
g+X 7→q+q̄−X =

1

sIK

1

2(yij + 2µ2
q)

[
y2
ik −

µ2
q

yij + 2µ2
q

yik
1− yik

]
, (A.23)

āFF,gl
g+X 7→q−q̄+X =

1

sIK

1

2(yij + 2µ2
q)

[
y2
jk −

µ2
q

yij + 2µ2
q

yjk
1− yjk

]
, (A.24)

āFF,gl
g+X 7→q+q̄+X =

1

sIK

µ2
q

2(yij + 2µ2
q)

2

[
yik

1− yik
+

yjk
1− yjk

+ 2

]
. (A.25)
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A.2 Initial-final antennae

QQEmitIF. The helicity-averaged antenna function for the process qAqK 7→ qagjqk is

āIF,gl
g/qq (yaj , yjk) =

1

sAK

[
(1− yaj)2 + (1− yjk)2

yajyjk
+

1

2
(2− yaj)(2− yjk) (A.26)

−2µ2
a

y2
aj

(
(1− yjk)

(
1− yaj

2

)
− yaj

2
(1− yaj)

)

−2µ2
k

y2
jk

(
1− yjk

4
(2− yjk)

(
2 +

y2
aj

1− yaj

))]

with the individual helicity contributions

āIF,gl
q+q+ 7→q+g+q+ =

1

sAK

[
1

yajyjk
− µ2

a

y2
aj

− µ2
k

(1− yaj)y2
jk

]
, (A.27)

āIF,gl
q+q+ 7→q+g−q+ =

1

sAK

[
(1− yaj)2 + [(1− yjk)2 − 1](1− yaj)2

yajyjk
(A.28)

−µ
2
a(1− yjk − yaj)2

y2
aj

− µ2
k(1− yaj)(1− yjk)2

y2
jk

]
, (A.29)

āIF,gl
q+q+ 7→q−g−q+ =

1

sAK

µ2
ay

2
jk

y2
aj

, (A.30)

āIF,gl
q+q+ 7→q+g+q− =

1

sAK

µ2
ky

2
aj

(1− yaj)y2
jk

, (A.31)

āIF,gl
q+q− 7→q+g+q− =

1

sAK

[
(1− yaj)2

yajyjk
− µ2

a(1− yaj)
y2
aj

− µ2
k(1− yaj)
y2
jk

]
, (A.32)

āIF,gl
q+q− 7→q+g−q− =

1

sAK

[
(1− yjk)2

yajyjk
− µ2

a(1− yjk)2

y2
aj

− µ2
k(1− yjk)2

y2
jk(1− yaj)

]
, (A.33)

āIF,gl
q+q− 7→q−g−q− =

1

sAK

µ2
ay

2
jk

y2
aj

, (A.34)

āIF,gl
q+q− 7→q+g−q+ =

1

sAK

µ2
ky

2
aj

y2
jk(1− yaj)

. (A.35)

QGEmitIF. The helicity-averaged antenna function for the process qAgK 7→ qagjgk is

āIF,gl
g/qg (yaj , yjk) =

1

sAK

[
(1− yaj)3 + (1− yjk)2

yajyjk
+ (1− α)

1− 2yaj
yjk

(A.36)

− 2µ2
a

y2
aj

(
(1− yjk)−

yaj
2

[
(1− yaj)− (2− yjk)2

])

+
3

2
+ yaj −

yjk
2
−
y2
aj

2

]
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with the individual helicity contributions

āIF,gl
q+g+ 7→q+g+g+

=
1

sAK

[
1

yajyjk
+ (1− α)

1− 2yaj
yjk

− µ2
a

y2
aj

]
, (A.37)

āIF,gl
q+g+ 7→q+g−g+

=
1

sAK

[
(1− yaj)3 + (1− yjk)2 − 1

yajyjk
(A.38)

−µ
2
a(1− yjk − yaj)2(1− yaj)

y2
aj

+ 3− y2
aj

]
,

āIF,gl
q+g+ 7→q−g−g+

=
1

sAK

µ2
ay

2
jk

y2
aj

, (A.39)

āIF,gl
q+g− 7→q+g+g− =

1

sAK

[
(1− yaj)3

yajyjk
− µ2

a(1− yaj)2

y2
aj

]
, (A.40)

āIF,gl
q+g− 7→q+g−g− =

1

sAK

[
(1− yjk)2

yajyjk
+ (1− α)

1− 2yaj
yjk

(A.41)

−µ
2
a(1− yjk)2

y2
aj

+ 2yaj − yjk
]
, (A.42)

āIF,gl
q+g− 7→q−g−g− =

1

sAK

µ2
ay

2
jk

y2
aj

. (A.43)

GQEmitIF. The helicity-averaged antenna function for the process gAqK 7→ gagjqk is

āIF,gl
g/gq (yaj , yjk) =

1

sAK

[
(1− yjk)3 + (1− yaj)2

yajyjk
+

1 + y3
jk

yaj(1− yjk)
(A.44)

−2µ2
k

y2
jk

(
1− yjk

4
(3− 3y2

jk + y3
jk)

(
2 +

y2
aj

1− yaj

))

+
1

2
(2− yaj)(3− yjk + y2

jk)

]

with the individual helicity contributions

āIF,gl
g+q+ 7→g+g+q+ =

1

sAK

[
1

yajyjk
+

1

yaj(1− yjk)
− µ2

k

y2
jk(1− yaj)

]
, (A.45)

āIF,gl
g+q+ 7→g+g−q+ =

1

sAK

[
(1− yaj)2 + [(1− yjk)3 − 1](1− yaj)2

yajyjk
(A.46)

−µ
2
k(1− yaj)(1− yjk)3

y2
jk

]
, (A.47)

āIF,gl
g+q+ 7→g−g−q+ =

1

sAK

y3
jk

yaj(1− yjk)
, (A.48)

āIF,gl
g+q+ 7→g+g+q− =

1

sAK

µ2
ky

2
aj

y2
jk(1− yaj)

, (A.49)
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āIF,gl
g+q− 7→g+g+q− =

1

sAK

[
(1− yaj)2

yajyjk
+

1

yaj(1− yjk)
− µ2

k(1− yaj)
y2
jk

]
, (A.50)

āIF,gl
g+q− 7→g+g−q− =

1

sAK

[
(1− yjk)3

yajyjk
− µ2

k(1− yjk)3

y2
jk(1− yaj)

]
. (A.51)

GGEmitIF. The helicity-averaged antenna function for the process gAgK 7→ gagjgk is

āIF,gl
g/gg(yaj , yjk) =

1

sAK

[
(1− yaj)3 + (1− yjk)3

yajyjk
+

1 + y3
jk

yaj(1− yjk)
(A.52)

+(1− α)
1− 2yaj
yjk

+ 3− 2yjk

]

with the helicity contributions

āIF,gl
g+g+ 7→g+g+g+

=
1

sAK

[
1

yajyjk
+ (1− α)

1− 2yaj
yjk

+
1

yaj(1− yjk)

]
, (A.53)

āIF,gl
g+g+ 7→g+g−g+

=
1

sAK

[
(1− yaj)3 + (1− yjk)3 − 1

yajyjk
+ 6− 3yaj − 3yjk + yajyjk

]
, (A.54)

āIF,gl
g+g− 7→g+g+g− =

1

sAK

[
(1− yaj)3

yajyjk
+

1

yaj(1− yjk)

]
, (A.55)

āIF,gl
g+g− 7→g+g−g− =

1

sAK

[
(1− yjk)3

yajyjk
+ (1− α)

1− 2yaj
yjk

+ 3yaj − yjk − yajyjk
]
. (A.56)

XGSplitIF. The helicity-averaged antenna function for the process XAgK 7→ Xaqj q̄k,

where X is an arbitrary coloured parton in the initial state, is

āIF,gl
q̄/Xg(yaj , yjk) =

1

sAK

yAK
2(yjk + 2µ2

j )

[
y2
ak + y2

aj +
2µ2

j

yjk + 2µ2
j

]
. (A.57)

with the individual helicity contributions

āIF,gl
Xg+ 7→Xq̄−q+ =

1

sAK

1

2

yAK
yjk + 2µ2

j

[
y2
ak −

µ2
jyak

yjk + 2µ2
j (1− yak)

]
, (A.58)

āIF,gl
Xg+ 7→Xq̄+q− =

1

sAK

1

2

yAK
yjk + 2µ2

j

[
y2
aj −

µ2
jyaj

yjk + 2µ2
j (1− yaj)

]
, (A.59)

āIF,gl
Xg+ 7→Xq̄+q+ =

1

sAK

1

2

µ2
jyAK

(yjk + 2µ2
j )

2

[
yaj

(1− yaj)
+

yak
(1− yak)

+ 2

]
. (A.60)

QXSplitIF. The helicity-averaged antenna function for the process qAXK 7→ gaq̄jXk,

where X is an arbitrary coloured parton in the final state, is

āIF,gl
q̄/qX(yaj , yjk) =

1

sAK

[
y2
AK + (1− yAK)2

yaj
+

2µ2
jyAK

y2
aj

]
(A.61)
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with the individual helicity contributions

āIF,gl
q+X 7→g+q̄−X =

1

sAK

[
y2
AK

yaj
−

µ2
jy

2
AK

y2
aj(1− yAK)

]
, (A.62)

āIF,gl
q+X 7→g−q̄−X =

1

sAK

[
(1− yAK)2

yaj
−
µ2
j (1− yAK)

y2
aj

]
, (A.63)

āIF,gl
q+X 7→g+q̄+X

=
1

sAK

µ2
j

y2
aj(1− yAK)

. (A.64)

GXConvIF. The helicity-averaged antenna function for the process gAXK 7→ qaqjXk,

where X is an arbitrary coloured parton in the final state, is

āIF,gl
q/gX(yaj , yjk) =

1

sAK

1

2

[
1 + (1− yAK)2

yAK(yaj − 2µ2
j )
−

2µ2
jyAK

(yaj − 2µ2
j )

2

]
. (A.65)

with the individual helicity contributions

āIF,gl
g+X 7→q+q+X =

1

sAK

1

2

[
1

yAK(yaj − 2µ2
j )
−

µ2
jyAK

(yaj − 2µ2
j )

2(1− yAK)

]
, (A.66)

āIF,gl
g+X 7→q−q−X =

1

sAK

1

2

[
(1− yAK)2

yAK(yaj − 2µ2
j )
−
µ2
jyAK(1− yAK)

(yaj − 2µj)2

]
, (A.67)

āIF,gl
g+X 7→q+q−X =

1

sAK

1

2

µ2
j

(yaj − 2µ2
j )

2

y3
AK

1− yAK
. (A.68)

A.3 Initial-initial antennae

QQEmitII. The helicity-averaged antenna function for the process q̄AqB 7→ qagjqb is

āII,gl
g/q̄q(yaj , yjb) =

1

sAB

[
(1− yaj)2 + (1− yjb)2

yajyjb
+ 1− 2µ2

a(1− yjb)
y2
aj

(A.69)

−2µ2
b(1− yaj)
y2
jb

]

with the individual helicity contributions

āII,gl
q+q+ 7→q+g+q+ =

1

sAB

[
1

yajyjb
− µ2

a

y2
aj

− µ2
b

y2
jb

]
, (A.70)

āII,gl
q+q+ 7→q+g−q+ =

1

sAB

[
y2
AB

yajyjb
− µ2

a(1− yjb)2

y2
aj

− µ2
b(1− yaj)2

y2
jb

]
, (A.71)

āII,gl
q+q+ 7→q−g−q+ =

1

sAB

µ2
ay

2
jb

y2
aj

, (A.72)

āII,gl
q+q+ 7→q+g−q− =

1

sAB

µ2
by

2
aj

y2
jb

, (A.73)
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āII,gl
q+q− 7→q+g+q− =

1

sAB

[
(1− yaj)2

yajyjb
− µ2

a

y2
aj

− µ2
b(1− yaj)2

y2
jb

]
, (A.74)

āII,gl
q+q− 7→q+g−q− =

1

sAB

[
(1− yjb)2

yajyjb
− µ2

a(1− yjb)2

y2
aj

− µ2
b

y2
jb

]
, (A.75)

āII,gl
q+q− 7→q−g−q− =

1

sAB

µ2
ay

2
jb

y2
aj

, (A.76)

āII,gl
q+q− 7→q−g+q+ =

1

sAB

µ2
by

2
aj

y2
jb

. (A.77)

QGEmitII. The helicity-averaged antenna function for the process q̄AgB 7→ qagjgb is

āII,gl
g/qg(yaj , yjb) =

1

sAB

[
(1− yaj)3 + (1− yjb)2

yajyjb
+

1 + y3
aj

yjb(1− yaj)
(A.78)

−2µ2
a(1− yjb)
y2
aj

+ 2− yaj −
yjb
2

]

with the individual helicity contributions

āII,gl
q+g+ 7→q+g+g+

=
1

sAB

[
1

yajyjb
+

1

yjb(1− yaj)
− µ2

a

y2
aj

]
. (A.79)

āII,gl
q+g+ 7→q+g−g+

=
1

sAB

[
(1− yaj)y2

AB

yajyjb
− µ2

a(1− yjb)2

y2
aj

]
, (A.80)

āII,gl
q+g+ 7→q−g−g+

=
1

sAB

[
µ2
ay

2
jb

y2
aj

]
, (A.81)

āII,gl
q+g+ 7→q+g−g− =

1

sAB

y3
aj

yjb(1− yaj)
, (A.82)

āII,gl
q+g− 7→q+g+g− =

1

sAB

[
(1− yaj)3

yajyjb
− µ2

a

y2
aj

]
, (A.83)

āII,gl
q+g− 7→q+g−g− =

1

sAB

[
(1− yjb)2

yajyjb
+

1

yjb(1− yaj)
− µ2

a(1− yjb)2

y2
aj

]
. (A.84)

GGEmitII. The helicity-averaged antenna function for the process gAgB 7→ gagjgb is

āII,gl
g/gg(yaj , yjb) =

1

sAB

[
(1− yaj)3 + (1− yjb)3

yajyjb
+

1 + y3
aj

yjb(1− yaj)
(A.85)

+
1 + y3

jb

yaj(1− yjb)
+ 3− 3yaj

2
− 3yjb

2

]

with the individual helicity contributions

āII,gl
g+g+ 7→g+g+g+

=
1

sAB

[
1

yajyjb
+

1

yjb(1− yaj)
+

1

yaj(1− yjb)

]
, (A.86)

āII,gl
g+g+ 7→g+g−g+

=
1

sAB

y3
AB

yajyjb
, (A.87)
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āII,gl
g+g− 7→g+g+g− =

1

sAB

[
(1− yaj)3

yajyjb
+

1

yaj(1− yjb)

]
, (A.88)

āII,gl
g+g− 7→g+g−g− =

1

sAB

[
(1− yjb)3

yajyjb
+

1

yjb(1− yaj)

]
, (A.89)

āII,gl
g+g+ 7→g+g−g− =

1

sAB

y3
aj

yjb(1− yaj)
, (A.90)

āII,gl
g+g+ 7→g−g−g+

=
1

sAB

y3
jb

yaj(1− yjb)
. (A.91)

QXSplitII. The helicity-averaged antenna function for the process qAXB 7→ gaq̄jXb,

where X is an arbitrary coloured parton, is

āII,gl
q̄/qX(yaj , yjb) =

1

sAB

[
y2
AB + (1− yAB)2

yaj
+

2µ2
jyAB

y2
aj

]
(A.92)

with the individual helicity contributions

āII,gl
q+X 7→g+q̄−X =

1

sAB

[
y2
AB

yaj
−

µ2
jy

2
AB

y2
aj(1− yAB)

]
, (A.93)

āII,gl
q+X 7→g−q̄−X =

1

sAB

[
(1− yAB)2

yaj
−
µ2
j (1− yAB)

y2
aj

]
, (A.94)

āII,gl
q+X 7→g+q̄+X

=
1

sAB

µ2
j

y2
aj(1− yAB)

. (A.95)

GXConvII. The helicity-averaged antenna function for the process gAXB 7→ qaqjXb,

where X is an arbitrary coloured parton, is

āII,gl
q/gX(sAB, yaj , yjb) =

1

sAB

[
1 + (1− yAB)2

(yaj − 2µ2
j )yAB

−
2µ2

jyAB

(yaj − 2µ2
j )

2

]
. (A.96)

with the individual helicity contributions

āII,gl
g+X 7→q+q+X =

1

sAB

1

2

[
1

(yaj − 2µ2
j )yAB

−
µ2
j

(yaj − 2µ2
j )

2

yAB
1− yAB

]
, (A.97)

āII,gl
g+X 7→q−q−X =

1

sAB

[
(1− yAB)2

(yaj − 2µ2
j )yAB

−
µ2
jyAB(1− yAB)

(yaj − 2µ2
j )

2

]
, (A.98)

āII,gl
g+X 7→q+q−X =

1

sAB

µ2
j

(yaj − 2µ2
j )

2

y3
AB

1− yAB
. (A.99)

B Collinear limits of sector antennae

To ensure that the sector (as well as the global) antenna functions reproduce the cor-

rect collinear limits, they are numerically tested against DGLAP splitting kernels. For

two final-state partons (i.e. in final-final or initial-final antennae), we compare antenna
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functions against massive DGLAP kernels in the quasi-collinear limit, while for initial-

final and initial-initial configurations, we compare them to massless DGLAP kernels in the

collinear limit.

Below, we collect all helicity- and mass-dependent DGLAP kernels as implemented

in VINCIA [84], denoting them by PI± 7→i±j±(z), where z ≡ zi is the energy fraction taken

by parton i.

The helicity-averaged splitting kernel for gluon emissions g 7→ gg is given by

Pg 7→gg(z) = 2
(1− z(1− z))2

z(1− z)
(B.1)

and the individual helicity contributions are

Pg+ 7→g+g+(z) =
1

z(1− z)
, (B.2)

Pg+ 7→g−g+(z) =
(1− z)3

z
, (B.3)

Pg+ 7→g+g−(z) =
z3

1− z . (B.4)

For gluon emissions from a quark, q 7→ qg, the helicity-averaged splitting kernel is

Pq 7→qg(z) =
1 + z2

1− z − 2µ2
q (B.5)

and the individual helicity contributions are

Pq+ 7→q+g+(z) =
1

1− z − µ
2
q

1

z
, (B.6)

Pq+ 7→q−g+(z) = µ2
q

(1− z)2

z
, (B.7)

Pq+ 7→q+g−(z) =
z2

1− z − µ
2
qz. (B.8)

Lastly, for gluon splittings g 7→ qq̄, the helicity-averaged splitting kernel is

Pg 7→qq̄(z) = z2 + (1− z)2 + 2µ2
q (B.9)

and the individual helicity contributions are given by

Pg+ 7→q+q̄−(z) = z2 − µ2
q

z

1− z , (B.10)

Pg+ 7→q−q̄+(z) = (1− z)2 − µ2
q

1− z
z

, (B.11)

Pg+ 7→q+q̄+(z) = µ2
q

(
z

1− z +
1− z
z

+ 2

)
. (B.12)

C Explicit expressions for trial generators

Here, we collect all additional trial integrals, eq. (3.10), needed for the sector shower in

terms of the phase space variables x⊥ and ζ. We denote trial functions used only in the

sector shower by a superscript “sct” and express trial integrals in terms of eq. (3.20).
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C.1 Trial integrals

FF branchings. For final-final configurations, the trial integral we are inverting analyt-

ically is given by

A(xFF
⊥1, x

FF
⊥2) = fFF

Källén

C
4π

∫ xFF
⊥1

xFF
⊥2

αs(x
FF
⊥ )ātrial(x

FF
⊥ , ζFF)sIK |J(xFF

⊥ , ζFF)|dxFF
⊥ dζFF. (C.1)

To ensure that the trial function overestimates the sector antenna function, we multiply

the gluon splitting trial function,

āFF
trial-split =

1

sIK

1

2(yij + 2µ2
j )
, (C.2)

by two to take into account that the splitting gluon is part of two antennae and overestimate

the additional collinear parts of gluon-emission sector antenna functions in eq. (3.3) by

āFF,sct
trial-coll-I =

1

sIK

2

yij(1− yjk)
, (C.3)

āFF,sct
trial-coll-K =

1

sIK

2

yjk(1− yij)
. (C.4)

For these additional collinear trial functions, both in gluon emissions and gluon split-

tings, we choose the corresponding non-singular invariant,

ζFF =

{
ζFF
− = yjk + µ2

j I-collinear

ζFF
+ = yij + µ2

j K-collinear
, (C.5)

where µ2
j = 0 for gluon emissions. The Jacobian to transform from (yij , yjk) to (xFF

⊥ , ζFF)

is given by

|J | = |J±| =
1

ζFF
±

. (C.6)

In terms of eq. (3.20), the additional trial integrals are given by

Acoll

(
xFF
⊥1, x

FF
⊥2

)
= fFF

Källén

C
2π
A
(
xFF
⊥1, x

FF
⊥2,

1

1− ζFF
±

)
, (C.7)

Asplit

(
xFF
⊥1, x

FF
⊥2

)
= fFF

Källén

C
2π
A
(
xFF
⊥1, x

FF
⊥2,

1

2

)
, (C.8)

which are the same for the I-collinear and K-collinear regions, and the choice of ζFF
± as

the corresponding non-singular invariant is implicit.

RF branchings. For resonance-final configurations, the trial integral is given by:

A(xRF
⊥1 , x

RF
⊥2 ) = fRF

Källén

C
4π

∫ xRF
⊥1

xRF
⊥2

αs(x
RF
⊥ )ātrial(x

RF
⊥ , ζRF)

(sAK +m2
j +m2

k −m2
K)2

(1− yjk)3

×|J(xRF
⊥ , ζRF)|dxRF

⊥ dζRF. (C.9)
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The trial antenna for (K-) gluon splittings is given by

āRF,sct
trial-split-K =

[
1− yjk

sAK + 2m2
j

]
2 (1− yjk)2

(yjk + 2µ2
j )
. (C.10)

The first factor in square brackets simply results from the dimensionful normalisation of

the trial antenna.

The additional trial antenna for gluon emission collinear with parton K is given by:

āRF,sct
trial-coll-K =

[
1

sAK

]
2

yjk(1− yaj)
[2(1− yjk)]3 . (C.11)

The final term inside the brackets is simply yAK/yAKmin ≥ 1, and is included to cancel

the factor appearing in eq. (2.30). We also note that since A is a resonance, and therefore

cannot be a gluon, there is no additional A-collinear piece present in the antenna function

and hence there is no need for the corresponding overestimate.

We make the following choice for the complementary phase space variable13

ζRF = ζRF
+ = yaj , (C.12)

leading to the Jacobian

|J | = |J+| =
1

yaj − µ2
j

, (C.13)

where µ2
j = 0 for gluon emissions.

In terms of eq. (3.20), the sector trial integrals are given by

Acoll-K

(
xRF
⊥1 , x

RF
⊥2

)
= fRF

Källén

C
2π
A
(
xFF
⊥1, x

FF
⊥2,

8

1− ζRF
+

)
(C.14)

Asplit

(
xRF
⊥1 , x

RF
⊥2

)
= fRF

Källén

C
2π
A
(
xFF
⊥1, x

FF
⊥2, 1

)
. (C.15)

IF branchings. For initial-final configurations, the trial integral is

A(x⊥1, x⊥2) =
C
4π
R̃f

∫ x⊥1

x⊥2

αs(x
IF
⊥ )ātrial(x

IF
⊥ , ζ

IF)yγAK
sAK

1− yjk
|J(xIF

⊥ , ζ
IF)|dxIF

⊥ dζIF (C.16)

as xA/xa = yAK , cf. section 2.3.

Similarly to the case of final-final splittings, we overestimate gluon splittings in the

final state by

āIF,sct
trial-split-K = 2 · 1

sAK

1

2(yjk + 2µ2
j )

[
sAK +m2

j

sAK

]
, (C.17)

where the factor of 2 again takes into account that the gluon is part of two antennae and

the additional factor in the brackets, which is ≥ 1, cancels unwanted factors in the trial

integral. Gluon splittings and gluon conversions in the initial state are already sectorised

13We note that this choice is not completely identical to that made in [50] for gluon splittings; however,

this was a more natural choice for the normalisation chosen in eq. (2.8) and the only impact of this choice

is in the efficiency of the exploration of phase space, expected to be minimal.
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and do not need additional sector overestimates. In the sector shower, we complement this

by another overestimate of the K-collinear part which is added for sector antennae. Hence,

the only additional gluon-emission trial functions is

āIF,sct
trial-coll-K =

1

sAK

2

yjk(1− yaj)
. (C.18)

We emphasise that although the additional singularity yaj → 1 is kinematically allowed, it

is regularised by the parton shower cutoff Q2
cut, as it lies in the a-k (soft-)collinear sector.

Hence, the sector-shower phase space limit

ymax
aj =

saj

saj + smin
ak

=
1

1 + xA
Q2

cut
sAK

(C.19)

is imposed in the shower evolution.

We use the K-collinear phase space variable

ζIF = ζIF
+ = yaj − µ2

j , (C.20)

with the Jacobian for the transformation (yaj , yjk) 7→ (xIF
⊥ , ζ

IF)

|J | = |J+| =
1

ζIF
+

. (C.21)

For final-state gluon splittings, we therefore find the sector trial integral

Asplit-K(xIF
⊥1, x

IF
⊥2) =

C
2π
R̃fA

(
xIF
⊥1, x

IF
⊥2,

1

2

)
, (C.22)

while for gluon emissions, we have the sector trial integral

Acoll-K(xIF
⊥1, x

IF
⊥2) =

C
2π
R̃fA

(
xIF
⊥1, x

IF
⊥2,

1

1− ζIF
+

)
, (C.23)

again expressed in terms of eq. (3.20).

It should be pointed out that the additional sector integrals eqs. (C.22) and (C.23) are

given only for γ = 1. In practice, γ is chosen to be either 0 or 1 for the others.

II branchings. No additional trial generators are needed for the initial-initial case, be-

cause global antenna functions are sectorised in the first place, as there is no emission into

the initial state. The same trial integrals are used for the global and the sector shower.

There is, however, the possibility to express these trial integrals in terms of the dimen-

sionless phase space variables xII
⊥ and ζII. The trial integral is then given by

A(xII
⊥1, x

II
⊥2) =

C
4π
R̃f

∫ xII
⊥1

xII
⊥2

αs(x
II
⊥)ātrial(x

II
⊥, ζ

II)yγAB
sAB

1− yaj − yjb
|J(xII

⊥, ζ
II)|dxII

⊥dζII

(C.24)

as xAxB/xaxb = yAB, cf. section 2.3.
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C.2 Zeta integrals

Apart from the trivial integral

Ilin(ζ) =

∫
1dζ = ζ (C.25)

we make use of the integral

Ilog(ζ) =

∫
1

1− ζ dζ = − log(1− ζ) . (C.26)

Trial values for ζ are then found by inverting eq. (3.18) with the solution

ζ = I−1
ζ [Rζ (I(ζmax)− I(ζmin)) + I(ζmin)] , (C.27)

where I−1
ζ denotes the inverse of Iζ , given by

I−1
lin (r) = r , (C.28)

I−1
log (r) = 1− e−r . (C.29)
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D Comparisons to high-multiplicity matrix elements

Here, we present validations of the sector shower against high-multiplicity tree-level matrix

elements. For the sake of clarity, we do not include separate sector histograms, as too many

histories contribute to each final state, although for a given kinematic configuration only

a single one contributes at a time.
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Figure 15. Ratios Rsct
5 of the sector shower approximation to LO matrix elements for Z decays to

5- and 6- parton final states in a flat phase space scan.
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Figure 16. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for H → ng

with n = 4, 5 in a flat phase space scan.
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Figure 17. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for top-quark

decay processes t→W+b with additional gluons in a flat phase space scan.
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Figure 18. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for Drell-Yan

processes qq̄ → Z with additional gluons in a flat phase space scan.
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Figure 19. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for qq̄-

annihilation processes to 4 partons in a flat phase space scan.
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Figure 20. Ratios Rsct
n of the sector-shower approximation to LO matrix elements for gg-fusion

processes to 4 partons in a flat phase space scan.
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E Tune parameters

The full set of parameters changed relative to the PYTHIA 8.3 default tune are shown in

the following table.

Name Now Default

BeamRemnants:primordialKThard 0.4 1.8

BeamRemnants:primordialKTsoft 0.25 0.90

ColourReconnection:range 1.75 1.80

Diffraction:mMinPert 1000000.0 10.0

MultipartonInteractions:alphaSorder 2 1

MultipartonInteractions:alphaSvalue 0.119 0.130

MultipartonInteractions:ecmPow 0.210 0.215

MultipartonInteractions:expPow 1.75 1.85

MultipartonInteractions:pT0Ref 2.24 2.28

SigmaProcess:alphaSorder 2 1

SigmaProcess:alphaSvalue 0.119 0.130

StringFlav:etaPrimeSup 0.10 0.12

StringFlav:etaSup 0.5 0.6

StringFlav:mesonCvector 1.30 0.88

StringFlav:mesonSvector 0.53 0.55

StringFlav:mesonUDvector 0.42 0.50

StringFlav:popcornSmeson 0.75 0.50

StringFlav:popcornSpair 0.75 0.90

StringFlav:probQQ1toQQ0 0.025 0.0275

StringFlav:probQQtoQ 0.077 0.081

StringFlav:probSQtoQQ 1.000 0.915

StringFlav:probStoUD 0.205 0.217

StringPT:sigma 0.305 0.335

StringZ:aExtraDiquark 0.90 0.97

StringZ:aLund 0.55 0.68

StringZ:bLund 0.78 0.98

StringZ:rFactB 0.850 0.855

StringZ:rFactC 1.15 1.32

(E.1)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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5
Efficient Tree-Level Merging with
Sector Showers

Parton showers give an exclusive description of collider events normalised to the Born-level
LO or NLO (if the shower has been matched) cross section. The description of additional
radiation by the shower is, however, only accurate in the soft and collinear limits, where
the shower resums large logarithms, cf. section 3.2. Away from these, in regions where
hard, well-separated jets dominate, fixed-order calculations yield accurate predictions, cf.
section 3.1.

A well-established technique to correct parton showers to tree-level matrix element in
hard phase-space regions is given by the CKKW-L merging scheme [346–349], cf. sec-
tion 3.3.3. In the CKKW-L scheme, a (somewhat arbitrary) merging scale tMS is intro-
duced, which separates the parton-shower region (t ≤ tMS) from the matrix-element region
(t > tMS). Both calculations are then only allowed to populate their designated regions,
which is achieved via vetoing branchings in the former and vetoing configurations in the
latter. In addition, the Sudakov (resummation) suppression inherent to parton showers
has to be accounted for in the fixed-order matrix elements to render the initially inclusive
calculation exclusive. To this end, a parton shower history has to be constructed for each
matrix-element configuration, so that trial showers between the nodes can be used to
calculate the no-branching probabilities in exactly the same way as the shower at hand
would.

As alluded to in chapter 4, the number of shower histories grows factorially with
the number of particles. As a result, the CKKW-L scheme inherits a rather dramatic
scaling with the number of jets, which directly translates into the event-generation time
and the memory footprint of the method. The latter arises because all possible shower
histories have to be constructed before the most-likely (according to the shower branching
probabilities) can be picked, which implies that a large number of histories needs to be
stored. Excessive memory allocation is the most restricting bottleneck of merging at
high multiplicities. Despite these restrictions, merged predictions for Drell-Yan processes
with up to nine additional jets were obtained in [145]. However, for configurations with
more than six jets, the shower history was there only approximated via a deterministic
jet-clustering algorithm.

Sector showers offer a resort to these problems, as the shower evolution is constrained
by a deterministic shower-based jet-clustering algorithm, which renders sector showers
maximally bijective. This means, that states with maximally one quark-antiquark pair
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can be uniquely inverted, whereas states with nqq̄ quark pairs have a maximum of nqq̄!
competing histories. Consequently, merging with sector showers is exceptionally simple:
any given (shower-history-based) merging scheme can be used and amended by a dedicated
algorithm for the construction of the sector-shower history.

In the publication included in section 5.1, a dedicated merging scheme for sector
showers is discussed. The new technique combines the CKKW-L algorithm with the
maximally-bijective nature of sector showers, resulting in an efficient tree-level multi-
jet merging method which nevertheless exactly accounts for the shower no-branching
probabilities and the phase space it populates. The new algorithm is implemented for
VINCIA’s sector showers in PYTHIA 8.3, largely independent of PYTHIA’s default merging
implementation. Using the HDF5 event files of [423–425], it is demonstrated that the
complexity of constructing the shower history develops an effective linear scaling with
the number of additional jets and that both the event generation time and the memory
allocation remain approximately constant when including higher jet multiplicities.
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1. Introduction

While fixed-order calculations accurately describe observables 
in regions of phase space where hard, well-separated jets domi-
nate, they are insufficient in the resummation region, where ad-
ditional particles are emitted at low energies or angles. In these 
collinear- and soft-enhanced phase space regions, parton shower 
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Monte Carlo generators provide a reliable and versatile tool to 
resum the leading logarithms (LL) arising from QCD matrix ele-
ments to all orders in the perturbative expansion in the strong 
coupling. In order to achieve an accurate description over all of 
phase space, these two approaches need to be combined, by tech-
niques known as matching or merging. With experimental analyses 
becoming available for high jet multiplicities, cf. e.g. [1,2], and in 
the advent of the high-luminosity LHC, the demand for calcula-
tions with both an accurate description of many hard jets as well 
as QCD bremsstrahlung is ever increasing.

To date, a vast amount of matching and merging schemes 
has been developed, with matching to leading-order (LO) [3–6]
or next-to-leading-order (NLO) [7–9] matrix elements on the one 
hand and merging with LO [10–18] and NLO [19–26] calculations 
on the other. First steps towards the inclusion of NNLO calcula-
tions have also been taken [27–33]. Together with the automation 
of tree-level matrix-element generation [34–41] the path has been 
paved for tree-level matching and merging at high multiplicities. 
However, the computational overhead of such calculations grows 
at least factorially with the number of particles on both the fixed-
order and the resummation side, quickly rendering such computa-
tions intractable.

Although the most restrictive bottlenecks in merged calcula-
tions arise in the context of generating high-multiplicity matrix el-
ements [42], especially the phase-space integration, these parton-
level samples can be generated “once and for all”, meaning they 
can be re-utilised for many different particle-level analyses, given 
the generation is sufficiently factorised. A novel framework for 
factorised fixed-order and parton-shower calculations in the high-
multiplicity regime has been presented in [42]. The parton-level 
events of vector boson production with up to 9 additional jets gen-
erated there have been made publicly available [43–45].

Leaving the difficulties and pitfalls of high-multiplicity matrix-
element generation aside, the main bottleneck in merged calcula-
tions then arises from the fact that merging schemes usually rely 
on the construction of parton shower histories, i.e., the sequences 
of states the parton shower would have produced to arrive at a 
given configuration. The purpose of constructing parton shower 
histories is to obtain Sudakov factors to reweight inclusive event 
samples to make them exclusive, so that double-counting of emis-
sions is avoided. Hence, this procedure has to be undertaken for 
every parton-shower merged calculation and therefore particle-
level event generation run.

In conventional dipole- or DGLAP-based parton showers, the 
number of histories grows at least factorially with the number 
of final-state particles. Naturally, one can resort to a determinis-
tic (sometimes referred to as “winner-takes-all”) scheme, where 
a simple jet-clustering algorithm is employed to construct the 
shower history. Such a scheme can, however, in principle lead 
to under- or over-counted phase space regions and consequently 
may not correctly reflect the Sudakov factors generated by the 
shower. Constructing and weighting all possible histories therefore 
becomes highly time- and resource-intensive for large final-state 
multiplicities. Moreover, the memory required to store all possible 
histories until the most probable is picked may exceed the avail-
able memory, cf. [42]. In that study, the construction of all possible 
histories was therefore limited to up to 6 additional jets, after 
which a deterministic (“WTA”) scheme was employed. Although 
the effect was not found to be large, in a precision calculation it 
is desirable that the Sudakov factors exactly match the ones in the 
shower evolution.

We here present a new implementation to combine tree-level 
matrix elements with so-called sector showers [46,47], based 
on the CKKW-L merging prescription [12,13,48,16]. In the sector 
shower framework, only a single splitting kernel contributes at any 
point in phase space, making the shower operator effectively bijec-

tive, i.e., uniquely invertible, while retaining its leading-logarithmic 
accuracy. Hence, for any given multi-parton configuration, there 
exists only a single path to every previous shower state and the 
factorially growing history tree is replaced by a single, linear his-
tory branch. The method presented here, which, in analogy to 
the MEPS nomenclature, we dub MESS as a shorthand for matrix 
elements + sector shower, alleviates the scaling of the memory 
footprint as well as computation time on the parton shower side 
of multi-jet merging. The MESS presented here was made publicly 
available in the PYTHIA 8.304 release.

This paper is structured as follows. We review the CKKW-L 
merging scheme for the VINCIA sector shower with a particular 
focus on the construction of shower histories in Section 2 and val-
idate the new implementation in Section 3. Our central results – 
the run time scaling and memory footprint of our implementation 
– are presented in Section 4 before concluding in Section 5.

2. CKKW-L merging with sector showers

Generally, we shall be performing tree-level CKKW-L merging 
[13], following the prescription in [16] with slight modifications 
to adapt it to sector showers. Although this method is in princi-
ple more generally applicable, we will limit our discussion to the 
VINCIA antenna shower, for which the extension to sector showers 
was discussed in detail in [47]. We will briefly comment on the 
sectorisation of other shower approaches in Section 2.2. For a re-
view of the CKKW and the CKKW-L approach, we refer to [49,16]; 
here it shall suffice to present a brief review only.

2.1. CKKW-L merging in a nutshell

To safely combine multiple event samples, including the effect 
of shower simulations, without over-counting emissions, the ini-
tially inclusive events have to be made exclusive. In order to do so, 
first a “merging scale”, tMS, has to be defined. It is used to separate 
the fixed-order and resummation regions, so that each shower-
generated jet falls below the merging scale and each matrix-
element generated jet falls above it. Starting from a given Born+n-
jet event that passes this constraint, a typical merging algorithm 
can then be separated into three steps:

1. Construct the most likely “shower history” consisting of se-
quential clustering “nodes”

2. Reweight the event with Sudakov factors to account for unre-
solved radiation

3. Reweight the event with αs factors, evaluated at appropriate 
“node scales”

The idea of the CKKW-L merging prescription as presented in 
[13,16] is to generate the Sudakov factors in the second step dy-
namically and in the same way as the parton shower at hand 
would have done while reaching the given Born + n configuration, 
as described below.

For a configuration with n additional jets with respect to the 
Born configuration, which has been generated according to a tree-
level matrix element with a regularisation cutoff kcut, the most 
probable shower history is reconstructed in the first step. Denot-
ing the hard event by HBorn+n and shower states by SBorn+i , this 
generates a sequence of nodes

{SBorn,SBorn+1, . . . ,SBorn+n−1,HBorn+n} , (1)

with a corresponding sequence of node scales, {ρ0, ρ1, . . . , ρn−1,

ρn}, typically given by the shower evolution variable.
Subsequently, Sudakov form factors are generated by trial 

showers between history nodes, during which an event is ve-
toed if a branching between two nodes is produced. This generates 
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no-branching probabilities �SBorn+i (ρi, ρi+1) in the same way the 
shower had if it would have been started off the reconstructed 
nodes. As the no-branching probability �Si generated by the 
shower generally differs from Sudakov factors by PDF ratios, the 
events are additionally weighted by

wPDF
i = f i(xi,ρi)

f i(xi,ρi+1)
. (2)

To account for the running of the strong coupling and other 
higher-order corrections included in the shower evolution, events 
are weighted with ratios

wαs
i = αs,PS(ρi)

αs,ME
(3)

for each intermediate node, where αs,PS and αs,ME reflect the scale 
and scheme choice of the shower and fixed-order calculation, re-
spectively.

In the last trial shower step, the treatment differs between in-
termediate and highest-multiplicity nodes. The event is vetoed if 
the trial shower off the hard HBorn+n configuration generates an 
emission above the merging scale, tn(HBorn+n) > tMS and n is be-
low the maximal number of additional jets N . Hard emissions off 
configurations with the highest jet multiplicity n ≡ N are, how-
ever, retained. Here, the notation tn(S) denotes the evaluation of 
the state S with respect to the same metric as used for the merg-
ing scale tMS. This can be a simple jet-p⊥ cut, the shower evolution 
variable, or more complicated definitions including the use of jet 
clustering algorithms.

A hard Born + n parton configuration is therefore accepted if 
and only if the trial showers did not generate additional hard emis-
sions. Accepted events are thus weighted by

wCKKW-L = fn(xn,ρn)

fn(xn,μ2
F)

n−1∏
i=0

αs,PS(ρi+1)

αs,ME

f i(xi,ρi)

f i(xi,ρi+1)

× �SBorn+i (ρi,ρi+1) , (4)

where μ2
F denotes the factorisation scale of the hard process.

2.2. Sectorised shower evolution

The VINCIA antenna showers are evolved in a generalised 
ARIADNE p⊥ ,

p2⊥ = q̄2
i j q̄

2
jk

smax
,

q̄2
i j = ±[(pi ± p j)

2 − p2
I ]

=

⎧⎪⎨
⎪⎩

si j + m2
i + m2

j − m2
I i is final

si j − m2
i − m2

j + m2
I i is initial

, (5)

where capital indices denote pre-branching partons and si j = 2pi ·
p j with smax the maximal invariant of the current antenna,

smax =

⎧⎪⎨
⎪⎩

sI K final-final

si j + sik initial-final

sik initial-initial

. (6)

In the sector shower formalism, only a single antenna contributes 
at each point in phase space. In order to nevertheless capture the 
correct leading-logarithmic behaviour, a single antenna function 
incorporates both the full soft and the full collinear singularity. The 
exact form of sector antenna functions is, however, ambiguous and 

Fig. 1. Illustration of the sector-shower evolution off a colour-ordered Z → qgq̄
configuration. The emission in the i- j antenna is accepted if and only if its post-
branching p⊥ is the smallest in the tentative post-branching state.

only limited by the constraint that the correct single-unresolved 
limits are entirely contained within a single function. We refer 
to [47] for a full set of helicity- and mass-dependent sector an-
tenna functions, which, in its colour factor- and coupling-stripped 
variant, we denote by āsct here. The shower operator is made bi-
jective by rejecting any branching that does not correspond to the 
most singular configuration in the tentative post-branching state, 
cf. Fig. 1, defined in terms of the sector resolution variable

Q 2
res j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p2⊥ if j is a gluon

q̄2
i j

√
q̄2

jk

smax
if j is a(n) (anti)quark

. (7)

Here, the asymmetric choice for gluon splittings accounts for the 
fact that the gI XK �→ qiq̄ j Xk branching is not singular in the 
j-k collinear limit, cf. [46]. Thus, the sector shower produces no-
branching probabilities of the form

�n(p2⊥,n, p2⊥,n+1)

= exp

(
−4π

∑
j∈{n �→n+1}

p2⊥,n∫
p2⊥,n+1

f i(xi, p2⊥) fk(xk, p2⊥)

f I (xI , p2⊥) f K (xK , p2⊥)
αs(p2⊥)

× C j/I K ā j/I K (p2⊥, ζ )�sct
j (p2⊥, ζ )d�ant

j

)
, (8)

where the Heaviside function �sct enforces the constraint that only 
a single antenna radiates per phase-space point. In general, it de-
pends non-trivially on the post-branching kinematics.

Consequently, any given configuration produced by the sector 
shower can be uniquely inverted by iteratively minimising Eq. (7), 
effectively yielding a p2⊥-based jet-clustering algorithm, which, 
however, still exactly represents the (leading-colour) shower his-
tory.

Before moving on to the treatment of shower histories, it is 
worthwhile to discuss how other shower models may be extended 
to sector showers. Compared to conventional shower algorithms, 
sector showers differ mainly in the choice of branching kernels 
and their phase-space coverage. These are constructed based on 
the following two requirements [50,51]:

1. a single branching kernel contains all single-unresolved limits 
of the respective colour dipole

3
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Fig. 2. Illustration of colour chains used for history construction. For the colour-ordered configuration (left), two different permutations of the same three colour chains 
contribute (right). Both constitute one sector shower history.

2. the branching phase space is decomposed into non-overlapping 
sectors, where only a single branching kernel contributes per 
sector and the set of sectors provides a decomposition of unity

Other aspects, which would typically be left unchanged when sec-
torising a shower model, but which will of course affect the re-
summation of leading logarithms include a judicious choice of 
the ordering variable [52–56], correct assignment of colour fac-
tors [57–62], and the treatment of branching recoils [56,62]. The 
choices made in the VINCIA sector shower are discussed in detail in 
[47].

As a second specific example, consider a shower based on 
Catani-Seymour dipoles [63,64]. As opposed to (global) antenna 
showers, in which the gluon-gluon collinear limits are partitioned 
between two neighbouring antennae, in Catani-Seymour dipoles it 
is the soft limit which is partitioned between the two dipole legs. 
Sector splitting kernels can therefore be constructed by combining 
two Catani-Seymour dipoles, e.g. for gluon emission from a quark-
gluon dipole:

V sct
qi g j ,gk

(zi, zk, yij,k) = Vqi g j ,k(zi, yij,k)

si j
+ V gk g j ,i(zk, y jk,i)

s jk
, (9)

where V ij,k denotes the colour-stripped versions of the spin-
averaged splitting functions 〈V i j,k〉 in [63] and

zi = sik

sik + s jk
, yij,k = si j

si j + s jk + sik
. (10)

Splitting functions constructed this way fulfil the first requirement 
above, as they approach the soft eikonal and the correct DGLAP 
kernels in the respective soft and collinear limits. Supplemented 
with a sensible measure of singularity, for instance taken to be 
k2⊥ = zi(1 − zi)si j , they can be restricted to the appropriate phase 
space sectors in the same way as in Eq. (8),

1 =
∑

j

θ(k2
⊥,min − k2

⊥, j) , (11)

therefore fulfilling the second requirement above.

2.3. Shower histories

The advantage of sector showers is that, at least for gluon emis-
sions at leading colour, there is just a single history, because only 
one antenna is active at each point in phase space. Thus, the his-
tory for gluon emissions may be constructed deterministically by 
minimising the resolution criterion Eq. (7).

For quark pairs, however, the situation is less clear-cut. While 
for gluons, we can use their colour-connected neighbours to de-
termine their possible parents (and the sector criterion determines 

the order in which they were emitted), for quark-antiquark pairs, 
there is no colour information to determine which pairs should 
be clustered. Therefore, in principle we must consider all clus-
terings of opposite-sign same-flavour pairs.2 We can do this by 
taking all possible orderings of the colour-ordered chains of glu-
ons, each of which starts on a quark and ends on an antiquark, 
such that quarks which are juxtaposed are of the same flavour, 
and clustering all pairs of quark-antiquark pairs results in a viable 
Born-level topology, cf. Fig. 2. Nevertheless, this results in a signif-
icant gain in efficiency, since the number of orderings only grows 
as O

(∏
i(nqi !)

)
, where nqi is the number of pairs of quark flavour 

i, which is at worst n/2, but typically much smaller. We empha-
sise that once a colour ordering of the quark pairs is picked, the 
shower history is again deterministic.

As we are only trying to capture the leading singular behaviour 
of the matrix element, we calculate

|MBorn|2
n∏

i=1

āsct
i ({p}i) ∝ |MBorn+n|2 , (12)

for each viable colour ordering and then maximise over this quan-
tity. Therefore we only need to save maximally two histories con-
currently: the current one plus the “best-so-far”, i.e., that which 
maximises Eq. (12).

In summary, the sector shower history is constructed as fol-
lows:

1. Find all colour-connected chains of gluons.
2. Find all possible orderings of colour chains compatible with 

the Born-level process.
3. For each available permutation:

• Sequentially perform the clustering which corresponds to 
the minimal value of the resolution criterion Q 2

res, cf. Eq. (7). 
For each state Sn:
– For all gluons and internal quark pairs, calculate the sec-

tor resolution variable. Note that for quarks, there is an 
ambiguity in the recoiler, so there are two antennae per 
quark pair.

– Cluster the partons which correspond to the minimal 
value of the sector resolution variable Eq. (7).

– Reconstruct the (n − 1)-parton kinematics using the exact 
inverse kinematics map, cf. [47].

– Store mother/daughter information.
– Update the colour chain information.
– Calculate the evolution variable Eq. (5) for the branching 

(in general not the same as the sector resolution variable).

2 Assuming that there are no flavour-changing (i.e. electroweak) emissions from 
the shower.
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– Calculate the sector antenna function from the invariants 
of the pre-clustering partons.

• Retain the history for the current permutation only if it cor-
responds to the maximal value of Eq. (12) so far.

Below, we address some subtleties connected to the construction 
of sector shower histories.

Commensurate Resolution Scales
We construct the sector shower history by minimising the sec-

tor resolution variable Eq. (7). In principle, however, two (or more) 
different clusterings may have very similar sector resolutions and 
it may seem unreasonable to choose one over the other. In those 
cases, one could consider to pick one of the commensurate-
resolution clusterings randomly. However, given that this would 
destroy the merit of the sector shower being uniquely invertible, 
as the same would have to be done in the shower evolution, 
we refrain from this procedure and always pick the one with the 
(slightly) smaller scale. Given that this precisely mimicks the sec-
tor shower behaviour, this is a well-motivated choice. Nevertheless, 
the effect of randomising the choice of such clusterings is an inter-
esting subject for a later study and could be used for uncertainty 
estimates.

Unordered Histories
Although the history is constructed based on minimising the 

sector resolution, Eq. (7), there is no guarantee that this produces 
a clustering sequence ordered in either the resolution or the evo-
lution variable, Eq. (5). As the sector shower is based purely on 
2 �→ 3 branchings, it will never populate regions of phase space 
with branchings unordered in the evolution variable. Hence, no 
Sudakov factors must be included for unordered (sub-)sequences. 
This is similar to the treatment in [16]; we note also that an un-
ordered history is only selected if no ordered one exists.

Incomplete Histories
Occasionally it may occur that it is impossible to perform any 

(further) parton shower clusterings. Physically, these topologies 
correspond to states that cannot be reached by the parton shower 
from any lower multiplicity state. Therefore, there is no danger 
of double-counting with the lower-multiplicity states, and these 
states are treated as coming from separate Born configurations. In 
the event that there are multiple colour histories, we must cal-
culate a modification to Eq. (12) as our criterion to maximise, 
namely:

|MBorn+m|2
n∏

i=m

āsct
i ({p}i) ∝ |MBorn+n|2, (13)

where m is the number of additional emissions relative to the Born 
in the maximally clustered node of the incomplete history. This 
still allows to select the most singular path, since in effect this 
compares |MBorn+n|2 with |MBorn+m|2 ∏n

i=m āsct
i ({p}i); since the 

latter captures the singularity structure of the former, it is a fair 
comparison. We follow the procedure of [16] and accept an in-
complete history only if no colour permutation with a complete 
one exists.

Interleaved Multi-Parton Interactions
In the context of interleaved showers for hadronic initial states, 

it is possible that the trial shower may generate a multi-parton in-
teraction (MPI) “emission” from an intermediate clustered state in 
the history. Since such topologies are not reachable by the matrix-
element and it would not be physical to limit the scale of MPI to 

below the merging scale, such “new” topologies are taken to re-
place the original event, and showering continues from the scale 
at which the MPI was generated. This is precisely the same treat-
ment as [16].

Scale definitions
In the sector shower merging algorithm, up to four different 

scale definitions may be present:

1. the shower evolution variable p⊥
2. the sector resolution variable Q res
3. the merging scale tMS
4. the matrix element cutoff kcut

The sector resolution variable Q res is only used to construct the 
shower history and does not play a role in the merging algorithm 
beyond that. If the other three scales are not chosen to coincide, 
care has to be taken to neither over- nor undercount phase space 
regions.

To ensure a smooth transition between the shower evolution 
variable and the merging scale, we reject hard configurations if 
any of the intermediate states violates the merging scale cut, i.e. if 
ti(SBorn+i) < tMS. This is different to the implementation in PYTHIA, 
where intermediate nodes are not required to be above the merg-
ing scale, as multiple shower paths contribute to the same phase 
space point. We refrain from this treatment, as in our case, given 
the same hard configuration multiple times, the sector shower his-
tory will always be the same. This, however, is not sufficient to 
ensure that the hard phase space is saturated when the matrix el-
ement cutoff is chosen with respect to a different scale definition 
than the merging scale. This will only be the case when the avail-
able phase space with the merging scale cut is a subset of the 
phase space with the matrix element cut, �>tMS ⊂ �>kcut .

2.4. The full algorithm

For completeness, we here summarise the full CKKW-L merging 
algorithm for sector showers, closely following [16]:

(1) Pick a hard event HBorn+n containing n additional partons rel-
ative to the Born topology:
• If the hard configuration does not satisfy the merging scale 

cut, i.e., tn(HBorn+n) < tMS, veto the event and start from (1).
• For each viable colour-ordering, reconstruct the (determin-

istic) sequence of shower states SBorn+i ,

{SBorn,SBorn+1, . . . ,SBorn+n−1,HBorn+n} (14)

with a corresponding sequence of evolution variables{
p2⊥,0, p2⊥,1, . . . , p2⊥,n−1, p2⊥,n

}
. (15)

Here, p2
⊥,i denotes the sector shower evolution scale of the 

branching to produce each state and p2⊥,0 is the kinematic 
limit of the Born process, i.e., p2⊥,1 is the scale to produce 
the first branching, p2⊥,2 is the scale to produce the second 
branching and so on.

• If any state does not satisfy the merging scale cut, i.e., if 
ti(SBorn+i) < tMS for any 0 ≤ i < n, veto the event and start 
from (1).

(2) For each pair of scales (p2
⊥,i, p

2
⊥,i+1), where m ≤ i < n (m = 0

for complete histories):
• If the pair is unordered, p2

⊥,i+1 > p2
⊥,i , move to the next 

pair.
• Else, perform trial shower between the two scales:
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Fig. 3. Contributions of the individual hard-event samples in Durham 3-jet (left) and 4-jet (right) resolution scales in e+e− → jets at √s = 500 GeV. (For interpretation of the 
colours, the reader is referred to the online version of this article.)

– If the generated state SBorn+ j has a MPI, accept event and 
move to step (3).

– Else, if SBorn+ j has p2
⊥, j > p2

⊥,i+1, veto the event and start 
from (1).

– Else, calculate the weights

wαs
i = αs,PS(p2

⊥,i+1)

αs,ME
,

wPDF
i = f A

i (xA
i , p2

⊥,i)

f A
i (xA

i , p2
⊥,i+1)

f B
i (xB

i , p2
⊥,i)

f B
i (xB

i , p2
⊥,i+1)

(16)

(3) If the event was not vetoed:
• Multiply the event weight by

wCKKW-L = f A
n (xA

n , p2⊥,n)

f A
n (xA

n ,μ2
F)

f B
n (xB

n , p2⊥,n)

f B
n (xB

n ,μ2
F)

n−1∏
i=0

wαs
i wPDF

i . (17)

This is a probabilistic way to generate the factor

n−1∏
i=0

wαs
i 	(p2

⊥,i, p2
⊥,i+1).

• Start the regular parton shower from the state HBorn+n at 
scale p2⊥,n . If n + 1 ≤ N veto the event and start from (1) if 
tn+1(S(Born+n)+1) > tMS.

(4) Start over from (1).

The algorithm outlined above has been implemented for the VINCIA

parton shower within the PYTHIA 8.3 event generator. Notwith-
standing the use of some existing data structures in PYTHIA, our 
implementation is largely independent from that of the original 
CKKW-L merging algorithm.

3. Validation

We validate our implementation in electron-positron annihila-
tion processes and vector boson production in proton-proton colli-
sions. Event samples are generated with the MADGRAPH5_aMC@NLO

event generator [41] using the NNPDF23_lo_as_0130_qed PDF set 
with fixed renormalisation and factorisation scale corresponding to 
the mass of the Z , μR = μF = M Z . Jets are defined using the k⊥
jet clustering algorithm with a radius parameter of D = 0.4 and 
matrix elements are regularised by a k⊥ cut. To not obscure the 

effect of the merging, we consider parton-level results only and do 
not include MPIs. The merging scale is defined by the matrix ele-
ment k⊥ cut in all cases and we use the default VINCIA tune of the 
perturbative parameters with αMS

s (M Z ) = 0.118, summarised in 
Appendix A. For electron-positron annihilation we choose a default 
merging scale of tMS = 20 GeV, while for vector boson production, 
we choose a lower default merging scale of tMS = 10 GeV, as the 
sector shower is currently not corrected to matrix elements. Anal-
yses are performed using RIVET [65,66].

Fig. 3 shows the contribution of hard 3-jet and 4-jet events in 
Durham jet resolution scales in e+e− → jets at a centre-of-mass 
energy of 

√
s = 500 GeV. The effect of varying the merging scale by 

a factor of two is shown in Fig. 4 for the Durham 3-jet resolution 
and the C parameter (for a definition see e.g. [67]).

In Fig. 5, the influence of merging the sector-shower predictions 
with up to two hard matrix elements on k⊥ 1- and 2-jet resolution 
scales in Drell-Yan processes in the electron channel, pp → Z + jets
at 

√
s = 14 TeV is studied. The effect of varying the merging scale 

by a factor of two is presented in Fig. 6.
The individual contributions of the Born, 1-, and 2-jet event 

samples to k⊥ 1- and 2-jet resolution scales in W boson pro-
duction in proton-proton collisions at 

√
s = 14 TeV are shown 

in Figs. 7 and 9. Figs. 8 and 10 shows the influence of differ-
ent merging scale choices on the merged predictions of the k⊥
1-jet splitting scale and the W boson transverse momentum spec-
trum.

The jet-resolution scale distributions clearly show the expected 
behaviour that showers off Born configurations dominate the low-
energy region on the left-hand side, while showers off higher-
multiplicity states dominate in the hard region towards the right-
hand side of the plots. The transition region smoothly interpolates 
between these two phase-space regions. A variation of the merging 
scale by factors of two has negligible effects on the distributions in 
e+e− annihilation. For vector boson production in proton-proton 
collisions, the effect of choosing a higher merging scale results in 
a more pronounced effect on the distributions. Given that the un-
derlying sector shower starts at the factorisation scale and is not 
corrected to matrix elements in a process that is subject to size-
able corrections from 1- and 2-jet matrix elements, we deem this 
a reasonable effect. This argument is supported by the fact that 
choosing a smaller merging scale has a far less-pronounced ef-
fect.

We have verified that the above statements remain true for a 
significantly larger set of observables than presented here.
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Fig. 4. Influence of the merging scale choice on sector shower plus one-jet merged predictions of the Durham 3-jet (left) and the C parameter (right) distribution in 
e+e− → jets at √s = 500 GeV.

Fig. 5. Contributions of the individual hard-event samples in k⊥ 1-jet (left) and 2-jet (right) resolution scales in the electron channel of Z production pp → Z + jets at √
s = 14 TeV.

Fig. 6. Influence of the merging scale choice on sector shower plus one-jet merged predictions of the k⊥ 1-jet (left) and the Z boson transverse momentum (right) distribution 
in pp → Z + jets at √s = 14 TeV.
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Fig. 7. Contributions of the individual hard-event samples in k⊥ 1-jet (left) and 2-jet (right) resolution scales in the electron channel of W − production pp → W − + jets at √
s = 14 TeV.

Fig. 8. Influence of the merging scale choice on sector shower plus one-jet merged predictions of the kT 1-jet (left) and the W boson transverse momentum (right) distribution 
in pp → W − + jets at √s = 14 TeV.

Fig. 9. Contributions of the individual hard-event samples in k⊥ 1-jet (left) and 2-jet (right) resolution scales in the electron channel of W + production pp → W + + jets at √
s = 14 TeV.
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Fig. 10. Influence of the merging scale choice on sector shower plus one-jet merged predictions of the kT 1-jet (left) and the W boson transverse momentum (right) 
distribution in pp → W + + jets at √s = 14 TeV.

Fig. 11. VINCIA merged parton-level predictions for the k⊥ 1-jet (left) and 9-jet (right) resolution scales in Drell-Yan processes in pp collisions at 14 TeV.

4. Results

To study the scaling behaviour of our implementation in the 
high-multiplicity regime, we use the parton-level event files [43–
45] for vector boson production with up to 9 jets used in [42]. 
The merging scale is chosen to coincide with the k⊥ cut of 20 GeV
used in the event samples.

As a proof of concept, we show merged parton-level predictions 
for k⊥ 1- and 9-jet resolution scales in pp → Z and pp → W −
with up to 9 hard jets in Figs. 11 and 12. These results are ob-
tained with the preliminary default VINCIA tune with two-loop 
running αs in the CMW scheme and αMS

s (M Z ) = 0.118 as sum-
marised in Appendix A. Despite obtaining the accuracy of the ad-
ditional tree-level matrix elements, the merged predictions retain 
the LL+LO precision of the shower, including unitarity violations 
due to the CKKW-L method. As events are weighted by αs ratios, 
the non-unitarity of the method becomes manifest with increas-
ing jet multiplicity, leading to larger scale dependencies at higher 
orders. To gain a first estimate of this effect, we vary VINCIA’s renor-
malisation scale factors kR used to evaluate the strong coupling 
(cf. Appendix A) by a factor of 2 with respect to the default values, 
cf. Fig. 13, where we also compare merged parton-level predictions 
for k⊥ resolution scales in pp → W − from VINCIA’s and PYTHIA’s 

CKKW-L implementation. For PYTHIA, we use the default tune of 
the strong coupling, i.e., a one-loop running coupling in the MS
scheme with a numerical value of αMS

s (M Z ) = 0.1365.
Except for the region near the hadronisation cutoff, the two 

implementations agree well for the 1-jet resolution scale, cf. the 
left-hand pane in Fig. 13, while there is a larger discrepancy in the 
distributions of the 9-jet resolution scale. As expected, the scale 
variations only have a small effect on the former, while for the 9-
jet clustering scale, these are far more significant. There remains, 
however, a shape difference between VINCIA and PYTHIA for the 9-
jet scale, which may at least partly be traced back to the rather 
high merging scale for the uncorrected sector shower, cf. Section 3. 
Given that neither of the showers are tuned for merging at these 
high multiplicities, the observed difference provides an interesting 
subject for further studies.

As the central objective of our improved merging scheme, we 
study the run time and memory usage of our implementation and 
compare it to the CKKW-L implementation in PYTHIA.

4.1. Run time

As a first gauge of the scaling behaviour of the default PYTHIA

and our VINCIA sector shower CKKW-L implementations, we mea-

9
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Fig. 12. VINCIA merged parton-level predictions for the k⊥ 1-jet (left) and 9-jet (right) resolution scales in W − production in pp collisions at 14 TeV.

Fig. 13. Comparison of VINCIA and PYTHIA merged predictions for k⊥ 1-jet (left) and 9-jet (right) resolution scales in pp → W − + jets at
√

s = 14 TeV.

sure the CPU time to find the (most probable) shower history in 
both. We consider the processes pp → Z and pp → W − with up 
to 9 additional hard jets and run each multiplicity individually on 
a single core of a 2.3 GHz Intel Core i5 processor and only count 
complete histories, i.e., ones for which at least one reconstructed 
shower sequence to the Born exists.

In the left-hand panes of Figs. 14 and 15, we show the scaling 
of the CPU time for shower history construction in pp → Z + jets
and pp → W − + jets, respectively. We find that the recursive strat-
egy of the default PYTHIA history construction is faster for low 
multiplicities, but develops a steep exponential scaling for higher 
multiplicities. The iterated VINCIA sector shower history construc-
tion, on the other hand, scales linearly with the number of jets. 
Starting from the four-jet sample, it becomes notably faster than 
the PYTHIA history construction. At the extreme of 9 jets, PYTHIA

spends about half a second per event to construct all shower his-
tories, while VINCIA does not even need a millisecond per history.

As being of practical importance, we study the overall CPU time 
per generated event in the right-hand panes of Figs. 14 and 15. 
We consider the time for PYTHIA to generate a new parton-level 
event, either using the default merging and shower implementa-
tion or the VINCIA one. Again, the default implementation is notably 
faster for low multiplicities but develops a steep exponential scal-

ing. By comparing with the time needed for history construction, 
it can be seen that, starting from the four-jet sample, the default 
PYTHIA implementation spends most of the event generation time 
on constructing the history of the input event. Because of the more 
complex shower algorithm, the picture is completely different for 
the VINCIA MESS implementation, where most of the time is spent 
on the showering of an accepted hard event. As the number of ac-
cepted events decreases with the multiplicity, and therefore less 
often a full sector shower has to be performed, the overall event 
generation time stays approximately constant when adding more 
jets, with a slight decrease towards high multiplicities. The in-
crease for the 9-jet sample is explained by the inclusive treatment 
of the last node in CKKW-L merging, due to which a full sector 
shower is performed for more events. When adding further exclu-
sive multiplicities beyond 8 jets, the total event generation time 
of the VINCIA MESS implementation will approach the pure history 
construction time.

It should be noted that the baseline sector shower used in 
this study does not utilise optimised sampling strategies to deal 
with competing sectors, cf. e.g. [68–70], which can improve the 
performance relative to the results shown here. Such optimisation 
studies are currently ongoing.
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Fig. 14. PYTHIA and VINCIA CPU time scaling in history construction (left) and parton-level event generation (right) for pp → W − + jets merging at
√

s = 14 TeV.

Fig. 15. PYTHIA and VINCIA CPU time scaling in history construction (left) and parton-level event generation (right) for pp → Z + jets merging at
√

s = 14 TeV.

4.2. Memory usage

As the even more prohibiting bottleneck of conventional CKKW-
L merging schemes at high multiplicities, we study the memory 
usage. We use Valgrind’s Massif tool to monitor the heap us-
age of the default PYTHIA CKKW-L merging and our VINCIA sector 
shower merging implementations. In particular, this means that 
neither the stack nor the memory at the page level is recorded. For 
comparability and reproducibility, we use the --time-unit=B
option in Valgrind to measure the runtime of the program in 
terms of the number of allocated and deallocated bytes. We use 
the same main program and event samples for both runs and 
consider a fictitious Z + 10 jet merging run, so that every event 
multiplicity, including the 9-jet sample, is processed as an inter-
mediate node. We run each multiplicity independently with the 
maximal possible number of snapshots available, which may be at 
most (but is not necessarily identical to) 1000. To gain the most 
detailed possible picture of the memory allocations, we choose a 
relatively small number of 1000 events per run. For higher statis-
tical significance, we perform up to ten independent runs for each 
multiplicity. On the technical level, the 7-, 8-, and 9-jet event sam-
ples in [45,44,43] are separated into multiple files, corresponding 
to irreducible groups of processes with similar diagrammatic struc-
ture, cf. [42]. For these multiplicities, at least one run is performed 
per group.

In Fig. 16, the individual heap profiles of all event samples 
from the pp → Z to the pp → Z + 9 jets sample are shown. For 
samples with more than six jets, we only show a representative 
memory profile of one group. Additional profiles are collected in 
Appendix B. The peak on the left-hand side of the plots corre-

sponds to the read-in of the HDF5 event sample, which (for high-
multiplicity runs) is not recorded by Valgrind for the default 
CKKW-L implementation in PYTHIA anymore, in favour of higher 
allocation peaks later in the run. For merging with less than 4 ad-
ditional jets, the heap profiles of PYTHIA and VINCIA are very similar: 
after the high peak when reading the event file, only a num-
ber of very small peaks are recorded. For these runs, the PYTHIA

merging implementation has a shorter “runtime” in terms of total 
allocated/deallocated memory, which, however, continuously in-
creases with the number of additional jets. That VINCIA allocates 
more memory than PYTHIA during these runs can be traced back to 
the differences in the shower implementations, which, as alluded 
to above, is more complicated for the sector shower. For every trial, 
a tentative post-branching state has to be constructed to evaluate 
the sector veto on. Although this does not amount to large peaks in 
memory allocation, it adds to the total allocated memory, i.e., the 
“run time”. Beginning with the Z + 5 jets sample, sizeable effects 
become visible in the PYTHIA memory profiles. The peak heights 
continuously grow for PYTHIA and eventually outgrow the first file-
reading peak. The VINCIA memory profile remains mostly constant 
and becomes negligible in comparison to PYTHIA’s profile for the 8-
and 9-jet samples. PYTHIA’s history-construction technique directly 
translates to the memory profiles; after a history has been cho-
sen, the memory allocation returns to the baseline value at which 
VINCIA remains throughout.

As a gauge of the scaling behaviour of the memory usage in 
both merging implementations, we plot the total allocated/deallo-
cated memory per 1k events in Fig. 17. For each multiplicity, we 
average over statistically independent runs and from 7 jets on, we 
also average over the different groupings. While PYTHIA shows a 
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Fig. 16. PYTHIA and VINCIA memory usage profiles in pp → Z + jets merging at
√

s = 14 TeV.
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Fig. 17. PYTHIA and VINCIA memory usage scaling in pp → Z + jets merging at √s =
14 TeV.

rather dramatic scaling, with allocating and deallocating a total of 
1 TiB of data for Z + 9 jets, the VINCIA curve remains almost flat, 
with only a small peak around 3 additional jets. The latter can 
be understood by considering that the sector shower has a com-
parable memory footprint as the merging and that in the latter 
maximally two histories are stored concurrently, cf. Section 2.3. At 
high multiplicities, most of the events get vetoed during the trial 
showers and the sector shower is never started off these events. 
For samples with 1 – 3 additional jets, on the other hand, a fair 
number of events are accepted and further processed by the sector 
shower, explaining the small increase in memory usage there.

5. Conclusions

We here presented the first-ever implementation of the CKKW-
L merging approach with sector showers, which alleviates the bot-
tlenecks of conventional implementations while accurately calcu-
lating the Sudakov factors as generated by the shower. The merg-
ing scheme was implemented for the VINCIA antenna shower in the 
PYTHIA 8.3 event generator; this implementation is mostly indepen-
dent from the default CKKW-L one, and has been made public in 
the PYTHIA 8.304 release.

We have validated the implementation for processes of imme-
diate phenomenological interest and studied the scaling behaviour 
of the method in multi-jet merging in vector boson production at 
high multiplicities. While the time to construct sector shower his-
tories scales approximately linearly with the number of hard jets, 
the overall event generation time as well as the memory usage 
stays approximately constant. Both provides a significant improve-
ment over the exponential scaling of the default merging imple-
mentation in PYTHIA. As a consequence, including merging hard 
jets with the sector shower in fact becomes easier with increas-
ing multiplicity. We gained a first estimate of renormalisation scale 
uncertainties arising at high merged multiplicities and compared 
preliminary results to PYTHIA’s CKKW-L implementation.

While we have here focused on the computational improve-
ments, a dedicated physics study with the MESS framework is 
yet to follow. In such a study, the default VINCIA tune should be 
reviewed to achieve an accurate description on the hadron level 
when including higher-order matrix elements. Moreover, immedi-
ate future work can be done on improving sampling methods for 
sector antennae in their respective sectors, which is currently only 
inefficiently achieved by means of multiple global antennae over 
their full phase spaces and rejecting branchings outside of appro-
priate sectors. This results in the overall slower shower algorithm, 
as seen above.

As the sector merging approach developed here is an adap-
tion of the CKKW-L technique, existing refinements and extensions 
of it can readily be applied. As such, it can be extended to re-
tain unitarity by the methods presented in [16,26] or to include 
NLO corrections by the methods of [19,17,18,22,23] in the future. 
Even extensions towards NNLO are feasible along the lines of the 
method presented in [29–31]. For these, only the construction of 
the shower histories needs to be adapted to the sector case. To 
this end, the NL3 [19] and UNLOPS [17] schemes are particularly 
well suited for the generalisation to NLO merging, as their adap-
tion to sector showers would follow the exact same steps as in the 
CKKW-L case outlined in Section 2. This means that only the prob-
abilistic construction of shower histories would be replaced by the 
sectorised history construction, while all other steps in NL3 and 
UNLOPS stay the same.

In a less straightforward way, it might also be possible to ex-
tend the LO merging technique presented here to higher orders via 
other schemes, such as the MINLO [24] and MINNLOPS [33] or FxFx 
[25] techniques. These extensions do, however, differ in the way 
histories are constructed and scales are associated to intermediate 
states. In addition to an adaptation of the history construction to 
sector showers, an implementation of these schemes would, for 
instance, also require the implementation of analytical Sudakov 
factors.

In the light of the observed scale uncertainties at high multi-
plicities, both unitarity-improved schemes and extensions to the 
NLO (or even higher orders) provide interesting and sensible av-
enues for future work. It is worth pointing out that in both cases, 
event files are usually processed twice to generate counter terms. 
As the algorithm presented here will always yield a unique his-
tory for an input configuration, it bears the potential to make both 
unitary and NLO merging even more efficient, as event files might 
only have to be processed once. On the one hand, this reduces 
the overall run time and on the other hand, this might alleviate 
problems regarding negative-weight events. As the implementation 
in the VINCIA shower furthermore implies a dedicated interleaved 
resonance shower framework [71,70,72], it may be worthwhile to 
explore merging in coloured as well as electroweak resonance sys-
tems in the future.

Although the discussion here was tailored to the implementa-
tion in VINCIA, it demonstrates the efficiency gains that can be ob-
tained through a relatively straightforward adaption of the shower 
model. We have sketched how our method could be adopted in 
other shower models and exemplified it for the case of Catani-
Seymour dipole showers in Section 2.2.

We close by noting that with the merging scheme presented 
here, shower-plus-matrix-element calculations with more than 9 
hard jets are readily possible on the shower side. The main bot-
tlenecks of merged calculations remain entirely on the fixed-order 
side and generating large numbers of high-multiplicity configura-
tions still remains a time- and resource-consuming endeavour.
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Fig. B.18. PYTHIA and VINCIA memory usage profiles for different process groupings in pp → Z + 7 jets samples at
√

s = 14 TeV.

Fig. B.19. PYTHIA and VINCIA memory usage profiles for different process groupings in pp → Z + 8 jets samples at
√

s = 14 TeV.
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Appendix A. Perturbative tune parameters

We use the preliminary default VINCIA tune of the perturba-
tive parameters, cf. [47]. We include two-loop running-coupling 
effects with an effective value of αs chosen according to the CMW 
scheme [73],

αCMW
s = αMS

s

(
1 + αMS

s

2π

[
C A

(
67

18
− π2

6

)
− 5n f

9

])
,

αMS
s (M Z ) = 0.118 , (A.1)
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Fig. B.20. PYTHIA and VINCIA memory usage profiles for different process groupings in pp → Z + 9 jets samples at
√

s = 14 TeV.

supplemented by renormalisation-scale prefactors kR , which mod-
ify the evolution scale, p⊥ , in the argument of the running cou-
pling,

αVincia
s (p2⊥) = αCMW

s (kR p2⊥) . (A.2)

The default values for these additional scale prefactors are chosen 
based on preliminary studies of LEP event shapes and Drell-Yan 
p⊥-spectra as

kF
R,Emit = 0.66 , kF

R,Split = 0.8 , (A.3)

kI
R,Emit = 0.66 , kI

R,Split = 0.5 , kI
R,Conv = 0.5 . (A.4)

Appendix B. Memory profiles

We here collect additional memory profiles for event samples 
with more than 6 jets, for which the event files are grouped ac-
cording to similar process structures, cf. Figs. B.18, B.19, and B.20.

References

[1] G. Aad, et al., Eur. Phys. J. C 75 (2) (2015) 82, https://doi .org /10 .1140 /epjc /
s10052 -015 -3262 -7, arXiv:1409 .8639.

[2] M. Aaboud, et al., Eur. Phys. J. C 77 (6) (2017) 361, https://doi .org /10 .1140 /epjc /
s10052 -017 -4900 -z, arXiv:1702 .05725.

[3] M. Bengtsson, T. Sjöstrand, Phys. Lett. B 185 (1987) 435, https://doi .org /10 .
1016 /0370 -2693(87 )91031 -8.

15



H. Brooks and C.T. Preuss Computer Physics Communications 264 (2021) 107985

[4] W.T. Giele, D.A. Kosower, P.Z. Skands, Phys. Rev. D 78 (2008) 014026, https://
doi .org /10 .1103 /PhysRevD .78 .014026, arXiv:0707.3652.

[5] W.T. Giele, D.A. Kosower, P.Z. Skands, Phys. Rev. D 84 (2011) 054003, https://
doi .org /10 .1103 /PhysRevD .84 .054003, arXiv:1102 .2126.

[6] N. Fischer, S. Prestel, Eur. Phys. J. C 77 (9) (2017) 601, https://doi .org /10 .1140 /
epjc /s10052 -017 -5160 -7, arXiv:1706 .06218.

[7] S. Frixione, B.R. Webber, J. High Energy Phys. 06 (2002) 029, https://doi .org /10 .
1088 /1126 -6708 /2002 /06 /029, arXiv:hep -ph /0204244.

[8] P. Nason, J. High Energy Phys. 11 (2004) 040, https://doi .org /10 .1088 /1126 -
6708 /2004 /11 /040, arXiv:hep -ph /0409146.

[9] S. Frixione, P. Nason, C. Oleari, J. High Energy Phys. 11 (2007) 070, https://
doi .org /10 .1088 /1126 -6708 /2007 /11 /070, arXiv:0709 .2092.

[10] M.L. Mangano, M. Moretti, R. Pittau, Nucl. Phys. B 632 (2002) 343–362, https://
doi .org /10 .1016 /S0550 -3213(02 )00249 -3, arXiv:hep -ph /0108069.

[11] M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, J. High Energy Phys. 
01 (2007) 013, https://doi .org /10 .1088 /1126 -6708 /2007 /01 /013, arXiv:hep -ph /
0611129.

[12] S. Catani, F. Krauss, R. Kuhn, B.R. Webber, J. High Energy Phys. 11 (2001) 063, 
https://doi .org /10 .1088 /1126 -6708 /2001 /11 /063, arXiv:hep -ph /0109231.

[13] L. Lönnblad, J. High Energy Phys. 05 (2002) 046, https://doi .org /10 .1088 /1126 -
6708 /2002 /05 /046, arXiv:hep -ph /0112284.

[14] S. Hoeche, F. Krauss, S. Schumann, F. Siegert, J. High Energy Phys. 05 (2009) 
053, https://doi .org /10 .1088 /1126 -6708 /2009 /05 /053, arXiv:0903 .1219.

[15] K. Hamilton, P. Richardson, J. Tully, J. High Energy Phys. 11 (2009) 038, https://
doi .org /10 .1088 /1126 -6708 /2009 /11 /038, arXiv:0905 .3072.

[16] L. Lönnblad, S. Prestel, J. High Energy Phys. 03 (2012) 019, https://doi .org /10 .
1007 /JHEP03(2012 )019, arXiv:1109 .4829.

[17] L. Lönnblad, S. Prestel, J. High Energy Phys. 02 (2013) 094, https://doi .org /10 .
1007 /JHEP02(2013 )094, arXiv:1211.4827.

[18] S. Plätzer, J. High Energy Phys. 08 (2013) 114, https://doi .org /10 .1007 /
JHEP08(2013 )114, arXiv:1211.5467.

[19] N. Lavesson, L. Lönnblad, J. High Energy Phys. 12 (2008) 070, https://doi .org /
10 .1088 /1126 -6708 /2008 /12 /070, arXiv:0811.2912.

[20] S. Höche, F. Krauss, M. Schönherr, F. Siegert, J. High Energy Phys. 08 (2011) 123, 
https://doi .org /10 .1007 /JHEP08(2011 )123, arXiv:1009 .1127.

[21] L. Lönnblad, S. Prestel, J. High Energy Phys. 03 (2013) 166, https://doi .org /10 .
1007 /JHEP03(2013 )166, arXiv:1211.7278.

[22] T. Gehrmann, S. Höche, F. Krauss, M. Schönherr, F. Siegert, J. High Energy Phys. 
01 (2013) 144, https://doi .org /10 .1007 /JHEP01(2013 )144, arXiv:1207.5031.

[23] S. Hoeche, F. Krauss, M. Schönherr, F. Siegert, J. High Energy Phys. 04 (2013) 
027, https://doi .org /10 .1007 /JHEP04(2013 )027, arXiv:1207.5030.

[24] K. Hamilton, P. Nason, G. Zanderighi, J. High Energy Phys. 10 (2012) 155, 
https://doi .org /10 .1007 /JHEP10(2012 )155, arXiv:1206 .3572.

[25] R. Frederix, S. Frixione, J. High Energy Phys. 12 (2012) 061, https://doi .org /10 .
1007 /JHEP12(2012 )061, arXiv:1209 .6215.

[26] J. Bellm, S. Gieseke, S. Plätzer, Eur. Phys. J. C 78 (3) (2018) 244, https://doi .org /
10 .1140 /epjc /s10052 -018 -5723 -2, arXiv:1705 .06700.

[27] K. Hamilton, P. Nason, C. Oleari, G. Zanderighi, J. High Energy Phys. 05 (2013) 
082, https://doi .org /10 .1007 /JHEP05(2013 )082, arXiv:1212 .4504.

[28] S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh, Phys. Rev. D 92 (9) 
(2015) 094020, https://doi .org /10 .1103 /PhysRevD .92 .094020, arXiv:1508 .01475.

[29] S. Höche, Y. Li, S. Prestel, Phys. Rev. D 91 (7) (2015) 074015, https://doi .org /10 .
1103 /PhysRevD .91.074015, arXiv:1405 .3607.

[30] S. Höche, Y. Li, S. Prestel, Phys. Rev. D 90 (5) (2014) 054011, https://doi .org /10 .
1103 /PhysRevD .90 .054011, arXiv:1407.3773.

[31] S. Höche, S. Kuttimalai, Y. Li, Phys. Rev. D 98 (11) (2018) 114013, https://doi .
org /10 .1103 /PhysRevD .98 .114013, arXiv:1809 .04192.

[32] S. Alioli, A. Broggio, S. Kallweit, M.A. Lim, L. Rottoli, Phys. Rev. D 100 (9) (2019) 
096016, https://doi .org /10 .1103 /PhysRevD .100 .096016, arXiv:1909 .02026.

[33] P.F. Monni, P. Nason, E. Re, M. Wiesemann, G. Zanderighi, J. High Energy Phys. 
05 (2020) 143, https://doi .org /10 .1007 /JHEP05(2020 )143, arXiv:1908 .06987.

[34] C.G. Papadopoulos, Comput. Phys. Commun. 137 (2001) 247–254, https://doi .
org /10 .1016 /S0010 -4655(01 )00163 -1, arXiv:hep -ph /0007335.

[35] A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306–315, 
https://doi .org /10 .1016 /S0010 -4655(00 )00151 -X, arXiv:hep -ph /0002082.

[36] F. Krauss, R. Kuhn, G. Soff, J. High Energy Phys. 02 (2002) 044, https://doi .org /
10 .1088 /1126 -6708 /2002 /02 /044, arXiv:hep -ph /0109036.

[37] M. Moretti, T. Ohl, J. Reuter, in: T. Behnke, S. Bertolucci, R.D. Heuer, D. 
Miller, F. Richard, R. Settles, V. Telnov, P. Zerwas (Eds.), Proceedings, Physics 
and Experimentation at a Linear Electron-Positron Collider,2nd ECFA/DESY 
Study, 1998–2001, vols. 1–3, Lund, Sweden, June 28–30, 1998–2001, 2001, 
pp. 1981–2009, arXiv:hep -ph /0102195.

[38] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, J. High Energy 
Phys. 07 (2003) 001, https://doi .org /10 .1088 /1126 -6708 /2003 /07 /001, arXiv:
hep -ph /0206293.

[39] W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71 (2011) 1742, https://doi .org /10 .
1140 /epjc /s10052 -011 -1742 -y, arXiv:0708 .4233.

[40] T. Gleisberg, S. Hoeche, J. High Energy Phys. 12 (2008) 039, https://doi .org /10 .
1088 /1126 -6708 /2008 /12 /039, arXiv:0808 .3674.

[41] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, 
T. Stelzer, P. Torrielli, M. Zaro, J. High Energy Phys. 07 (2014) 079, https://doi .
org /10 .1007 /JHEP07(2014 )079, arXiv:1405 .0301.

[42] S. Höche, S. Prestel, H. Schulz, Phys. Rev. D 100 (1) (2019) 014024, https://
doi .org /10 .1103 /PhysRevD .100 .014024, arXiv:1905 .05120.

[43] H. Schulz, S. Höche, S. Prestel, Z + up to 9 jets parton level events at 14 TeV in 
HDF5, https://doi .org /10 .5281 /zenodo .2678039, May 2019.

[44] H. Schulz, S. Höche, S. Prestel, Wminus + up to 9 jets parton level events at 14 
TeV in HDF5, https://doi .org /10 .5281 /zenodo .2678091, May 2019.

[45] H. Schulz, S. Höche, S. Prestel, Wplus + up to 9 jets parton level events at 14 
TeV in HDF5, https://doi .org /10 .5281 /zenodo .2678055, May 2019.

[46] J.J. Lopez-Villarejo, P.Z. Skands, J. High Energy Phys. 11 (2011) 150, https://doi .
org /10 .1007 /JHEP11(2011 )150, arXiv:1109 .3608.

[47] H. Brooks, C.T. Preuss, P. Skands, J. High Energy Phys. 07 (2020) 32, https://
doi .org /10 .1007 /JHEP07(2020 )032, arXiv:2003 .00702.

[48] F. Krauss, J. High Energy Phys. 08 (2002) 015, https://doi .org /10 .1088 /1126 -
6708 /2002 /08 /015, arXiv:hep -ph /0205283.

[49] N. Lavesson, L. Lönnblad, J. High Energy Phys. 04 (2008) 085, https://doi .org /
10 .1088 /1126 -6708 /2008 /04 /085, arXiv:0712 .2966.

[50] D.A. Kosower, Phys. Rev. D 57 (1998) 5410–5416, https://doi .org /10 .1103 /
PhysRevD .57.5410, arXiv:hep -ph /9710213.

[51] D.A. Kosower, Phys. Rev. D 71 (2005) 045016, https://doi .org /10 .1103 /PhysRevD .
71.045016, arXiv:hep -ph /0311272.

[52] Y.L. Dokshitzer, G. Marchesini, J. High Energy Phys. 03 (2009) 117, https://doi .
org /10 .1088 /1126 -6708 /2009 /03 /117, arXiv:0809 .1749.

[53] Z. Nagy, D.E. Soper, J. High Energy Phys. 05 (2009) 088, https://doi .org /10 .1088 /
1126 -6708 /2009 /05 /088, arXiv:0901.3587.

[54] P.Z. Skands, S. Weinzierl, Phys. Rev. D 79 (2009) 074021, https://doi .org /10 .
1103 /PhysRevD .79 .074021, arXiv:0903 .2150.

[55] G. Bewick, S. Ferrario Ravasio, P. Richardson, M.H. Seymour, J. High Energy Phys. 
04 (2020) 019, https://doi .org /10 .1007 /JHEP04(2020 )019, arXiv:1904 .11866.

[56] M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam, G. Soyez, 
Phys. Rev. Lett. 125 (5) (2020) 052002, https://doi .org /10 .1103 /PhysRevLett .125 .
052002, arXiv:2002 .11114.

[57] C. Friberg, G. Gustafson, J. Hakkinen, Nucl. Phys. B 490 (1997) 289–305, https://
doi .org /10 .1016 /S0550 -3213(97 )00064 -3, arXiv:hep -ph /9604347.

[58] G. Gustafson, Nucl. Phys. B 392 (1993) 251–280, https://doi .org /10 .1016 /0550 -
3213(93 )90203 -2.

[59] M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam, J. High En-
ergy Phys. 09 (2018) 033, https://doi .org /10 .1007 /JHEP09(2018 )033, arXiv:
1805 .09327.

[60] K. Hamilton, R. Medves, G.P. Salam, L. Scyboz, G. Soyez, Colour and logarithmic 
accuracy in final-state parton showers (11 2020), arXiv:2011.10054.

[61] J. Holguin, J.R. Forshaw, S. Plätzer, Improvements on dipole shower colour (11 
2020), arXiv:2011.15087.

[62] J.R. Forshaw, J. Holguin, S. Plätzer, J. High Energy Phys. 09 (2020) 014, https://
doi .org /10 .1007 /JHEP09(2020 )014, arXiv:2003 .06400.

[63] S. Catani, M. Seymour, Nucl. Phys. B 485 (1997) 291–419, https://doi .org /10 .
1016 /S0550 -3213(96 )00589 -5, arXiv:hep -ph /9605323, Erratum: Nucl. Phys. B 
510 (1998) 503–504.

[64] S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, Nucl. Phys. B 627 
(2002) 189–265, https://doi .org /10 .1016 /S0550 -3213(02 )00098 -6, arXiv:hep -
ph /0201036.

[65] A. Buckley, J. Butterworth, L. Lönnblad, D. Grellscheid, H. Hoeth, J. Monk, H. 
Schulz, F. Siegert, Comput. Phys. Commun. 184 (2013) 2803–2819, https://doi .
org /10 .1016 /j .cpc .2013 .05 .021, arXiv:1003 .0694.

[66] C. Bierlich, et al., SciPost Phys. 8 (2020) 026, https://doi .org /10 .21468 /
SciPostPhys .8 .2 .026, arXiv:1912 .05451.

[67] G. Parisi, Phys. Lett. B 74 (1978) 65–67, https://doi .org /10 .1016 /0370 -2693(78 )
90061 -8.

[68] R. Kleiss, R. Verheyen, Eur. Phys. J. C 76 (7) (2016) 359, https://doi .org /10 .1140 /
epjc /s10052 -016 -4231 -5, arXiv:1605 .09246.

[69] R. Kleiss, R. Verheyen, J. High Energy Phys. 11 (2017) 182, https://doi .org /10 .
1007 /JHEP11(2017 )182, arXiv:1709 .04485.

[70] P. Skands, R. Verheyen, Phys. Lett. B 811 (2020) 135878, https://doi .org /10 .
1016 /j .physletb .2020 .135878, arXiv:2002 .04939.

[71] H. Brooks, P. Skands, Phys. Rev. D 100 (7) (2019) 076006, https://doi .org /10 .
1103 /PhysRevD .100 .076006, arXiv:1907.08980.

[72] R. Kleiss, R. Verheyen, Eur. Phys. J. C 80 (10) (2020) 980, https://doi .org /10 .
1140 /epjc /s10052 -020 -08510 -w, arXiv:2002 .09248.

[73] S. Catani, B.R. Webber, G. Marchesini, Nucl. Phys. B 349 (1991) 635–654, 
https://doi .org /10 .1016 /0550 -3213(91 )90390 -J.

16



6
Accelerating One-Loop Calculations

Fully-differential NLO calculations define the state-of-the-art for virtually all standard-
model and many beyond-the-standard-model processes, not only as stand-alone calcula-
tions, but more importantly in the context of NLO matching [338–341] and NLO merg-
ing [354–362, 365] schemes, cf. sections 3.3.2 and 3.3.3 respectively. Apart from the
tree-level matrix elements for the Born and real correction (Born+1-jet), an NLO calcu-
lation requires the input of the Born-level one-loop matrix element. These are typically
provided by automated tools [131, 133, 205, 206] interfaced to multi-purpose event gener-
ators via the Binoth Les Houches accord [214, 215]. With the advent of fully-differential
NNLO calculations for many important standard-model processes, one-loop amplitudes
are also needed for the real-virtual, i.e., Born+1-jet one-loop, correction. In this context,
the fast and numerically stable evaluation in configurations close to singular limits is of
utmost importance to deliver reliable results at high statistical significance.

Despite their flexibility, automated one-loop providers employ rather computationally
expensive algorithms. While automated approaches are often the only option for calcula-
tions in high-multiplicity processes, it is computationally advantageous to exploit analytic
results whenever these are available. However, despite analytic results being in principle
known for a wide range of processes, it often lacks publicly available code implementations
in formats amenable to common event-generation frameworks. Although some analytic
one-loop libraries exist, cf. e.g. [426, 427], these are either limited to a certain class of
processes or not public. A notable exception is the well-established and publicly avail-
able MCFM parton-level event generator, which uses analytic matrix elements for all its
NLO and NNLO calculations. MCFM offers a large spectrum of processes, but its Fortran
matrix-element routines have so-far not generally been made available for external use,
especially as most modern tools are written in C++.

Section 6.1 presents an interface to MCFM, giving access to its extensive library of
analytic one-loop matrix elements. The interface is written in C++ in a generic fashion
so that it is simple to adopt it in most Monte Carlo event generators available today. As
a proof of generality, it has been interfaced to the SHERPA and PYTHIA event-generation
frameworks. The computational gains to be had with analytic one-loop matrix elements
are highlighted in comparisons to three widely-used automated tools both in a stand-
alone setup and a typical NLO multi-jet merging setup with SHERPA. The use of analytic
one-loop matrix elements provides a so-far little explored but straight-forward avenue to
increase the efficiency in Monte Carlo event generation.
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Accelerating LHC phenomenology with analytic one-loop amplitudes:
A C++ interface to MCFM
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The evaluation of one-loop matrix elements is one of the main bottlenecks in precision calculations
for the high-luminosity phase of the Large Hadron Collider. To alleviate this problem, a new C++
interface to the MCFM parton-level Monte Carlo is introduced, giving access to an extensive library
of analytic results for one-loop amplitudes. Timing comparisons are presented for a large set of
Standard Model processes. These are relevant for high-statistics event simulation in the context of
experimental analyses and precision fixed-order computations.

I. INTRODUCTION

Many measurements at particle colliders can only be
made with the help of precise Standard Model predic-
tions, which are typically derived using fixed-order per-
turbation theory at the next-to-leading order (NLO)
or next-to-next-to-leading order (NNLO) in the strong
and/or electroweak coupling. Unitarity-based techniques
and improvements in tensor reduction during the past
two decades have enabled the computation of many new
one-loop matrix elements, often using fully numeric tech-
niques [1–19]. The algorithmic appeal and comparable
simplicity of the novel approaches has also led to the par-
tial automation of the computation of one-loop matrix
elements in arbitrary theories, including effective field
theories that encapsulate the phenomenology of a broad
range of additions to the Standard Model [20, 21]. With
this “NLO revolution” precision phenomenology has en-
tered a new era.

It has become clear, however, that the fully numeric
computation of one-loop matrix elements is not with-
out its drawbacks, the most relevant being a relatively
large computational complexity. While the best meth-
ods exhibit good scaling with the number of final-state
particles and are the only means to perform very high
multiplicity calculations, it is prudent to resort to known
analytic results whenever they are available and compu-
tational resources are scarce. The problem has become
pressing due to the fact that the computing power on the
Worldwide LHC Computing Grid (WLCG) is projected
to fall short of the demand by at least a factor two in
the high-luminosity phase of the Large Hadron Collider
(LHC) [22–25]. Moreover, most techniques for fully dif-
ferential NNLO calculations rely on the fast and numer-
ically stable evaluation of one-loop results in infrared-
singular regions of phase space, further increasing the
demand for efficient one-loop computations [26, 27].

In this letter, we report on an extension of the
well-known NLO parton-level program MCFM [27–30],
which allows the one-loop matrix elements in MCFM

to be accessed using the Binoth Les Houches Accord

(BLHA) [31, 32] via a direct C++ interface1. This is in
the same spirit as the BLHA interface to the BLACKHAT

library [1], which gives access to analytic matrix elements
for V+jet(s), γγ(+jet) and di-(tri-)jet production. We
have constructed the new interface for the most relevant
Standard-Model processes available in MCFM, represent-
ing a selection of 2→ n processes with n ≤ 4. As a proof
of generality, we have implemented it in the SHERPA [33]
and PYTHIA [34] event generation frameworks2. We test
the newly developed methods in both a stand-alone setup
and a typical setup of the SHERPA event generator, and
summarize the speed gains in comparison to automated
one-loop programs.

II. AVAILABLE PROCESSES

The Standard Model processes currently available
through the MCFM one-loop interface are listed in Tab. I,
with additional processes available in the Higgs effective
theory shown in Tab. II. All processes are implemented
in a crossing-invariant fashion. As well as processes avail-
able in the most recent version of the MCFM code (v10.0),
the interface also allows access to previously unreleased
matrix elements for pp→ γjj [38] and di-jet production.
Further processes listed in the MCFM manual [39] may
be included upon request.

In assembling the interface we have modified the origi-
nal MCFM routines such that, as far as possible, overhead
associated with the calculation of all partonic channels –
as required for the normal operation of the MCFM code –
is avoided, and only the specific channel that is requested
is computed. Additionally, all matrix elements are cal-
culated using the complex-mass scheme [40, 41] and a
non-diagonal form of the CKM matrix may be specified
in the interface. In general, effects due to loops con-
taining a massive top quark are fully taken into account,

1 The source code is available at gitlab.com/mcfm-team/releases.
2 The PYTHIA version has been tested in the context of NLO

matrix-element corrections (cf. [35, 36]) in the VINCIA shower
[37]. The implementation of NLO MECs in VINCIA and the
MCFM interface are planned to be made public in a future
PYTHIA 8.3 release.
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TABLE I. Processes available in the Standard Model.

Process Order EW Order QCD Reference

pp→ `+`− 2 1 –
pp→ `+`−j 2 2 [42, 43]
pp→ `+`−jj 2 3 [42, 43]

pp→ `±ν` 2 1 –
pp→ `±ν`j 2 2 [42, 43]
pp→ `±ν`jj 2 3 [42, 43]

pp→ h0 1 2 –
pp→ h0j 1 3 [44]
pp→ h0jj 1 4 [45, 46]

pp→ h0h0 2 2 [47]

pp→ `+`−h0 3 1 –
pp→ `+`−h0j 3 2 [48]

pp→ `±ν`h0 3 1 –
pp→ `±ν`h0j 3 2 [48]

pp→ γj 1 2 [49, 50]
pp→ γjj 1 3 [38]

pp→ γγ 2 1 –
gg → γγ 2 2 [51]
pp→ γγj 2 2 [52]

pp→ γγγ 3 1 [52]

pp→ γγγγ 4 1 [53]

pp→ `+`−γ 3 1 [28, 54]
pp→ `±ν`γ 3 1 [28, 54]
pp→ ν`ν̄`γ 3 1 [28, 54]

pp→ `+`′−ν`ν̄`′ 4 1 [28, 54]
pp→ `+`−ν`′ ν̄`′ 4 1 [28, 54]
pp→ `+`−`′+`′ − 4 1 [28, 54]
pp→ `+`+`−`− 4 1 [28, 54]

pp→ `+`−`′±ν`′ 4 1 [28, 54]
pp→ `±ν`ν`′ ν̄`′ 4 1 [28, 54]

pp→ tt̄ 0 3 [55]

pp→ jj 0 3 [56]

TABLE II. Processes available in the Higgs EFT.

Process Order EW Order QCD Reference

pp→ h0 1 2 –
pp→ h0j 1 3 [57]
pp→ h0jj 1 4 [58–65]

with the additional requirement that the width of the
top quark is set to zero.3 The intent is that the interface
can therefore be used as a direct replacement for a nu-
merical one-loop provider (OLP). We have checked, on a

3 An approximate form for top-quark loops is used for the processes
qq′ → γqq′, qg → γqg, qq̄ → e−e+hg and gg → gg, so that strict
agreement with other OLPs for these processes requires setting
the top mass very large, e.g. to 100 TeV.

point-by-point basis, that the one-loop matrix elements
returned by the interface agree perfectly with those pro-
vided by OPENLOOPS2, RECOLA2 and MADLOOP5. A
brief overview of the structure of the interface is given in
Appendix B.

III. TIMING BENCHMARKS

To gauge the efficiency gains compared to automated
one-loop providers, we compare the evaluation time in
MCFM against OPENLOOPS2, RECOLA2, and MADLOOP5.
The tests are conducted in three stages. First, we test the
CPU time needed for the evaluation of loop matrix ele-
ments at single phase space points; in a second stage, we
test the speedup in the calculation of Born-plus-virtual
contributions of NLO calculations using realistic setups;
lastly, we compare the CPU time of the different OLPs
in a realistic multi-jet merged calculation. In all cases,
we estimate the dependence on the computing hardware
by running all tests on a total of four different CPUs,
namely

• Intel® Xeon® E5-2650 v2 (2.60GHz, 20MB)

• Intel® Xeon® Gold 6150 (2.70GHz, 24.75MB)

• Intel® Xeon® Platinum 8260 (2.40GHz, 35.75MB)

• Intel® Xeon Phi™ 7210 (1.30GHz, 32MB)

For the timing tests at matrix-element level, we use
stand-alone interfaces to the respective tools and sam-
ple phase space points flatly using the RAMBO algorithm
[66]. We do not include the time needed for phase-space
point generation in our results, and we evaluate a fac-
tor 10 more phase-space points in MCFM in order to ob-
tain more accurate timing measurements at low final-
state multiplicity. The main programs and scripts we
used for this set of tests are publicly available1. The re-
sults are collected in Fig. 1, where we show all distinct
partonic configurations that contribute to the processes
listed in Tabs. I and II. We use the average across the
different CPUs as the central value, while the error bars
range from the minimal to the maximal value. The inter-
face to MCFM typically evaluates matrix elements a factor
10–100 faster than the numerical one-loop providers, al-
though for a handful of (low multiplicity) cases this factor
can be in the 1,000–10,000 range.

We perform a second set of tests, using the SHERPA

event generator [33, 67], its existing OLP interfaces to
OPENLOOPS2 and RECOLA2 4 5 [68], and a dedicated in-
terface to MADLOOP5 6. With these interfaces we test

4 At the time of this study, SHERPA provided an interface to
RECOLA’s Standard Model implementation only.

5 For V +2j processes, we use RECOLA1 due to compatibility issues
with RECOLA2.

6 We thank Valentin Hirschi for his help in constructing a ded-
icated MADLOOP5 interface to SHERPA. This interface will be
described in detail elsewhere.
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FIG. 1. CPU time ratio of OPENLOOPS, RECOLA, and
MADLOOP5 to MCFM at the level of loop matrix elements.

the speedup in the calculation of the Born-like contri-
butions to a typical NLO computation for the LHC at√
s = 14 TeV, involving the loop matrix elements in

Tabs. I and II. The scale choices and phase-space cuts
used in these calculations are listed in App. A. Figure 2
shows the respective timing ratios. It is apparent that
the large gains observed in Fig. 1 persist in this setup,
because the Born-like contributions to the NLO cross sec-
tion consist of the Born, integrated subtraction terms,
collinear mass factorization counterterms and virtual cor-
rections (BVI), and the timing is dominated by the loop
matrix elements if at least one parton is present in the fi-
nal state at Born level. The usage of MCFM speeds up the
calculation by a large factor compared to the automated
OLPs, with the exception of very simple processes, such
as pp → `¯̀, pp → h, etc., where the overhead from pro-
cess management and integration in Sherpa dominates.
To assess this overhead we also compute the timing ratios
after subtracting the time that the Sherpa computation

100 101 102 103 104

Ratio
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e+e− jj

e−ν̄e

e−ν̄e j

e−ν̄e jj

e+e−h
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γγ2
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γγγ

γγγγ
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e+e−e+e−

e+e−µ−ν̄µ

tt̄

jj

h

hj

hjj

h (HEFT)

hj (HEFT)

hjj (HEFT)

Speedup (BVI) SHERPA 2.3

OpenLoops2/MCFM
Recola2/MCFM
MadLoop/MCFM

FIG. 2. CPU time ratio of OPENLOOPS2, RECOLA2 5, and
MADLOOP5 to MCFM at the level of Born-like contributions
to the NLO cross section (BVI).

would take without a loop matrix element. The corre-
sponding results are shown in a lighter shade and confirm
that the Sherpa overhead is significant at low multiplicity
and becomes irrelevant at higher multiplicity.

In the final set of tests we investigate a typical use
case in the context of parton-level event generation for
LHC experiments. We use the SHERPA event genera-
tor in a multi-jet merging setup for pp → W+jets and
pp → Z+jets [69] at

√
s = 8 TeV, with a jet separa-

tion cut of Qcut = 20 GeV, and a maximum number of
five final state jets at the matrix-element level. Up to
two-jet final states are computed at NLO accuracy. In
this use case, the gains observed in Figs. 1 and 2 will be
greatly diminished, because the timing is dominated by
the event generation efficiency for the highest multiplicity
tree-level matrix elements [70] and influenced by particle-
level event generation as well as the clustering algorithm
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TABLE III. CPU time ratios in an NLO multi-jet merged
setup using SHERPA.

Merged Process SHERPA + SHERPA +
n ≤ 2 @ NLO

OPENLOOPS2/MCFM MADLOOP5/MCFM
n ≤ 5 @ LO

pp→ Z + nj 1.83+0.20
−0.12 3.01+0.26

−0.18

pp→W+ + nj 1.34+0.06
−0.07 1.36+0.03

−0.03

pp→W− + nj 1.38+0.06
−0.04 1.38+0.07

−0.11

needed for multi-jet merging7. We make use of the effi-
ciency improvements described in Ref. [73], in particular
neglecting color and spin correlations in the S-MC@NLO
matching procedure [74]. We do not include underly-
ing event simulation or hadronization. The results in
Tab. III still show a fairly substantial speedup when us-
ing MCFM. We point out that a higher gain could be
achieved by also making use of MCFM’s implementation
of analytic matrix elements for real-emission corrections
and Catani-Seymour dipole terms.

We close this section with a direct comparison of the
CPU time needed for the calculation of Drell-Yan pro-
cesses with one and two jets using SHERPA and MCFM,
up to a target precision on the integration of 0.1% (one
jet) or 0.3% (two jets). The center-of-mass energy is√
s = 14 TeV, and the scale choices and cuts are listed in

App. A. The results are shown in Tab. IV. As might be
expected when comparing a dedicated parton-level code
with a general-purpose particle-level generator, MCFM is
substantially faster than SHERPA for the evaluation of all
contributions to the NLO calculation. These results in-
dicate a few avenues for further improvements of general-
purpose event generators. With the efficient evaluation of
virtual contributions in hand, attention should now turn
to the calculation of real-radiation configurations – that
represent the bottleneck for both SHERPA and MCFM.
In the simplest cases with up to 5 partons, the real ra-
diation and dipole counterterms could be evaluated us-
ing analytic rather than numerical matrix elements, by
a suitable extension of the interface we have presented
here. In addition, the form of the phase-space generation
may be improved for Born-like phase-space integrals. Ta-
ble IV lists the number of phase-space points before cuts
that are required to achieve the target accuracy. We find
that MCFM uses fewer than half of the points needed
by SHERPA in the Born-like phase-space integrals, while
SHERPA uses fewer points than MCFM in the real-emission
type integrals but at a much higher computational cost.
This confirms that SHERPA’s event generation is indeed

7 In this study we do not address the question of additional timing
overhead due to NLO electroweak corrections or PDF reweight-
ing [71], which could both be relevant in practice. It has recently
been shown that in good implementations of the reweighting and
EW correction algorithm, the additional overhead will not be siz-
able [72].

TABLE IV. Comparison of integration times using SHERPA

and MCFM.

Process SHERPA MCFM

MC accuracy time / #pts time / #pts

pp→ Zj Born-like 76.8 m / 11.3M 13.6 m /4.5M
0.1% real-like 38 h / 33.1M 51.5 m / 22.5M

pp→ Zjj Born-like 96.0 h / 22.4M 19.6 h / 4.5M
0.3% real-like 830.4 h / 58.7M 62.9 h / 83.8M

pp→W+j Born-like 40.5 m / 12.8M 7.37 m / 4.5M
0.1% real-like 16.9 h / 38.3M 59.4 m / 36.0M

pp→W+jj Born-like 14.1 h / 20.3M 9.32 h / 7.2M
0.3% real-like 222.1 h / 38.9M 54.4 h / 119.8M

pp→W−j Born-like 34.1 m / 11.0M 7.46 m / 4.5M
0.1% real-like 15.9 h / 40.5M 47.2 m / 28.1M

pp→W−jj Born-like 12.8 h / 20.0M 7.34 h / 5.6M
0.3% real-like 281.1 h / 52.0M 38.8 h / 83.8M

impaired by the slow evaluation of real-emission type ma-
trix elements, and by the factorial scaling of the diagram-
based phase-space integration technique [75, 76] used in
its calculations8.

IV. CONCLUSIONS

We have presented a novel C++ interface to the well-
known MCFM parton-level Monte Carlo generator, giving
access to its extensive library of analytical one-loop am-
plitudes. The interface is generic and not tied to any
specific Monte Carlo event generation tool. As a proof of
its generality, we have implemented the interface in both,
the SHERPA and PYTHIA event generators. The SHERPA

interface will become public with version 3.0.0, and the
PYTHIA interface is foreseen to become public in a future
release of the 8.3 series2. It should be straightforward to
adapt our code to the needs of other event generators.

We expect the interface to be valuable in two re-
spects. First, for many of the processes considered here
the speedup over other OLPs is substantial; accessing
these matrix elements via this interface rather than an
automated tool will therefore provide an immediate ac-
celeration of event generation for many processes of high
phenomenological interest. Second, the speed compar-
isons presented here highlight processes that are particu-
larly computationally intensive for automated tools. Fur-
ther improvements to the efficiency of these codes may
be possible, with potential gains across a wider range of
processes.

8 We do not make use of SHERPA’s recursive phase-space genera-
tor [77], because it is available for color-sampled matrix element
evaluation only. Color sampling would further reduce the effi-
ciency of the integration, because the processes at hand involve
a relatively small number of QCD partons.
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The structure of the interface allows for simple exten-
sions. Further one-loop matrix elements in MCFM, imple-
mented either currently or in the future, may become ac-
cessible in a straightforward manner. In the same spirit,
the interface could also be extended to provide tree-level
or two-loop matrix elements included in MCFM as the
need arises. Further extensions to the interface, for in-
stance to provide finer control over the one-loop matrix
elements via the selection of helicities or color configura-
tions, would also be possible.

Given that we have interfaced three popular automated
OLPs within the generator-agnostic structure of the new
MCFM interface, it is natural to envision the future devel-
opment of a hybrid program that makes use of the fastest
matrix element library for each process. Thinking further
ahead, it may be worthwhile to reconsider a streamlined
event generation framework, combining different (ded-
icated) parton-level and particle-level tools. This idea
has been pursued with ThePEG [78], but so far rarely
deployed. Apart from obvious efficiency improvements
through the use of dedicated tools for different applica-
tions, such a framework enables previously unavailable
methods for systematics studies. In view of both the
faster integration in MCFM over SHERPA and the magni-
tude of uncertainties pertaining to theoretical modeling
of collider observables, this is becoming an increasingly
important avenue for future work.

We want to close by highlighting that only a relatively
small number of analytical amplitudes has to be known
in order to cover a wide range of physical processes.
When judiciously assembled, many parts of the calcula-
tions can be recycled in a process-independent way, with
only charge and coupling factors being process-specific.
Compared to other efforts to increase the efficiency of
event generators, swapping automated for analytical ma-
trix elements is straightforward and simple. Analytical
matrix element libraries provide a so-far little explored
path towards higher-efficiency event generation for the
(high-luminosity) LHC and future colliders.
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Appendix A: Parameters and cuts for timing
comparisons

In order to perform the timing comparisons shown in
Fig. 2 and Table IV. we employ the following scale choices
and phase-space cuts:

• ∆R`,γ > 0.4

• ∆Rγ,γ > 0.4

• pT,γ > 30 GeV

• pT,j > 30 GeV

• 66 GeV < m`¯̀< 116 GeV

We reconstruct jets using the anti-kT algorithm [79]
in the implementation of FastJet [80] with an R pa-
rameter of 0.4. For the di-jet process we require
pT,j >80 GeV. Photons are isolated from QCD activity
based on Ref. [81] with δ0=0.4, n=2 and εγ=2.5%

Appendix B: Structure of the interface

The MCFM C++ interface is constructed as a C++ class

CXX_Interface mcfm;

included in the header:

#include "MCFM/CXX_Interface.h"

It must be initialized on a std::map of std::strings, containing all (standard-model) parameters:

bool CXX_Interface :: Initialize(
std::map <std::string ,std::string >& parameters );

Prior to use, each process has to be initialized in the interface:

int CXX_Interface :: InitializeProcess(const Process_Info &pi);

which takes a Process Info object as input, which in turn contains the defining parameters of a given process, i.e.
the PDG IDs, number of incoming particles, and QCD and EW coupling orders:
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Process_Info(const std::vector <int > &ids , const int nin ,
const int oqcd , const int oew);

Phase space points are defined using the FourVec struct, which represents four-vectors in the ordering (E, px, py, pz).

FourVec(double e, double px , double py , double pz);

Given a list of four-vectors in this format, one-loop matrix elements can be calculated either using the process ID
returned by the InitializeProcess method

void CXX_Interface ::Calc(int procID ,
const std::vector <FourVec > &p, int oqcd);

or using a Process Info struct:

void CXX_Interface ::Calc(const Process_Info &pi ,
const std::vector <FourVec > &p,int oqcd);

In the same way, the result of this calculation can be accessed either via the process ID

const std::vector <double > &CXX_Interface :: GetResult(int procID );

or using the Process Info struct:

const std::vector <double > &CXX_Interface :: GetResult(const Process_Info &pi)

The result is returned as a list of Laurent series coefficients in the format (O
(
ε0
)
,O
(
ε−1
)
,O
(
ε−2
)
,Born). However,

by default only the O
(
ε0
)

coefficient, i.e. the finite part, is returned. The calculation of the pole terms and the Born
can be enabled by setting the following switch to 1:

void CXX_Interface :: SetPoleCheck(int check);

An example code showing the basic usage of the interface as well as a function filling the complete list of parameters
with default values is publicly available1.
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Rev. D 78, 036003 (2008), arXiv:0803.4180 [hep-ph].

[2] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero,
D. Forde, T. Gleisberg, H. Ita, D. A. Kosower,
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7
Towards NNLO Matching with Sector
Showers

With the advancement of the general and automated fully-differential NLO matching
methods MC@NLO [115, 338, 342] and POWHEG [229, 339–341, 428], NLO-plus-parton-
shower calculations have become state-of-the-art for collider-physics simulations. As fully-
differential NNLO calculations are becoming available for a multitude of processes, it is
prudent to consider the combination of these with parton-shower simulations. Via the
matching to parton showers, higher-order calculations can be embedded in multi-pupose
event-generation frameworks, which offer the modelling of full particle-level collider events,
including multi-parton interactions (cf. section 3.1.5) and hadronisation effects (cf. sec-
tion 3.4). The detailed and precise simulation of collider events is especially relevant
for so-called background processes, in order to facilitate the discrimination of known
standard-model and new-physics phenomena.

However, fully-differential matching methods are so far not available beyond NLO,
because existing parton showers do not capture the correct singularity structure of cor-
rections at higher orders, despite the fact that significant progress has been made on
including higher-order corrections in parton-shower algorithms [275, 276, 312, 313]. Nev-
ertheless, techniques have been developed to combine NNLO calculations with parton-
shower simulations [362, 366, 367, 369, 372–378, 429, 430]. However, these do not offer the
same level of control and flexibility as the methods available at NLO and as would be
desirable for high-precision predictions.

In the manuscript included in section 7.1, a first step towards fully-differential match-
ing at NNLO is presented, restricting the discussion to processes with colour-singlet
initial-state particles and two final-state jets. The method extends the idea developed
at NLO in [345] and may therefore be viewed as an extension of the POWHEG scheme.
Specifically, it does not require the shower to provide the fixed-order subtraction terms
(as needed in MC@NLO-type approaches) but uses the shower as an efficient Sudakov-
weighted phase-space generator. The implementation in VINCIA presented in section 7.1
is based on the NNLO antenna-subtraction method and the sector-shower framework,
with the latter amended by real-virtual and double-real corrections. As such, it combines
and generalises multiple developments undertaken within the VINCIA framework over the
past decade: iterated tree-level matrix-element corrections [277,336], NLO matrix-element
corrections [322], and second-order shower branchings [275].
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Abstract

We outline a new technique for the fully-differential matching of final-state parton showers to NNLO calculations,
focussing here on the simplest case of leptonic collisions with two final-state jets. The strategy is facilitated by
working in the antenna formalism, making use of NNLO antenna subtraction on the fixed-order side and the sector-
antenna framework on the shower side. As long as the combined real-virtual and double-real corrections do not
overcompensate the real-emission term in the three-jet region, negative weights can be eliminated from the matching
scheme. We describe the implementation of all necessary components in the VINCIA antenna shower in PYTHIA 8.3.

Keywords: NNLO matching, parton showers, antenna subtraction, antenna showers

1. Introduction

To date it is possible to perform most collider-
physics studies with fully-differential NLO+PS match-
ing thanks to two general, well-developed, and widely
applied procedures: MC@NLO [1] and POWHEG [2].
By fully differential matching, we understand that the
matching is done point by point in both the Born- and
real-emission phase spaces, with a parton shower that
reflects the correct singular structure of the fixed-order
calculation. In this sense, fully-differential matching re-
quires the fixed-order expansion of the shower to de-
velop the same singularities as the fixed-order calcula-
tion up to the matched order. At NLO, this is achieved
by parton showers that exponentiate terms reducing to
the universal DGLAP kernels in any collinear limit and
the eikonal factor in soft limits, with the colour depen-
dence in the soft limit requiring special attention [3]. As
of today, no fully-differential matching method obeying
these criteria is available at NNLO, although significant
progress on including higher-order corrections to parton
showers has been made [4–7].

Existing NNLO+PS matching methods either extend
existing merging schemes or utilise analytical resum-

Email addresses: johnmc@fnal.gov (John M Campbell),
shoeche@fnal.gov (Stefan Höche),
haitao.li@northwestern.edu (Hai Tao Li),
christian.preuss@monash.edu (Christian T Preuss),
peter.skands@monash.edu (Peter Skands)

mation for the transition between the fixed-order and
parton-shower realms. Examples of the first kind are
UN2LOPS [8], which extends the UNLOPS [9] scheme
to the second order, and MiNNLOPS [10, 11] as well
as other extensions [12–18] of the MiNLO technique
[19]. The UN2LOPS scheme has recently been gen-
eralised to processes with an additional jet in the con-
text of an UNLOPS-based N3LO+PS matching strategy
[20]. The MiNLO-based schemes may be seen as a hy-
brid approach, since they use a combination of analyt-
ical and numerical resummation. A noteworthy exam-
ple of a scheme employing the latter approach is im-
plemented in the GENEVA framework [21, 22]. While
all of these have enabled impressive phenomenological
studies [8, 23–32] and provide pathways to matching
precision calculations to event generators, they do not
provide the same level of theoretical control as the fully-
differential matching methods that are available at NLO.

In this letter, we present for the first time a fully-
differential NNLO+PS matching scheme for final-state
parton showers, restricting ourselves to the case of
two coloured final-state particles. The new method
combines NNLO antenna subtraction with the sector-
antenna shower in VINCIA [33], suitably extended to in-
clude real-virtual and double-real corrections. A key
aspect of the new technique is that the parton shower is
employed only as an efficient Sudakov-weighted phase-
space generator. It does not define the infrared sub-
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traction terms that are key to MC@NLO type matching
strategies.

The letter is structured as follows. We review the
matching method at NLO in section 2 before extending
it to the NNLO in section 3, retaining a rather general
notation. A numerical implementation in the VINCIA
sector-antenna shower in PYTHIA 8.3 [34] is described
in section 4, featuring a more detailed description of the
matching scheme. We conclude in section 5 and provide
an outlook on applications beyond the simple cases con-
sidered here.

2. NLO Matching Strategy

Our matching strategy generalises the technique first
developed in [35], which nowadays is referred to as the
POWHEG scheme [2, 36, 37]. To start with, it is thus use-
ful to recap the NLO matching strategy, before moving
on to the new NNLO technique.

At NLO, the expected value of an infrared-safe ob-
servable O defined on a two-particle final state process
with a colourless initial state is given by

〈O〉NLO =

∫
dΦ2

[
B(Φ2) + V(Φ2) + INLO

S (Φ2)
]

O(Φ2)

+

∫
dΦ3

[
R(Φ3)O(Φ3) − SNLO(Φ3)O(Φ2(Φ3))

]
, (1)

where B and V denote the Born cross section and virtual
correction, differential in the two-particle phase space
Φ2. Similarly, R denotes the real-radiation cross sec-
tion differential in the three-particle phase space Φ3,
and SNLO denotes the differential NLO subtraction term
in the antenna subtraction method, with its integral
over the antenna phase space given by INLO

S .1 In or-
der to achieve a Born-local cancellation of the subtrac-
tion term upon integration over the real-emission phase
space, the observable acting on SNLO must be evaluated
at the reduced phase-space point Φ2(Φ3), where the pre-
cise mapping from the three-parton to the two-parton
state depends on the subtraction scheme. We can in-
vert this mapping and factorise the phase space into the
2-particle (Born) phase space Φ2, and the one-particle
radiation phase space Φ+1,

dΦ3 = dΦ2 × dΦ+1 . (2)

1Other well-established NLO subtraction schemes such as
FKS [38] or dipole subtraction [39] may equally well be employed
here.

By defining a Born-local NLO weight,

kNLO(Φ2) := 1 +
V(Φ2)
B(Φ2)

+
INLO
S (Φ2)
B(Φ2)

+

∫
dΦ+1


R(Φ2,Φ+1)

B(Φ2)
− SNLO(Φ2,Φ+1)

B(Φ2)

 (3)

eq. (1) can be rewritten as

〈O〉NLO =

∫
dΦ2 B(Φ2)

kNLO(Φ2)O(Φ2)

+

∫
dΦ+1

R(Φ2,Φ+1)
B(Φ2)

(
O(Φ2,Φ+1) − O(Φ2)

)
 . (4)

The parton-shower evolution, on the other hand, is
described by a generating functional, the shower oper-
ator, recursively defined for an infrared-safe observable
O by

Sn(t,O) = ∆n(t, tc)O(Φn) (5)

+

∫ t

tc
dΦ+1 A(0)

n (Φ+1)∆n(t, t′)Sn+1(t′,O) ,

where A(0)
n (Φ+1) is the sum of all leading-order antenna

functions2 competing for the next branching IK 7→ i jk
off the n-parton configuration,

∫ t

tc
dΦ+1 A(0)

n 7→n+1(Φ+1) (6)

:=
∫ t

tc

∑

j∈{n 7→n+1}
A(0)

j/IK

(
Φ

j
+1

)
dΦ

j
+1 ,

=
∑

j∈{n 7→n+1}

∫ t

tc

αs(t)
4π
C j/IK Ā(0)

j/IK(t, ζ, φ) dt dζ
dφ
2π

with the sum and shower variables left implicit in our
notation. Note that when working in the sector antenna
framework [33, 40–43], Eq. (6) implicitly defines a par-
titioning of the real-emission term along with the asso-
ciated subtractions in Eq. (3). This is crucial to avoid
double-counting of radiative corrections generated by
the parton shower. The associated Sudakov factor is
given by

∆LO
n (t0, t) = exp

−
∫ t0

t
dΦ+1 A(0)

n 7→n+1(Φ+1)
 . (7)

2We refer to NLO antenna subtraction terms as LO antenna func-
tions.
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Taking only the first shower emission into account,
the expected value of the observable O at LO is given
by

〈O〉LO+PS =

∫
dΦ2 B(Φ2)

[
∆(t0, tc)O(Φ2)

+

∫
dΦ+1 A(0)

2 7→3(Φ+1)∆(t0, t)O(Φ2,Φ+1)
]
.

This implies that upon the replacement

B(Φ2)→ kNLO(Φ2)B(Φ2)

A(0)
2 7→3 → wLO

2 7→3(Φ2,Φ+1)A(0)
2 7→3 (8)

where we have defined the 2 7→ 3 LO matrix-element
correction factor,

wLO
2 7→3(Φ2,Φ+1) =

R(Φ2,Φ+1)

A(0)
2 7→3(Φ+1)B(Φ2)

, (9)

the following matching formula is NLO accurate up to
terms appearing at order α2

s

〈O〉NLO+PS =

∫
dΦ2 B(Φ2) kNLO(Φ2)

[
∆(t0, tc)O(Φ2)

+

∫ t0

tc
dΦ+1 wLO

2 7→3A2 7→3(Φ+1)∆(t0, t)O(Φ2,Φ+1)
]
.

(10)

This can be seen by expanding the result to order αs.

3. NNLO Matching Strategy

We now turn to the main result of this work, the def-
inition of a fully-differential NNLO matching strategy
for processes with two coloured final-state particles. It
is applicable to both decays of colour singlets as well as
scattering processes as long as all initial-state particles
are colourless, for instance as in e+e− → j j.

In the antenna formalism, the expected value for an
infrared-safe observable of a process with two coloured

final-state particles is given at NNLO by

〈O〉NNLO =

∫
dΦ2

[
B(Φ2) + V(Φ2) + INLO

S (Φ2)

+ VV(Φ2) + IT(Φ2) + IS(Φ2)
]

O(Φ2)

+

∫
dΦ3

[
R(Φ2,Φ+1)O(Φ2,Φ+1)

− SNLO(Φ2,Φ+1)O(Φ2)
+ RV(Φ2,Φ+1)O(Φ2,Φ+1)

+ T(Φ2,Φ+1,O)
]

+

∫
dΦ4

[
RR(Φ2,Φ+2)O(Φ2,Φ+2)

− S(Φ2,Φ+2,O)
]
, (11)

where RR is the differential double-real radiation cross
section and RV and VV denote the differential virtual
(one-loop) and double-virtual (two-loop) corrections to
the real-radiation cross section R and the Born cross
section B, respectively. In this context, the term SNLO

denotes the differential NLO real antenna subtraction
term, S denotes the differential NNLO double-real an-
tenna subtraction term [44–47],

S(Φ2,Φ+2,O) = Sa(Φ2,Φ+2)O(Φ2)+Sb(Φ3,Φ+1)O(Φ3)
− Sc(Φ2,Φ+1,Φ

′
+1)O(Φ2) (12)

and T denotes the differential NNLO real-virtual an-
tenna subtraction term [44–47],

T(Φ2,Φ+1,O) = Ta(Φ2,Φ+1)O(Φ2) + Tb(Φ3)O(Φ3)
− Tc(Φ2,Φ+1)O(Φ2) (13)

Their integrated counterparts are given by INLO
S , IT, and

IS. In this context, terms labelled with superscript a
constitute the double-real/real-virtual subtraction terms
with compensating terms labelled with a superscript
c that remove spurious single-unresolved singularities.
The single-unresolved singularities are captured by the
NLO subtraction terms of the +1-jet calculation, la-
belled with superscript b,

Sb(Φ3,Φ
′
+1) ≡ SNLO(Φ3,Φ

′
+1) , Tb(Φ3) ≡ INLO

S (Φ3) .
(14)

The terms labeled with superscript b and c cancel inde-
pendently in eq. (11). They are constructed such as to
make the integrals individually infrared finite and thus
amenable to evaluation with Monte-Carlo methods.
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As for the NLO case, we define a Born-local weight,

kNNLO(Φ2) := 1 +
V(Φ2)
B(Φ2)

+
INLO
S (Φ2)
B(Φ2)

(15)

+
VV(Φ2)
B(Φ2)

+
IT(Φ2)
B(Φ2)

+
IS(Φ2)
B(Φ2)

+

∫
dΦ+1

[R(Φ2,Φ+1)
B(Φ2)

− SNLO(Φ2,Φ+1)
B(Φ2)

+
RV(Φ2,Φ+1)

B(Φ2)
+

T(Φ2,Φ+1)
B(Φ2)

]

+

∫
dΦ+2

[RR(Φ2,Φ+2)
B(Φ2)

− S(Φ2,Φ+2)
B(Φ2)

]
,

which will be used to construct the NNLO matching for-
mula, and which can be used to perform the fixed-order
computation in complete analogy to eq. (4). Here, dΦ+2
is the two-particle radiation phase space that enters the
factorised n + 2-particle phase space

dΦn+2 = dΦn × dΦ+2 . (16)

We shall further need to distinguish between an or-
dered and unordered component of the two-particle ra-
diation phase space, according to the following partition
of unity:

dΦ+2 = θ(t′ − t) dΦ+2 + θ(t − t′) dΦ+2 ,

= dΦ>
+2 + dΦ<

+2 . (17)

The ordered part dΦ<
+2 corresponds to the region ac-

cessible to strongly-ordered shower paths t0 > t > t′,
whereas the unordered part dΦ>

+2 is inaccessible to
strongly-ordered showers because of the larger interme-
diate scale t0 > t′ > t. We will use VINCIA’s sector
criterion, cf. sec. 3.3 in [33], to distinguish between the
two, cf. section 4.2.

In order to be able to match the NNLO calculation
with the shower, the shower needs to incorporate vir-
tual corrections to ordinary 2→ 3 branchings as well as
new 2→ 4 branchings, accounting for the simultaneous
emission of two particles. These new shower terms cor-
respond to the real-virtual and double-real corrections in
the NNLO calculation. In addition, we need to incorpo-
rate the corresponding parton-shower counterterms. We
start by defining the two-particle NLO Sudakov as [4]

∆NLO
2 (t0, t)

= exp

 −
∫ t0

t
dΦ+1 A(0)

2 7→3(Φ+1)wNLO
2 7→3 (Φ2,Φ+1)



× exp

 −
∫ t0

t
dΦ>

+2 A(0)
2 7→4(Φ+2)wLO

2 7→4(Φ2,Φ+2)

 ,

(18)

where we have introduced the 2 7→ 4 LO matrix-
element correction factor,

wLO
2 7→4(Φ2,Φ+2) =

RR(Φ2,Φ+2)

A(0)
2 7→4(Φ+2)B(Φ2)

(19)

and the 2 7→ 3 NLO matrix-element correction factor
wNLO

2 7→3 (Φ+1), which we write in terms of a second order
correction to the LO 2 7→ 3 MEC in eq. (9),

wNLO
2 7→3 (Φ2,Φ+1) = wLO

2 7→3(Φ2,Φ+1)

×
(
1 + w̃FO

2 7→3(Φ2,Φ+1) + w̃PS
2 7→3(Φ2)

)
. (20)

The coefficients w̃ are given by matching the O
(
α2

s

)

terms in the expansion of the truncated shower approx-
imation to the fixed-order result in eq. (11) [4, 48]. We
find the fixed-order contribution

w̃FO
2 7→3(Φ2,Φ+1) =

RV(Φ2,Φ+1)
R(Φ2,Φ+1)

+

∫ t

0
dΦ′+1

RR(Φ2,Φ+1,Φ
′
+1)

R(Φ2,Φ+1)

−


V(Φ2)
B(Φ2)

+

∫ t0

0
dΦ′+1

R(Φ2,Φ
′
+1)

B(Φ2)

 , (21)

and the second-order parton-shower matching term

w̃PS
2 7→3(Φ2) =

αs

2π
ln
κ2µ2

S

µ2
R

+

∫ t0

t
dΦ′+1 A(0)

2 7→3(Φ′+1)wLO
2 7→3(Φ2,Φ

′
+1) . (22)

The factor κ is a constant and µ2
S is the parton-shower

renormalisation scale. The two are conventionally cho-
sen such that the logarithmic structure of eq. (21) is re-
produced, which leads to µS = p⊥ and κ2 = exp{K/β0},
with K the two-loop cusp anomalous dimension [49–
52]. This is known as the CMW scheme [53].

Note that in eq. (18), the integral over A(0)
2 7→4 is defined

over the range [t, t0], since the “ordered” contribution
t′ < t has been reabsorbed into w̃FO

2 7→3(Φ+1).
It should be emphasised that we do not require the

NLO three-jet calculation to be provided externally but
include the correction directly in the shower evolu-
tion. This means that, different to the situation in tradi-
tional merging approaches, this correction is exponen-
tiated into a Sudakov factor. Up to the first emission,
this agrees with the treatment in [5, 7] and implicitly
includes the contribution from higher-order matching
terms and collinear mass factorization counterterms that
are needed to recover the NLO DGLAP splitting func-
tions.

4



In addition, we need the 3-particle Sudakov, which
we describe at LO,

∆LO
3 (t, t′)

= exp

 −
∫ t

t′
dΦ′+1 A(0)

3 7→4(Φ′+1)wLO
3 7→4(Φ3,Φ

′
+1)

 .

(23)

with the 3 7→ 4 LO matrix-element correction factor,

wLO
37→4(Φ3,Φ

′
+1) =

RR(Φ2,Φ+2)

A(0)
3 7→4(Φ′

+1)R(Φ2,Φ+1)
. (24)

Up to the second emission, the shower operator is
thus given by

S2(t0,O) = ∆NLO
2 (t0, tc)O(Φ2) (25)

+

∫ t0

tc
dΦ+1 A(0)

2 7→3(Φ+1)wNLO
2 7→3 ∆NLO

2 (t0, t)

×
(
∆LO

3 (t, tc)O(Φ2,Φ+1)

+

∫ t

tc
dΦ′+1 A(0)

3 7→4(Φ′+1)wLO
3 7→4(Φ3,Φ

′
+1)O(Φ3,Φ

′
+1)

)

+

∫ t0

tc
dΦ>

+2 A(0)
2 7→4(Φ+2)wLO

2 7→4(Φ2,Φ+2)O(Φ2,Φ+2)

and our final NNLO+PS matching formula takes the
simple form:

〈O〉NNLO+PS =

∫
dΦ2 B(Φ2)kNNLO(Φ2)S2(t0,O) .

(26)
When expanding the truncated shower operator S2 in

eq. (26) up to order α2
s , NNLO accuracy is recovered for

the observable O(Φ2), while O(Φ3) and O(Φ4) achieve
NLO and LO accuracy, respectively. This is true, be-
cause the combination of the iterated 2 7→ 3 7→ 4 and
the direct 2 7→ 4 contributions to eq. (25) yields the cor-
rect double-real correction RR in eq. (11) by means of
the LO MEC factors in eqs. (9), (19) and (24). More-
over the NLO correction eq. (20) recovers the correct
real and real-virtual corrections R and RV in eq. (11) by
means of eq. (9) and eq. (21).

4. Numerical Implementation

In this section, we want to present all necessary com-
ponents of an implementation of our NNLO matching
strategy. These are:

• a framework to calculate the Born-local NNLO K-
factors in Eq. (15)

• a shower filling the strongly-ordered [54] and un-
ordered [4] regions of the single- and double-
emission phase space

• tree-level MECs in strongly-ordered [55] and un-
ordered [56] shower paths

• NLO MECs in the first emission [48]

With the exception of the first point, (process-
dependent) implementations of these components ex-
isted in previous VINCIA versions (not necessarily si-
multaneously), and have been described in detail in the
various references. We have (re-)implemented all com-
ponents in a semi-automated 3 fashion in the VINCIA an-
tenna shower in PYTHIA 8.3. We access loop matrix ele-
ments via a novel MCFM [57–60] interface presented in
[61] and tree-level matrix elements via a new run-time
interface [62] to the COMIX matrix element generator
[63] in SHERPA [64, 65].

Our NNLO matching algorithm can be summarised
in the following steps:

1. Generate a phase space point according to the Born
cross section B(Φ2).

2. Calculate the Born-local NNLO factor kNNLO(Φ2)
and reweight the phase space point by the result.

3. Let the phase-space maximum given by the invari-
ant mass of the two Born partons define the starting
scale for the shower, tnow = t0(Φ2).

4. Starting from the current shower scale, tnow, let the
2 7→ 3 and 2 7→ 4 showers compete for the highest
branching scale.

5. Update the current shower scale to be that of the
winning branching, tnow = max(t2 7→3, t2 7→4).

6a. If the winning branching is a 2 7→ 3 branching,
calculate the accept probability including the NLO
MEC wNLO

2 7→3 .
• If rejected, continue from step 4.
• If accepted, continue with a LO shower

from the resulting three-particle configura-
tion, starting from tnow and including the LO
MEC wLO

3 7→4 when calculating accept probabil-
ities for the 3 7→ 4 step.

When a 3 7→ 4 branching is accepted (or the
shower cutoff scale is reached), continue with step
7.

6b. If the winning branching is a 2 7→ 4 branching,
calculate the accept probability including the LO
MEC wLO

2 7→4.

3Semi-automated here refers to the fact that antenna subtraction
terms are explicitly implemented for each class of processes.

5



• If rejected, continue from step 4.

• If accepted, continue with step 7.

7. Continue with a standard (possibly uncorrected)
shower from the resulting four-particle configura-
tion, starting from tnow.

It should be emphasised that the matrix-element cor-
rection factors make this algorithm independent of the
splitting kernels (i.e. antenna functions in our case) up to
the matched order and the shower merely acts as an effi-
cient Sudakov-weighted phase-space generator. Hence,
if the algorithm is stopped after step 6, an NNLO-
matched result is obtained, which can be showered by
any other parton shower, just as is the case for POWHEG
NLO matching. Note, that there remains a dependence
on the ordering variable, which has to be properly ac-
counted for.

4.1. NNLO Kinematics

For both, the unordered shower contributions and
the Born-local NNLO weight, new kinematic maps are
needed to reflect their direct 2 7→ 4, i.e. unordered or
double-unresolved, nature. We utilise that the n-particle
phase space measure may be factorised into the product
of a 2 7→ 3 antenna phase space and the n − 1-particle
phase space measure, as well as into the product of a
2 7→ 4 antenna phase space and the n − 2-particle phase
space. This allows us to write the 2 7→ 4 antenna phase
space as the product of two 2 7→ 3 antenna phase spaces,

dΦ+2(pI + pK ; pi, p j1 , p j2 , pk)
= dΦ+1(pI + pK ; p̂i, p̂ j, pk)

× dΦ+1( p̂i + p̂ j; pi, p j1 , p j2 ) , (27)

corresponding to the kinematic mapping

pI + pK = p̂i + p̂ j + pk = pi + p j1 + p j2 + pk , (28)

effectively representing a tripole map [66]. In line with
the phase space factorisation, the kinematic mapping is
then constructed as an iteration of two on-shell 2 7→ 3
antenna maps given in sec. 2.3 in [33].

We have tested the validity of our kinematic maps
by comparing VINCIA’s phase-space mappings (double-
gluon emission and gluon-emission-plus-splitting) to a
flat sampling via RAMBO.

4.2. Unordered Shower Contributions

An important part of our proposal is the inclusion of
double-unresolved radiation in the shower evolution. To
this end, we employ the sector-antenna framework [33]

and amend it by direct 2 7→ 4 branchings as described in
[4]. In the sector-shower approach, each branching is re-
stricted to the region in phase space where it minimises
the resolution variable, defined for final-state cluster-
ings by

Q2
res, j =



si j s jk

sIK
if j is a gluon

si j

√
s jk

sIK
if (i, j) is a quark-antiquark pair

(29)
This is achieved by a “sectorisation” of phase space ac-
cording the partition of unity,

1 =
∑

j

Θsct
j/IK =

∑

j

θ

(
min

i

{
Q2

res,i

}
− Q2

res, j

)
, (30)

which is implemented in the shower evolution as an ex-
plicit veto for each trial branching. Since only a single
branching kernel contributes per colour-ordered phase
space point, sector antenna functions have to incorpo-
rate the full singularity structure associated with the re-
spective sector. At LO, this amounts to including both
the full single-collinear and single-soft limits in the an-
tenna function. The full set of VINCIA’s LO sector an-
tenna functions is collected in [33].

By construction, the default sector shower gener-
ates only strongly-ordered sequences4, as the sector
veto ensures that each emission is the softest (or most-
collinear) in the post-branching configuration. The in-
clusion of direct 2 7→ 4 branchings (which look un-
ordered from an iterated 2 7→ 3 point of view) in the
sector shower is facilitated by extending the sector de-
composition in eq. (30) by an ordering criterion,

1 =
∑

j

[
Θ<

j/IKΘsct
j/IK + Θ>

j/IKΘsct
j/IK

]
(31)

=
∑

j

θ
(
p̂2
⊥, ĵ − p2

⊥, j
)
Θsct

j/IK

︸                        ︷︷                        ︸
2 7→3 (strongly ordered)

+
∑

j

θ
(
p2
⊥, j − p̂2

⊥, ĵ

)
Θsct

j/IK

︸                        ︷︷                        ︸
2 7→4 (unordered)

where p2
⊥ denotes VINCIA’s transverse-momentum or-

dering variable and hatted variables denote the interme-
diate node in a sequence IL 7→ î ĵ ˆ̀ 7→ i jk`. Here, the
scales p2

⊥ and p̂2
⊥ are uniquely defined by the ordering

variable of the sector-shower emission, i.e., that emis-
sion which minimises eq. (29). Direct 2 7→ 4 emissions
are thus restricted to the unordered region of the double-
emission phase space, denoted as dΦ>

+2 in eq. (18) and

4This is different to virtually any other strongly-ordered shower,
where recoil effects introduce unordered sequences. Such phase space
points are vetoed in a sector shower.
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Figure 1: Ratio of the evolution variable of the four-parton and three-parton configuration log
(
p2
⊥,4/p2

⊥,3
)

in e+e− → 4 j. The region > 0 corresponds
to unordered contributions not reached by strongly-ordered showers.

defined as

dΦ>
+2 =

∑

j

Θ>
j/IKΘsct

j/IK dΦ
j
+2 . (32)

For 2 → 4 emissions off quark-antiquark and gluon-
gluon antennae, we use the double-real antenna func-
tions in [44, 45, 47]. We note that NLO quark-gluon
antenna functions appear in the Standard Model at low-
est order for three final-state particles and are hence not
of interest for our test case of e+e− → j j. We wish
to point out, however, that the NLO quark-gluon an-
tenna functions in [46, 47] contain spurious singularities
which have to be removed before a shower implementa-
tion is possible.

As a validation, we show in fig. 1 the ratio of the
four-jet to three-jet evolution variable for e+e− → 4 j at√

s = 240 GeV. To focus on the perturbative realm, the
shower evolution is constrained to the region between
t0 = s and tc = (5 GeV)2. The region > 0 corresponds
to the unordered part of phase space to which strongly-
ordered showers cannot contribute. Due to the use of
sector showers, there is a sharp cut-off at the bound-
ary between the ordered and unordered region, as the

sector criterion ensures that the last emission is always
the softest and therefore, no recoil effects can spoil the
strong ordering of the shower. As expected, the inclu-
sion of direct 2 → 4 branchings gives access to the un-
ordered parts of phase space, a crucial element of our
matching method.

4.3. LO Matrix-Element Corrections

In order for the shower expansion to match the fixed-
order calculation, we need (iterated) 2 7→ 3 tree-level
MECs and (direct) 2 7→ 4 tree-level MECs. Both take
a particularly simple form in the sector-antenna frame-
work, as will be shown below.

At leading-colour, tree-level MECs to the ordered
sector shower can be constructed as [55, 67]

wLO,LC
2 7→3,i (Φ2,Φ+1) =

RLC
i (Φ2,Φ+1)

∑
j Θsct

j/IK Asct
j/IK(pi, p j, pk)B(Φ2)

,

wLO,LC
3 7→4,i (Φ3,Φ+1) =

RRLC
i (Φ3,Φ+1)

∑
j Θsct

j/IK Asct
j/IK(pi, p j, pk)RLC

i (Φ3)
,
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where

B(Φ2) =
∣∣∣∣M(0)

2 (p1, p2)
∣∣∣∣
2
,

RLC
i (Φ3) =

∣∣∣∣M(0)
3 (σi{p1, p2, p3})

∣∣∣∣
2
,

RRLC
i (Φ4) =

∣∣∣∣M(0)
4 (σi{p1, p2, p3, p4})

∣∣∣∣
2
,

denote squared leading-colour colour-ordered ampli-
tudes with the index i denoting the respective permu-
tation σi (the number of permutations depends on the
process). The sector veto Θsct

j/IK ensures that only the
most singular term contributes in the denominators, ren-
dering the fraction exceptionally simple.

Direct 2 7→ 4 branchings can be corrected in an anal-
ogous way, replacing the sum over 2 7→ 3 antenna func-
tions with a sum of 2 7→ 4 ones,

wLO,LC
2 7→4,i (Φ2,Φ+2)

=
RRLC

i (Φ2,Φ+2)
∑
{ j,k} Θsct

jk/ILAsct
jk/IL(pi, p j, pk, p`)B(Φ2)

,

The full-colour matrix element can be recovered on
average by multiplication with a full-colour to leading-
colour-summed matrix-element weight,

wLO
2 7→3,i = wLO,LC

2 7→3,i ×
R(Φ2,Φ+1)

∑
j RLC

j (Φ2,Φ+1)
, (33)

wLO
3 7→4,i = wLO,LC

3 7→4,i ×
RR(Φ3,Φ+1)

∑
j RRLC

j (Φ3,Φ+1)
, (34)

wLO
2 7→4,i = wLO,LC

2 7→4,i ×
RR(Φ2,Φ+2)

∑
j RRLC

j (Φ2,Φ+2)
. (35)

For gluon splittings, multiple histories contribute
even in the sector shower, because all permutations of
quark lines have to be taken into account. To ensure that
the MEC factors remain finite for final states with mul-
tiple quark pairs, an additional quark-projection factor
has to be included. Since we only deal with a maximum
of two quark pairs, it is given by

ρ j =
Asct

jq/gI XK
(q̄i, q j, Xk)

∑
j Asct

jq/gI XK
(q̄i, q j, Xk)

(36)

for 2→ 3 branchings and

ρ j =
Asct

jqkq̄/XI YL
(Xi, q j, q̄k,Y`)

∑
j Asct

jqkq̄/XI YL
(Xi, q j, q̄k,Y`)

(37)

for 2 7→ 4 branchings.

4.4. NLO Matrix-Element Corrections

Making the antenna subtraction terms explicit, the
fixed-order correction to the NLO matrix-element cor-
rection eq. (20) reads

w̃FO
2 7→3(Φ2,Φ+1) =

RV(Φ2,Φ+1)
R(Φ2,Φ+1)

+
INLO(Φ2,Φ+1)

R(Φ2,Φ+1)
(38)

+

∫ t

0
dΦ′+1


RR(Φ2,Φ+1,Φ

′
+1)

R(Φ2,Φ+1)
− SNLO(Φ2,Φ+1,Φ

′
+1)

R(Φ2,Φ+1)



−


V(Φ2)
B(Φ2)

+
INLO(Φ2)

B(Φ2)

+

∫ t0

0
dΦ′+1


R(Φ2,Φ

′
+1)

B(Φ2)
− SNLO(Φ2,Φ

′
+1)

B(Φ2)


 ,

with the differential NLO antenna subtraction terms
SNLO(Φ2,Φ

′
+1), SNLO(Φ2,Φ+1,Φ

′
+1) and their integrated

counterparts INLO
S (Φ2), INLO

S (Φ2,Φ+1) cf. eqs. (11)
and (14). Based on the argument of the last subsection,
we construct the full-colour NLO matrix-element cor-
rection as

wNLO
2 7→3,i(Φ2,Φ+1) = wLO,LC

2 7→3,i (Φ2,Φ+1)
R(Φ2,Φ+1)

∑
j RLC

j (Φ2,Φ+1)

× (1 + w̃FO
27→3(Φ2,Φ+1) + w̃PS

2 7→3(Φ2)) .
(39)

The integration over the radiation phase spaces de-
noted Φ′

+1 in eq. (38) is done numerically, utilising an-
tenna kinematics to map 3-parton configurations to 4-
parton configurations (similarly for 2-parton configura-
tions). This phase-space generation approach will be
described in detail in the next subsection in the context
of the NNLO Born weight. Note that the radiation phase
space Φ+1 in eq. (38) is generated by the shower.

4.5. NNLO Born Weight

The Born-local NNLO weight can be calculated
numerically using a “forward-branching” phase-space
generation approach [36, 37, 68, 69, 71], which has pre-
viously been applied to unweighted NLO event genera-
tion, using Catani-Seymour dipole subtraction [73]. The
application to NNLO corrections to e+e− → 2 j using
antenna subtraction has been outlined in [74].

Given a Born phase space point, the real-radiation
phase space is generated by uniformly sampling the
shower variables (t, ζ, φ) for each antenna, which rep-
resent integration channels in this context. As for
the shower evolution, every phase space point is re-
stricted to the sector in which the emission(s) corre-
spond to the most-singular clusterings. The momenta
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of the Born+1 j point are constructed according to the
same kinematic map as the shower uses, summarised
in sec. 2.3 in [54]. Since antenna functions are az-
imuthally averaged, they do not cancel spin-correlations
in collinear gluon branchings locally. To obtain a point-
wise pole cancellation, the subtracted real correction
R − S can be evaluated on two correlated phase space
points, {(

t, ζ, φ
)
,
(
t, ζ, φ + π/2

)}

which cancels the collinear spin correlation exactly, as
it is proportional to cos

(
2φ

)
. To obtain double-real radi-

ation phase space points for the subtracted double-real
correction RR − S, this procedure can be iterated, yield-
ing four angular-correlated phase space points which
cancel spin correlations in double single-collinear and
triple-collinear limits. Due to the bijective nature of the
sector-antenna framework, each 3- or 4-particle phase-
space point obtained in this way can be mapped back
uniquely to its 2-particle origin, making the NNLO
weight exactly Born-local. For e+e− → 2 j this pro-
cedure is identical to the one in [74].

We have implemented the NNLO antenna subtrac-
tion terms for processes with two massless final-state
jets, cf. e.g. [44], in VINCIA in a semi-automated fash-
ion. As a validation, we illustrate the convergence of
the double-real radiation subtraction term eq. (12) in
the triple-collinear and double-soft limits for the process
e+e− → qggq̄ in fig. 2. Phase space points are sampled
according to the kinematic map in section 4.1 and we
do not make use of the azimuthal averaging alluded to
above.

It should be noted that a numerical calculation of the
Born-local NNLO weight is not necessary for colour-
singlet decays, as the inclusive K-factors are well
known from analytical calculations, cf. e.g. [44, 75] for
Z → qq̄ (with massless quarks), [76–79] for H → bb̄
(with massless bs), and [45, 80] for H → gg (in the
Higgs effective theory).

5. Conclusions and Outlook

We have presented a technique to match final-state
parton showers fully-differentially to next-to-next-to-
leading order calculations in processes with two final-
state jets. To our knowledge, this is the first method of
its kind.

We have outlined a full-fledged numerical implemen-
tation in the VINCIA antenna shower in the PYTHIA 8.3
event generator. Phenomenological studies employing
our strategy will be presented in separate works.

We want to close by noting that, while we here fo-
cused on the simplest case of two massless final-state
jets, the use of the NNLO antenna subtraction formal-
ism facilitates its adaption to more complicated pro-
cesses such as e+e− → tt̄ or e+e− → 3 j. Consider-
ing the latter, spurious singularities in the quark-gluon
NNLO antenna subtraction terms need to be removed
before exponentiation in the shower. For future work,
an extension of our method to processes with coloured
initial states can be envisioned, given the applicability
of the NNLO antenna subtraction to hadronic collisions.
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8
QCD Radiation in VBF Higgs
Production

The precise determination of the properties of the Higgs boson offers a possible guide to
physics beyond the Standard Model. A peculiarly interesting channel is the production of
Higgs bosons in vector boson fusion (VBF). At LO, a VBF process consists of two quarks
that are forward-scattered by emitting vector bosons, which in turn fuse to a colour-
singlet particle such as a Z0 or H0 boson, e.g. qq′ → qq′H0. A closely related class of
processes is vector boson scattering (VBS), in which the t-channel vector bosons scatter
to produce two outgoing vector bosons, e.g. qq′ → qq′W+W− Due to its distinct colour
topology, given by two disconnected initial-final colour flows at LO, a very perceptible
event signature is inherent to VBF processes. While the colour-singlet particle is located
in the central rapidity region, QCD radiation off the initial-final quark pairs is situated
further towards larger rapidities, with a strong suppression at central rapidities due to
destructive interference in coherent radiation off the quark lines. This distinct event
topology allows to employ a specific set of fiducial cuts in experimental analyses usually
known as VBF cuts: for any event to be considered a VBF event, two hard jets with a
large collective invariant mass and large rapidity separation must be present in opposite
detector hemispheres. These two hard jets are then called tagging jets and can be used to
substantially suppress background processes such as gluon fusion with two additional jets.
The VBF channel therefore delivers a clean environment for precision studies pertaining
to the nature of the Higgs boson.

In spite of the clean experimental environment, the VBF topology poses a challenge
for parton showers, as the coherent suppression of QCD radiation in the central rapidity
region must be faithfully modelled. For instance, it has been known for some time that
PYTHIA’s default transverse-momentum-ordered shower fails to reproduce the correct ra-
diation pattern in such topologies [431, 432] due to its use of a global recoil scheme for
initial-state branchings in conjunction with DGLAP splitting functions, which by them-
selves are incapable of describing coherent soft radiation. It was demonstrated that a
better description can be obtained with PYTHIA’s non-default dipole-recoil option, which
replaces the independent DGLAP evolution of the initial-state and final-state parton in
such initial-final colour-dipoles by a coherent dipole/antenna-like branching of both dipole
ends. Due to the importance for future electroweak and Higgs precision measurements, a
lot of effort has concentrated on the determination of systematic uncertainties pertaining
to the choice of shower models and NLO matching schemes in VBF and VBS processes,
cf. e.g. [433–436].
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As VINCIA’s (sector) antenna showers are anchored in the soft limit, it can be assumed
that VINCIA provides a more meaningful description of QCD radiation in VBF processes
than PYTHIA’s default shower, comparable to that of PYTHIA’s dipole-recoil shower. Sec-
tion 8.1 contains a study of QCD radiation in VBF Higgs production, taking VINCIA as
a baseline and comparing it to both PYTHIA’s default and dipole-recoil shower options.
A set of observables deemed especially sensitive to the radiation pattern in VBF pro-
cesses is considered and the LO predictions using the three showers are confronted with
NLO-matched results in the POWHEG scheme using POWHEGBOX [229,437]. To this end,
dedicated PowhegHooks are introduced for VINCIA. Furthermore, the effect of including up
to four additional hard jets via VINCIA’s CKKW-L implementation, cf. chapter 5, is stud-
ied using SHERPA to generate the tree-level event samples. It should be pointed out that
currently VINCIA is the only shower in PYTHIA 8.3 that supports merging in VBF/VBS
processes. The application to a non-trivial process also highlights the operability of the
VINCIA shower model in PYTHIA 8.3 in practice.
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Abstract

We discuss and illustrate the properties of several parton-shower models available in Pythia
and Vincia, in the context of Higgs production via vector boson fusion (VBF). In partic-
ular, the distinctive colour topology of VBF processes allows to define observables sensitive
to the coherent radiation pattern of additional jets. We study a set of such observables,
using the Vincia sector-antenna shower as our main reference, and contrast it to Pythia’s
transverse-momentum-ordered DGLAP shower as well as Pythia’s dipole-improved shower.
We then investigate the robustness of these predictions as successive levels of higher-order
perturbative matrix elements are incorporated, including next-to-leading-order matched and
tree-level merged calculations, using Powheg Box and Sherpa respectively to generate the
hard events.
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Figure 1: QCD colour flow of the LO VBF Higgs production process. Due to the kinematics
of the interaction, QCD radiation is directed in the forward region of the detector.

1 Introduction

Higgs boson production via Vector Boson Fusion (VBF) — fig. 1 — is among the most
important channels for Higgs studies at the Large Hadron Collider (LHC). With a Standard-
Model (SM) cross section of a few pb at LHC energies, VBF accounts for order 10% of the
total LHC Higgs production rate [1]. The modest rate is compensated for by the signature
feature of VBF processes: two highly energetic jets generated by the scattered quarks, in the
forward and backward regions of the detector respectively, which can be tagged experimentally
and used to significantly reduce background rates. Moreover, the distinct colour flow of the
VBF process at leading order (LO), highlighted by the coloured thick dashed lines in fig. 1,
strongly suppresses any coherent bremsstrahlung into the central region, leaving this region
comparatively clean and well suited for precision studies of the Higgs boson decay products.
With over half a million Higgs bosons produced in the VBF channel in total during Run II
of the LHC and a projection that this will more than double during Run III, studies of this
process have already well and truly entered the realm of precision physics.

On the theory side, the current state of the art for the H + 2j process in fixed-order
perturbation theory is inclusive next-to-next-to-next-to-leading order QCD [2], fully differen-
tial next-to-next-to-leading order (NNLO) QCD [3–6] and next-to-leading-order (NLO) elec-
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troweak (EW) calculations [7]. These calculations of course only offer their full precision for
observables that are non-zero already at the Born level, such as the total cross section and
differential distributions of the Higgs boson and tagging jets. For more exclusive event prop-
erties, such as bremsstrahlung and hadronisation corrections, the most detailed description is
offered by combinations of fixed-order and parton-shower calculations. To this end, two recent
phenomelogical studies [8, 9] compared different NLO+PS simulations among each other as
well as to NLO and NNLO calculations. These comparative studies catered to two needs;
firstly, the reliability of matched calculations was tested in regions where resummation effects
are small. Furthermore, a more realistic estimate of parton-shower as well as matching un-
certainties was obtained by means of different shower and matching methods in independent
implementations.

The earlier of the two studies [8] highlighted that different NLO+PS implementations
describe the intrinsically coherent radiation in this process quite differently, and that the
uncertainties arising from the choice of the shower and matching implementation can persist
even at the NLO-matched level. Among its central results, the study [8] confirmed the obser-
vation of [10] that PYTHIA’s default shower [11–13] describes the emission pattern of the third
jet poorly, essentially missing the coherence of the initial-final dipoles. This effect was most
pronounced for MADGRAPH AMC@NLO [14] + PYTHIA, for which a global recoil scheme must
be used in both the time-like and space-like shower in order to match the subtraction terms
implemented in MADGRAPH AMC@NLO. For POWHEG-BOX [15] + PYTHIA, the difference
persisted when using the global recoil scheme1. However, changing to PYTHIA’s alternative
dipole-recoil scheme [16], which should reproduce coherence effects more faithfully, improved
the agreement, both with calculations starting from H+3j as well as with the angular-ordered
coherent shower model in Herwig 7 [17].

The more recent study [9] highlighted a number of interesting aspects of vector boson
fusion that can be exploited to enhance the signal-to-background ratio in future measurements:
Firstly, if the Higgs boson is boosted, the t-channel structure of the VBF matrix elements leads
to less QCD radiation when compared to the irreducible background from gluon-gluon fusion.
Secondly, it was found that a global jet veto provides a similarly effective cut as a central
jet veto, leading to much reduced theoretical uncertainties, and in particular eliminating the
need to resum non-global logarithms associated with inhibited radiation in the rapidity gap.
Despite a good overall agreement between fixed-order NNLO and NLO-matched parton shower
predictions, the study also pointed out a few subtle disagreements for highly boosted Higgs
boson topologies. In these scenarios, the standard fixed-order paradigm of operating with a
single factorisation scale is no longer appropriate, because higher-order corrections should be
resummed individually for the two impact factors in the structure-function approach.

The uncertainties arising from matching systematics in vector-boson-fusion and vector-
boson-scattering processes (VBS) have also been studied in the past [18] with rather good
agreement between different showers at the level of H+3j NLO+PS calculations [19], although
in that study, only the POWHEG matching scheme was considered. Very recently, two extensive
reviews [20,21] collected experimental results and theoretical developments in VBS processes
in view of the high-luminosity upgrade of the LHC as well as future colliders. A summary of
Monte Carlo event generators used in the modelling of VBS processes in ATLAS was presented
in [22].

1We note that the global recoil scheme is the default choice only for PYTHIA’s space-like DGLAP shower,
while the time-like DGLAP shower uses a dipole-like recoil scheme per default.
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On the experimental side, recent studies of VBF Higgs production by ATLAS [23,24] and
CMS [25,26] have used PYTHIA’s default shower model matched to the NLO via the POWHEG

technique, with only one of them [23] employing PYTHIA’s dipole option. The associated
modelling uncertainties, and ways to reduce them, therefore remain of high current relevance.

We extend the comparative study of [8] to include the new VINCIA sector-antenna shower [27]
that has become available starting from PYTHIA version 8.304. Based on findings pertaining
to antenna [28–31] and dipole [32–35] showers, we expect that, at least at leading colour,
VINCIA’s showers capture QCD coherence effects in VBF more accurately than PYTHIA’s de-
fault shower. To this end, we note that the emitter-recoiler agnostic antenna recoil employed
in VINCIA is free of adverse kinematic effects [36]. We also consider two new observables
designed to further probe the amount of coherent radiation by measuring the summed trans-
verse energy HT for |η| < 0.5 and for |η − η0| < 0.5 respectively, where η0 is the midpoint
between the two tagging jets. To investigate the robustness of the predictions, we include
not only POWHEG-BOX + PYTHIA [13, 15] but also a new dedicated implementation of the
CKKW-L merging scheme [37–39] for sector showers [40], with hard events with up to four
additional jets generated by SHERPA 2 [41, 42]. We emphasise that this is currently the only
multi-jet merging approach in PYTHIA 8.3 which can handle VBF processes2. Additionally, we
highlight the systematic uncertainties arising from the use of vetoed showers in the POWHEG

scheme and make recommendations for settings related to the use of these in PYTHIA.
This study is structured as follows. We begin with an overview of the setup for our simu-

lations in section 2; starting with an overview of the fixed order, shower, matched and merged
calculations and leading towards a description of the analysis we perform. We then move on
to discuss the results of our analysis in section 3, with our conclusions and recommendations
listed in section 4.

2 Setup of the Simulation

We consider Higgs production via VBF in proton-proton collisions at the high-luminosity
LHC with a centre-of-mass energy of

√
s = 14 TeV.

The simulation is factorised into the generation of the hard process using SHERPA 2 (for the
LO merging samples) and POWHEG-BOX v2 (for the NLO matched samples) and subsequent
showering with PYTHIA 8.306. A cross check is also performed using PYTHIA’s internal Born-
level VBF process. Details on the hard-process setups are given in section 2.1.

Since we expect the VINCIA antenna shower to account for coherence more faithfully than
does PYTHIA’s default “simple” p⊥-ordered DGLAP shower, we take VINCIA’s description
as the baseline for our comparisons, contrasting it to PYTHIA’s default and “dipole-recoil”
options. Details on the shower setups are given in section 2.2.

Higher fixed-order corrections are taken into account at NLO+PS accuracy via the POWHEG

scheme, and for VINCIA also in the CKKW-L scheme up to O(α4
S). We expect that these cor-

rections will be smaller for coherent shower models than for incoherent ones, hence these
comparisons serve both to test the reliability of the baseline showers and to illustrate any
ambiguities that remain after these corrections are included. Details on the matching and
merging setups are given in section 2.3.

2We do note that a technical (but due to the use of incoherent IF kinematics unphysical) fix was introduced
in PYTHIA 8.242 and is planned to be re-implemented in a future version of PYTHIA 8.3.
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Finally, in section 2.4, we define the observables and the VBF analysis cuts that are used
for the numerical studies in section 3.

Note that, since we are primarily interested in exploring the coherence properties of the
perturbative stages of the event simulation, most of the results will be at the so-called “parton
level”, i.e. without accounting for non-perturbative or non-factorisable effects such as hadro-
nisation, primordial kT, or multi-parton interactions (MPI). Although this is not directly
comparable to physical measurements (nor is the definition universal since different shower
models define the cutoff differently), the factorised nature of the infrared and collinear safe
observables we consider imply that, while non-perturbative effects may act to smear out the
perturbative differences and uncertainties, they would not in general be able to obviate them,
thus making studies of the perturbative stages interesting in their own right. Nevertheless,
with jet pT values going down to 25 GeV and HT being sensitive to the overall amount of
energy scattered into the central region, we include further comparisons illustrating the effect
of non-perturbative corrections at the end of section 3.

2.1 Hard Process

For the parton-level event generation, we use a stable Higgs boson with a mass of MH =
125 GeV, and we set the electroweak boson masses and widths to

MZ = 91.1876 GeV , ΓZ = 2.4952 GeV , (1)

MW = 80.385 GeV , ΓW = 2.085 GeV .

Electroweak parameters are derived from this set with the additional input of the electromag-
netic coupling constant at the Z pole (α(MZ) scheme, EW SCHEME = 2 in SHERPA):

1

α(MZ)
= 128.802 . (2)

We treat all flavours including the bottom quark as massless and use a diagonal CKM mixing
matrix. In both SHERPA and POWHEG-BOX, we use the CT14 NNLO as118 [43] PDF set pro-
vided by LHAPDF6 [44] with the corresponding value of αS. For the sample generated with
PYTHIA’s internal VBF implementation, we use its default NNPDF23 lo as 0130 qed PDF
set [45,46].

We consider only VBF topologies, neglecting Higgsstrahlung contributions which appear
at the same order in the strong and electroweak coupling. Identical-flavour interference effects
are neglected in events generated with POWHEG-BOX and PYTHIA, but are included in events
obtained with SHERPA, although their impact was found to be small [9]. At NLO, the process
is calculated in the structure function approximation, neglecting interferences between the two
quark lines. For both, internal and external events, only a single scale will be assigned per
event, notwithstanding that different scales could in principle be assigned to the two forward-
scattered quarks. Differences pertaining to the scale assignment in internal and external
events will be discussed in section 3.1.

Tree-level event samples with up to four additional jets are generated using an HPC-
enabled variant of SHERPA 2 [41, 42], utilising the COMIX matrix-element generator [47]. To
facilitate efficient parallelised event generation and further processing, events are stored in
the binary HDF5 data format [42]. The factorisation and renormalisation scales are chosen
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to be

µ2F = µ2R =
Ĥ2

T

4
with ĤT =

∑

j

pT,j +
√
M2

H + p2T,H . (3)

and jets are defined according to the kT clustering algorithm with R = 0.4 and a cut at
20 GeV.

PYTHIA’s internal events are generated with scales governed by the two switches
SigmaProcess:factorScale3VV and SigmaProcess:renormScale3VV, respectively. Their
default values = 2 and = 3, respectively, correspond to the choices

µ2F =
√
m2

T,V1
m2

T,V2
≡
√

(M2
V1

+ p2T,q1
)(M2

V2
+ p2T,q2

) , (4)

µ2R =
√
m2

T,V1
m2

T,V2
m2

T,H ≡ 3

√
(M2

V1
+ p2T,q1

)(M2
V2

+ p2T,q2
)m2

T,H , (5)

with the pole masses of the exchanged vector bosons MV1 , MV2 , the transverse mass of the
Higgs boson mT,H , and the transverse momenta of the two final-state quarks pT,q1 , pT,q2 .

For NLO calculations matched to parton showers, we consider the POWHEG [48, 49] for-
malism. POWHEG samples are generated with POWHEG-BOX v2 [15,50] with the factorisation
and renormalisation scales chosen as

µ2F = µ2R =
MH

2

√(
MH

2

)2

+ p2T,H . (6)

Since the study in [8] did not find any significant effect from the choice of the “hdamp”
parameter in POWHEG, we do not include any such damping here, corresponding to a choice
of hdamp = 1.

2.2 Showers

The hard events defined above are showered with the three following shower models, which
are all available in PYTHIA 8.306:

• VINCIA’s sector antenna shower [27]. The “sector” mode is the default option for VINCIA

since PYTHIA 8.304 and also enables us to make use of VINCIA’s efficient CKKW-L
merging [40]. We expect it to exhibit the same level of coherence as the fixed-order
matrix elements, at least at leading colour (LC), since its QCD antenna functions and
corresponding phase-space factorisations explicitly incorporate the soft-eikonal function
for all possible (LC) colour flows. Of particular relevance to this study is its coherent
treatment of “initial-final” (IF) colour flows.

• PYTHIA’s default “simple shower” model [11,12], which implements p⊥-ordered DGLAP
evolution with dipole-style kinematics. For IF colour flows, however, the kinematic
dipoles are not identical to the colour dipoles, and this can impact coherence-sensitive
observables [51].

• PYTHIA’s “simple shower” with the dipole-recoil option [16]. Despite its name, this
not only changes the recoil scheme; in fact, it replaces the two independent DGLAP
evolutions of IF dipoles by a coherent, antenna-like, dipole evolution, while keeping the
DGLAP evolution of other dipoles unchanged. This option should therefore lead to
radiation patterns exhibiting a similar level of coherence as VINCIA.

6
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Ordinarily, PYTHIA would of course also add decays of the Higgs boson, and any final-
state radiation associated with that. However, as a colour-singlet scalar with ΓH � ΛQCD

and ΓH/MH ∼ O(10−5), its decay can be treated as factorised from the production process to
a truly excellent approximation. For the purpose of this study, we therefore keep the Higgs
boson stable, to be able to focus solely on the radiation patterns of the VBF production
process itself, without the complication of decay products in the central region.

For all of the shower models, we retain PYTHIA’s default PDF choice3, regardless of which
PDF set was used to generate the hard process. This is done to remain consistent with the
default shower tunings [52] and due to the better-controlled backwards-evolution properties
of the default set [53].

Per default, the shower starting scale is chosen to be the factorisation scale of the hard
process,

µ2PS = µ2F . (7)

In VINCIA, this scale can be varied by a multiplicative “fudge” factor, controlled by
Vincia:pTmaxFudge,

µ2PS = kfudge µ
2
F ,

while in PYTHIA, the starting scales of the initial-state and final-state showers can be varied
independently,

µ2PS,FSR = kfudge,FSR µ
2
F ,

µ2PS,ISR = kfudge,ISR µ
2
F ,

controlled by TimeShower:pTmaxFudge and SpaceShower:pTmaxFudge, respectively.
In a similar vein, the strong coupling in the shower is evaluated at the shower pT-scale4,

modified by renormalisation-scale factors kren. In PYTHIA, the strong coupling at the Z mass
is set to αS(MZ) = 0.1365 and independent scale factors for ISR and FSR are implemented,

αPythia,FSR
S (p2⊥evol,FSR) = αMS

S (kR,FSR p
2
⊥evol,FSR) ,

αPythia,ISR
S (p2⊥evol,ISR) = αMS

S (kR,ISR p
2
⊥evol,ISR) .

These can be set via TimeShower:renormMultFac and SpaceShower:renormMultFac, respec-
tively, and are unity by default. The transverse-momentum evolution variables p2⊥evol,FSR and

p2⊥evol,ISR are defined as in [11].
For VINCIA, on the other hand, a more refined choice can be made with separate renormalisa-
tion factors being implemented for (initial- and final-state) emissions, (initial- and final-state)
gluon splittings, and (initial-state) quark conversions. These have the default settings:

kFR,Emit = 0.66 , kFR,Split = 0.8 ,

kIR,Emit = 0.66 , kIR,Split = 0.5 , kIR,Conv = 0.5 ,

which can be set via the parameters

Vincia:renormMultFacEmitF

Vincia:renormMultFacSplitF

Vincia:renormMultFacEmitI

Vincia:renormMultFacSplitI

Vincia:renormMultFacConvI.
3NNPDF23 lo as 0130 qed.
4We refer to the argument of the strong coupling used in the shower as the shower renormalisation scale.
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Additionally, VINCIA uses the CMW scheme [54] (while PYTHIA does not), i.e. it evaluates
the strong coupling according to

αCMW
S = αMS

S

(
1 +

αMS
S

2π

[
CA

(
67

18
− π2

6

)
− 5nf

9

])
, (8)

where αMS
S (MZ) = 0.118, so that

αVincia
S (p2⊥) = αCMW

S (kR p
2
⊥) (9)

with the VINCIA evolution variable as defined in [27].

2.3 Matching and Merging

In the following, we will briefly review the defining features of the POWHEG NLO matching and
the CKKW-L merging schemes we will use in this study. In particular, we will focus on the
technicalities and practicalities to ensure a consistent use. Detailed reviews of the POWHEG

schemes can for instance be found in [55] and [56]. The CKKW-L scheme is explained in
detail in [39] and its extension to the VINCIA sector shower in [40].

2.3.1 POWHEG Matching

In the POWHEG formalism, events are generated according to the inclusive NLO cross sec-
tion with the first emission generated according to a matrix-element corrected no-emission
probability.

Since the shower kernels in the POWHEG no-emission probability are replaced by the ratio
of the real-radiation matrix element to the Born-level one, it is independent of the shower
it will later be matched to. It is, however, important to stress that generally, the POWHEG

ordering variable will not coincide with the ordering variable of the shower. Starting a shower
with a different ordering variable at the POWHEG scale of the first emission might thus lead to
over- or undercounting emissions. A simple method to circumvent this was presented in [57].
There, the shower is started at the phase space maximum (a so-called“power shower” [58])
and emissions harder than the POWHEG one are vetoed until the shower reaches a scale below
the scale of the first emission. For general ordering variables, there is, however, no guarantee
that once the shower falls below the scale of the POWHEG emission it will not generate a harder
emission later on in the evolution. This is especially important if the shower is not ordered
in a measure of hardness but e.g. in emission angles, such as the HERWIG q̃ shower [59]. In
these cases, it is advisable to recluster the POWHEG emission and start a truncated and vetoed
shower off the Born state [48], see also [60–62] for the use of truncated showers in merging
schemes. This scheme also avoids the issue that in vetoed showers, all emissions in the shower
off a Born+1-jet state are compared against the POWHEG emission as if they were the first
emission themselves. But from the point of view of kinematics and colour they will still be
the second, third, etc.

However, since all showers we consider here are ordered in a notion of transverse momen-
tum, it shall suffice for our purposes to use the simpler “vetoed power shower” scheme. To this
end, we have amended the existing POWHEG user hook for PYTHIA’s showers by a dedicated
one for POWHEG+VINCIA, which has been included in the standard release of PYTHIA starting
from version 8.306; see appendix A for detailed instructions.
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For both PYTHIA and VINCIA, we use a vetoed shower with the POWHEG pT and dij
definitions, corresponding to the mode POWHEG:pTdef = 1. We define the POWHEG scale with
respect to the radiating leg and use PYTHIA’s definition of emitter and recoiler, corresponding
to the modes POWHEG:pTemt = 0 and POWHEG:emitted = 0. Per default, we choose to define
the scale of the POWHEG emission by the minimum pT among all final-state particles, i.e. use
POWHEG:pThard = 2, according to the suggestion in [63]. As an estimate of the uncertainty of
this choice, we vary the pT,hard scale to be the LHEF scale and the pT of the POWHEG emission,
corresponding to the modes POWHEG:pThard = 0 and POWHEG:pThard = 1, respectively.

The purpose of these settings is to ensure maximally consistent scale definitions while not
reverting to the (more involved) “truncated and vetoed shower” scheme mentioned above.
While we deem the choices made here appropriate for the case at hand they remain ambiguous,
effectively introducing systematic matching uncertainties into the (precision) calculation. As
a means of estimating these uncertainties, we will discuss the influence of the pT,hard scale
setting on physical observables below in section 3.

2.3.2 CKKW-L Merging

Multi-leg merging schemes aim at correcting parton shower predictions away from the soft
and collinear regions. In the CKKW-L merging scheme [39], multiple inclusive tree-level
event samples are combined to a single inclusive one by introducing a (somewhat arbitrary)
“merging scale” tMS which separates the matrix-element (t > tMS) from the parton-shower
(t < tMS) region. In this way, over-counting of emissions is avoided while accurate parton-
shower resummation in logarithmically enhanced regions and leading-order accuracy in the
regions of hard, well-separated jets is ensured if the merging scale is chosen appropriately.

The missing Sudakov suppression in higher-multiplicity configurations is calculated post-
facto by the use of truncated trial showers between the nodes of the most probable “shower
history”. In this context, the shower history represents the sequence of intermediate states
the parton shower at hand would (most probably) have generated to arrive at the given n-jet
state. Usually, this sequence is constructed by first finding all possible shower histories and
subsequently choosing the one that maximises the branching probability, i.e., the product of
branching kernels and the Born matrix element. As we employ this scheme with VINCIA’s
sector shower, a few comments are in order. The objective of the sector shower is to replace the
probabilistic shower history by a deterministic history, governed by the singularity structure
of the matrix element. This means that at each point in phase space only the most singular
branching contributes. In the shower, this is ensured by vetoing any branchings that do not
abide by this; in the merging, this results in a faster and less resource-intensive algorithm, as
it is no longer required to generate a large number of possible histories. Details and subtleties
of VINCIA’s sectorised CKKW-L implementation can be found in [40].

The CKKW-L merging scheme is in principle implemented for all showers in PYTHIA

8.3. However, the intricate event topology of VBF processes currently prohibits the use of
PYTHIA’s default merging implementation5. We hence limit ourselves to study the effect of
merging with VINCIA, and have adapted VINCIA’s CKKW-L implementation [40] so that VBF
processes are consistently treated. Specifically, the flag Vincia:MergeVBF = on should be
used, which restricts the merging to only consider shower histories that retain exactly two
initial-final quark lines. As a consequence, there must not be any “incomplete histories”

5We note that a technical fix for this was available in PYTHIA 8.245 and will become available again in
PYTHIA 8.3 in the future.
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(histories that do not cluster back to a VBF Born configuration); this should be guaranteed
as long as the input event samples are of the VBF type only and no QED or EW emissions
are generated. A complete list of relevant settings for the use of VINCIA’s CKKW-L merging
is collected in appendix B.

2.4 Analysis

We use the anti-kT algorithm [64] with R = 0.4, as implemented in the FASTJET [65] package,
to cluster jets in the range,

pT > 25 GeV , |η| < 4.5 .

In addition, we employ typical VBF cuts to ensure that the two “tagging jets” are sufficiently
hard, have a large separation in pseudorapidity, and are located in opposite hemispheres:

mj1,j2 ≥ 600 GeV , |∆ηj1,j2 | ≥ 4.5 , ηj1 · ηj2 ≤ 0 .

We consider the following observables:

• Pseudorapidity Distributions: at the Born level, the two tagging jets already have
nontrivial pseudorapidity distributions. These are sensitive to showering chiefly via
recoil effects and via the enhancement of radiation towards the beam directions. The
third (and subsequent) jets are of course directly sensitive to the generated emission
spectra. To minimise contamination from final-state radiation off the tagging jets, we
also consider the pseudorapidity of the radiated jet(s) relative to the midpoint of the
two tagging jets,

η∗ji = ηji − η0 , (10)

with the midpoint defined by:

η0 = 1
2(ηj1 + ηj2) . (11)

• Transverse Momentum Distributions: we expect coherence effects for the radiated
jets (i > 2) to be particularly pronounced for radiation that is relatively soft in compar-
ison to the characteristic scale of the hard process. Conversely, the transverse momenta
of the two tagging jets should mainly be affected indirectly, via momentum-conservation
(recoil) effects.

• Scalar Transverse Momentum Sum: as a more inclusive measure of the summed
jet activity in the central rapidity region, we consider the scalar transverse momentum
sum of all reconstructed jets (defined as above, i.e., with pT > 25 GeV),

HT =
∑

j

|pT,j | , (12)

in two particular regions:

– in the central rapidity region, η ∈
[
−1

2 ,+
1
2

]

– around the midpoint of the tagging jets, η∗ ∈
[
−1

2 ,+
1
2

]
, cf eq. (10).
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Figure 2: Exclusive jet cross sections at LO+PS (left) and POWHEG NLO+PS (right) accu-
racy. The bands are obtained by a variation of the default shower starting scale by a factor
of two or the variation of the hard scale, respectively.

We point out that, due to the way it is constructed, the second of these regions is not
sensitive to the tagging jets, as it is not possible for them to fall within this region.
Unlike the previous two observables, HT is sensitive to the overall radiation effect in the
given region, not just that of a certain jet multiplicity. As such, we expect HT to give
a measure of the all-orders radiation effects.

The analysis is performed using the RIVET analysis framework [66, 67] and based on the one
used in [8].

3 Results

In this section, we present the main results of our study based on the setup described in the
last section. In fig. 2, the exclusive jet cross sections for up to 7 jets are shown at LO+PS and
NLO+PS (via the POWHEG scheme) accuracy at the Born level. While there are very large
differences between the three shower predictions at the leading order, there is good agreement
between the NLO+PS predictions at least for the 2- and 3-jet cross sections.

3.1 Leading Order

It is instructive to start by studying the properties of the baseline leading-order + shower
calculations, without including higher fixed-order corrections.

We use the leading-order event samples generated with SHERPA and by default let the
factorisation scale µ2F define the shower starting scale. As a way to estimate the uncertainty
associated with this choice, we vary the shower starting scale µ2PS by a factor kfudge ∈

[
1
2 , 2
]
,

µ2PS = kfudgeµ
2
F. Strictly speaking, shower starting scales not equal to the factorisation scale

lead to additional PDF ratios in the no-branching probabilities generated by the shower, but
for factor-2 variations these are consistent with unity (since the PDF evolution is logarithmic)
and we therefore neglect them. Compared to the shower starting scale, variations of the shower

11
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Figure 3: Transverse momentum of the first tagging jet (top left), second tagging jet (top
right), third jet (bottom left), and pseudorapidity of the third jet (bottom right) at LO+PS
accuracy. The bands are obtained by a variation of the default shower starting scale by a
factor of two.

renormalisation scale only have a marginal effect and are therefore not shown here. As we
are primarily concerned with the shower radiation patterns, we do not vary the scales in the
fixed-order calculation. The effect of those variations have been studied extensively in the
literature before, cf. e.g. [8, 18].

In fig. 3, the transverse momentum distributions of the two tagging jets and as well as the
transverse momentum and pseudorapidity distributions of the third-hardest jet are shown.
While the tagging jet pT spectra agree well between VINCIA and PYTHIA with dipole recoil,
differences are visible for the third-jet observables, with similar shapes but a slightly larger rate
produced by the PYTHIA dipole-recoil shower. The distributions obtained with the PYTHIA

default shower, on the other hand, neither agree in shape nor in the rate with the other two.
In fact, almost no suppression of radiation in the central-rapidity region is visible and the
shower radiation appears at a much higher transverse momentum scale. The high emission
rate in the default shower also implies that the tagging jets receive much larger corrections
with this shower than with the other models, as evident from the tagging jet pT distributions.
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Figure 4: Scalar transverse momentum sum in the central rapidity region (left) and around
the rapidity midpoint of the tagging jets (right) at LO+PS accuracy. The bands are obtained
by a variation of the default shower starting scale by a factor of two.

Figure 4 shows the HT distributions in the previously defined central and midpoint re-
gions. As for the third-jet pseudorapidity and transverse-momentum distributions, there is
only a minor disagreement between PYTHIA dipole-recoil shower and VINCIA, while PYTHIA’s
DGLAP shower generates significantly more radiation in both regions.

For all observables considered here, we also note that the variation of the shower starting
scale has a much more pronounced effect on the PYTHIA default shower than on VINCIA or
on PYTHIA when the dipole-recoil option is enabled. Moreover, the starting-scale variation
affects the pT distribution of the third jet more than it does the pseudorapidity distribution.
This indicates that, while a tailored shower starting scale for the default shower might be
able to mimic the phase space-suppression of the dipole/antenna showers to some extent, this
would not by itself be sufficient to represent the dipole-antenna emission pattern of the third
jet.

We close this subsection by comparing showers off our externally generated Born-level
VBF events (i.e., ones generated by SHERPA and passed to PYTHIA for showering) to showers
off internally generated ones (i.e., ones generated by PYTHIA’s HiggsSM:ff2Hff(t:WW) and
HiggsSM:ff2Hff(t:ZZ) processes). This is intended as a cross check for any effects caused
by differences in how PYTHIA treats external vs internal events. For instance, for external
events, the external generator is responsible not only for computing the hard cross section
but also for setting the shower starting scale, via the HDF5 scales dataset (equivalent to the
Les Houches SCALUP parameter [68, 69]). For our VBF events, the choice made in SHERPA is
identical to the factorisation scale eq. (3),

SHERPA VBF events: µ2PS ≡ µ2F =
Ĥ2

T

4
=

1

4


∑

j

pT,j +
√
M2

H + p2T,H




2

.

For internally generated VBF events, PYTHIA’s choice of the factorisation scale, and thereby
also the shower starting scale, is designed to reflect the off-shellness of the two virtual-boson

13



SciPost Physics Submission

0.6

0.8

1

1.2

1.4

Ratio PYTHIA/VINCIA Internal Events

PYTHIA 8.3

p T
,j 1

0.6

0.8

1

1.2

1.4

p T
,j 2

5

10

15

20

25

30

p T
,j 3

2

4

6

8

10

12

14

H
T

(c
en

tr
e)

0 20 40 60 80 100 120 140

10
20
30
40
50
60
70
80
90

GeV

H
T

(m
id

po
in

t)

VINCIA

PYTHIA Default
PYTHIA Dipole

External Events

SHERPA 2+PYTHIA 8.3

0 20 40 60 80 100 120 140
GeV

Figure 5: Ratio of PYTHIA to VINCIA at LO+PS accuracy, comparing internal (left) and
external (right) events. The bands are obtained by a variation of the factorisation scale
(internal events) and shower starting scale (external events) by a factor of two.

t-channel propagators, cf. eq. (5),

PYTHIA VBF events: µ2PS ≡ µ2F =
√
m2

T,V1
m2

T,V2
≡
√

(M2
V1

+ p2T,q1
)(M2

V2
+ p2T,q2

) .

This choice ensures that the factorisation scale and shower starting scale will always be at
least of order M2

V even when the outgoing quarks have low pT �MV, while for very large pT
values, it asymptotes to the geometric mean of the quark pT values. While the minimum of
the SHERPA choice is of the same order, O(MH) ∼ O(MV), the large-transverse-momentum
limit is considerably larger. The expectation is therefore that, in the absence of matching
or merging corrections, SHERPA-generated Born events will lead to higher amounts of hard
shower radiation than PYTHIA-generated ones.

In fig. 5, the ratio of the two PYTHIA showers to VINCIA is shown for the pT and HT

spectra using (left) PYTHIA LO and (right) SHERPA LO events. We immediately note that,
in the low-p⊥ limit, the excess of soft radiation generated by PYTHIA’s default shower (red)
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persists in both samples. In the high-p⊥ regions, the agreement between the simple shower
and the two dipole/antenna options (blue and yellow) tends to be best for PYTHIA’s internal
hard process. This likely originates from the lower value for the default shower starting scale
in PYTHIA, which, as discussed above, imitates the propagator structure of the Born process
as closely as possible and hence should to some extent set a natural boundary for strongly
ordered propagators in the shower. For the dipole/antenna showers, the sensitivity to the
starting scale is far milder, as the relevant kinematic information is encoded in the dipole
invariant masses independently of the choice of starting scale.

3.2 Next-to-Leading Order Matched

In fig. 6, the POWHEG-matched transverse momentum distributions of the four hardest jets
are collected. In comparison to the LO+PS case discussed in the last section, it is directly
evident that the Born-jet pT distributions are in good agreement between all three shower
models, including the default PYTHIA one, for which the tagging jet pT distributions under-
shoot the VINCIA curve only by an approximately constant factor of order of five per cent.
After POWHEG matching, almost perfect agreement is found for the tagging jet transverse
momentum distributions obtained with VINCIA and PYTHIA with dipole recoil, as can be
seen in fig. 8. The NLO corrections are, however, slightly smaller for the former. The scale
choice of the POWHEG emission has only mild effects on all three showers for these tagging-jet
observables.

Good agreement is also found between all three shower models for the pT of the third jet, as
shown in the bottom left panel of fig. 6. It must be noted that, again in the case of the PYTHIA

default shower, this agreement is subject to appropriately vetoing harder emissions than the
POWHEG one, which requires the definition of the POWHEG scale according to the minimal
pT in the event, corresponding to the POWHEG:pThard = 2 setting, cf. section 2.3.1. Other
choices again lead to too hard third jets and heavily increased radiation in the central rapidity
region, as can be inferred from the (relative) rapidity distributions of the third jet in the top
row of fig. 7, where the importance of a judicious POWHEG scale choice is especially visible.
As for the tagging jet spectra, the agreement in both the third-jet transverse momentum
and rapidity predictions between VINCIA and the dipole-improved PYTHIA shower is almost
perfect, as shown in fig. 9. While the correction (which in this case is essentially a LO matrix-
element correction) is positive for VINCIA, it is negative for the dipole-improved PYTHIA

shower. Moreover, in the case of VINCIA, this correction affects mostly the high-pT and
the central-rapidity region, whereas for PYTHIA’s dipole-improved shower, the correction is
negligible at zero rapidity but bigger (and almost) constant at larger rapidities as well as for
the transverse momentum.
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Figure 6: Transverse momentum of the first tagging jet (top left), second tagging jet (top
right), third jet (top left), and fourth jet (top right) at NLO+PS accuracy in the POWHEG

scheme. The bands are obtained by a variation of the hard scale in the vetoed showers as
explained in the text.

16



SciPost Physics Submission

NLO + Vincia (Powheg)
NLO + Pythia Default (Powheg)
NLO + Pythia Dipole (Powheg)
Powheg-Box v2 + Pythia 8.3

1

10 1

Pseudorapidity of the Third Jet

d
σ

/
d

η
j 3

[f
b]

-4 -2 0 2 4

1

1.5
2

2.5
3

3.5

ηj3

R
at

io

NLO + Vincia (Powheg)
NLO + Pythia Default (Powheg)
NLO + Pythia Dipole (Powheg)
Powheg-Box v2 + Pythia 8.3

1

10 1

Pseudorapidity Difference of the Third and Tagging Jets

d
σ

/
d

η
∗ j 3

[f
b]

-4 -2 0 2 4

1

1.5
2

2.5
3

3.5

η∗
j3

R
at

io

NLO + Vincia (Powheg)
NLO + Pythia Default (Powheg)
NLO + Pythia Dipole (Powheg)
Powheg-Box v2 + Pythia 8.3

10−1

1

10 1

Pseudorapidity of the Fourth Jet

d
σ

/
d

η
j 4

[f
b]

-4 -2 0 2 4

5

10

15

20

ηj4

R
at

io

NLO + Vincia (Powheg)
NLO + Pythia Default (Powheg)
NLO + Pythia Dipole (Powheg)
Powheg-Box v2 + Pythia 8.3

10−1

1

10 1

Pseudorapidity Difference of the Fourth and Tagging Jets

d
σ

/
d

η
∗ j 4

[f
b]

-4 -2 0 2 4

5

10

15

20

η∗
j4

R
at

io

Figure 7: Pseudorapidity (left column) and relative rapidity to the tagging jets (right column)
of the third jet (top row) and fourth jet (bottom row) at NLO+PS accuracy in the POWHEG

scheme. The bands are obtained by a variation of the hard scale in the vetoed showers as
explained in the text.
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Figure 8: Detailed comparison of the PYTHIA dipole and VINCIA LO+PS and POWHEG

NLO+PS predictions for the transverse momentum of the first tagging jet (left) and the
second tagging jet (right).
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Figure 9: Detailed comparison of the PYTHIA dipole and VINCIA LO+PS and POWHEG

NLO+PS predictions for the transverse momentum (left) and rapidity of the third jet (right).
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Figure 10: Scalar transverse momentum sum for |η| < 0.5 (left) and around the rapidity
midpoint of the tagging jets (right) at NLO+PS accuracy in the POWHEG scheme. The bands
are obtained by a variation of the hard scale in the vetoed showers as explained in the text.

The bottom right pane in fig. 6 and the bottom row in fig. 7 compare the pT and (rela-
tive) rapidity predictions of the three shower models. While again rather good agreement in
these distributions is found for the VINCIA shower and the dipole-improved PYTHIA shower,
PYTHIA’s default shower produces a harder spectrum, located more in the central rapidity
region. Here, it is worthwhile noting that for two-jet POWHEG matching, the emission of the
fourth jet is uncorrected in either of the shower models, so that the effects visible in these
distributions are solely produced by the showers.

Lastly, fig. 10 shows the scalar transverse momentum for |η| < 0.5 (left) and around the
tagging jet midpoint (right) in the POWHEG NLO+PS scheme. In both distributions, the
three shower models produce similar results for HT > 40 GeV, while in the complementary
region again only VINCIA and the dipole-improved PYTHIA shower agree. In this soft region,
the default PYTHIA shower again predicts more radiation than the other two. As before, a
variation of the POWHEG scale choice leads to significant effects in the predictions of PYTHIA’s
default shower, but has only mild effects on the dipole-improved shower and VINCIA.

3.3 Comparison of Matching and Merging

In figs. 11 to 13, we compare the VINCIA NLO-matched predictions presented in the last
section to an O(αS) tree-level merged calculation using the CKKW-L scheme implemented
for VINCIA. For the latter, we include the exclusive zero-jet and inclusive Sudakov-weighted
1-jet predictions in the plots (dashed lines).

The uncertainty bands of the merged predictions (labelled VINCIA MESS O(αS)) are ob-
tained by a variation of the shower renormalisation scale as per section 2.2. As VINCIA’s
merging implementation reweights event samples by a ratio of the strong coupling as used in
the shower to the one used in the fixed-order calculation, this variation effectively amounts
to an intertwined scale variation of the hard process as well. The uncertainty bands of the
NLO-matched calculation are obtained by the variation of the p⊥,hard scale as in the previous
section.
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Figure 11: Comparison between LO+PS, POWHEG NLO+PS, and CKKW-L-merged predic-
tions for the transverse momentum of the first (left) and second (right) tagging jet.
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Figure 12: Comparison between LO+PS, POWHEG NLO+PS, and CKKW-L-merged predic-
tions for the transverse momentum (left) and pseudorapidity (right) of the third jet.
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Figure 13: Comparison between LO+PS, POWHEG NLO+PS, and CKKW-L-merged predic-
tions for the scalar transverse momentum sum for |η| < 0.5 (left) and around the pseudora-
pidity midpoint of the tagging jets (right).
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Figure 14: Tree-level merged predictions with up to four additional jets for the pseudorapidity
(left) and transverse momentum (right) of the Higgs and tagging jets system.

Taking into account their respective accuracies, we observe good agreement between the
matched and the merged predictions for the transverse momentum and pseudorapidity spec-
tra. We expect the small differences that are visible to trace back mainly to the lack of
unitarity in the CKKW-L scheme. This explanation is supported by the fact that the merged
calculation overshoots the matched ones and that e.g. for the pT,j3 distribution, the inclu-
sive Sudakov-reweighted 1-jet contribution already agrees in shape and magnitude with the
matched distributions, while the exclusive zero-jet contributions only adds to the rate, i.e
overall normalisation. In addition, we wish to note again that the mismatch of the POWHEG

and VINCIA ordering variables is only treated approximately via the use of vetoed showers,
while the correct shower history is taken into account in the merged calculation. Furthermore,
we have used two different renormalisation and factorisation scales in the two calculations.
Because the renormalisation scale variation in VINCIA’s merging affects the renormalisation
scale of the hard process, as alluded to above, the renormalisation scale mismatch is covered
to some degree by the scale variations in the merging.

The situation is different for the HT distributions, cf. fig. 13. In the merged calculation,
more soft radiation is predicted in the central pseudorapidity region than in the matched one.
The distribution is solely governed by the one-jet sample there, while the zero-jet sample
contributes significantly above 60 GeV only. In the midpoint region, however, the merged
calculation predicts the same shape as the matched one, but with an overall bigger rate. Barely
any contribution stems from the exclusive zero-jet sample in this observable. This confirms
the properties of the two HT observables mentioned in section 2.4. When the observable
is defined over the central rapidity region, it is sensitive to the radiation of the third jet
in the soft region, i.e. for HT . 60 GeV, but becomes sensitive to the tagging jets in the
complementary hard region, i.e. above around 60 GeV. In contrast, defining the observable
over the region around the pseudorapidity midpoint of the two tagging jets cleans it from
almost all contributions stemming from the Born configuration (only a tiny contribution from
soft radiation off the Born survives). Due to this property, the latter of the two definitions is
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Figure 15: Tree-level merged predictions with up to four additional jets for the scalar trans-
verse momentum sum in the central (left) and midpoint (right) pseudorapidity region.

particularly suited in the study of the radiation pattern regarding its coherence.
The comparison of NLO matching and O(αS) tree-level merging provides a strong cross

check of both methods.

3.4 Merged with up to Four Jets

In addition to the one-jet merged calculation of the last section, we here present a tree-level
merged calculation with up to four additional jets (i.e., 6 jets in total when counting the
tagging jets) using VINCIA’s CKKW-L implementation. We consider the effect of additional
hard jets on the spectra of the pseudorapidity and transverse momentum of the Higgs plus
tagging jets system as well as the herein before mentioned scalar transverse momentum sum
in the two pseudorapidity regions. The uncertainty bands of the merged calculation shown
in the figures are obtained by a variation of the renormalisation scale prefactors kR, c.f.
section 2.2, in VINCIA’s shower and merging, again effectively representing a variation of the
renormalisation scale in the hard process as well, cf. section 3.3. As visible from fig. 15, the
inclusion of additional hard jets does not change the pseudorapidity spectrum, but increases
the rate of the transverse momentum spectrum in the high-pT region. This correction is
exactly what is expected from a multi-jet merged calculation. The dashed lines in fig. 15
represent the different multi-jet contributions to the merged prediction. Again as expected,
the Born sample dominates in the low-pT region and the one-jet sample in the region around
40 GeV, whereas higher multiplicities take over in the harder regions above ∼ 70 GeV. It is
worth highlighting, however, that, at least in the region 70 GeV . pT . 150 GeV, the two-jet
sample dominates with only sub-leading corrections from the three- and four-jet samples.

Figure 14 shows the HT distributions in the central and midpoint pseudorapidity regions
defined in section 2.4. As for the one-jet merged prediction presented in section 3.3, the high-
HT region is dominated by the Born sample, while for small HT, the samples with additional
jets define the shape. Although all samples with additional jets contribute to the central HT
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over the full shown spectrum, the three-jet sample (denoted 1j in fig. 14) is the dominant
extra-jet sample everywhere. Above approximately 60 GeV, the Born sample becomes the
predominant one, highlighting again that this region is sensitive mainly to the tagging jets.
Corrections from the multi-jet merging are negligible there.

As before, the situation is different in the midpoint region between the two tagging jets
(right-hand pane in fig. 14). There, the Born sample has almost no impact (< 5%) on the HT

distribution and the one-jet sample (denoted 1j in fig. 14) dominates in the region . 70 GeV,
while the two-jet sample (denoted 2j in fig. 14) does in the region 70 GeV . HT . 100 GeV.
This emphasises the finding of the last section that the midpoint HT is clean of contributions
from the tagging jets and therefore more relevant in the study of coherence effects in QCD
radiation.

3.5 Hadronisation and Multi-Parton Interactions

Although we focused on the parton level throughout this study, we wish to close by estimating
the size of non-perturbative corrections arising from hadronisation, fragmentation, and multi-
parton interactions. To this end, we employ PYTHIA’s string fragmentation and interleaved
MPI model [11] using the default PYTHIA [52] and VINCIA [27] tunes.

Figures 16 to 18 compare PYTHIA’s simple shower and VINCIA predictions on the parton
level, hadron level, and hadron level with MPIs at LO+PS accuracy. As expected from the
cuts employed in our analysis, cf. section 2.4, the inclusion of non-perturbative effects in either
of the two simulations has only a negligible effect on most observables studied here, although
the discrepancy between the two showers is slightly mitigated. A notable exception are the
VINCIA predictions for the HT in the two pseudorapidity regions defined in section 2.4, for
which the inclusion of MPIs leads to a substantial excess in radiation in the soft region. This
means, that in those regions the coherent suppression of radiation by VINCIA is overwhelmed
by the soft radiation off secondary (non-VBF-like) interactions, at least with our set of cuts.
It should be noted here that firstly, this excess is not visible in the distributions obtained with
PYTHIA’s simple shower, and secondly, the discrepancy between the simple shower and VINCIA

overpowers the MPI effect greatly. As such, the inclusion of hadron-level and MPI effects
emphasise that VINCIA’s antenna shower reproduces QCD coherence effects more faithfully
than PYTHIA’s simple shower.

4 Conclusion

We have here studied the effect of QCD radiation in VBF Higgs production, focusing in
particular on how the coherent emission patterns exhibited by this process are modelled by
various parton-shower approaches that are available in the PYTHIA event generator, and how
significant the corrections to that modelling are, from higher fixed-order matrix elements.
From a QCD point of view, the main hallmark of VBF is that gluon emission in the central
region originates from intrinsically coherent interference between initial- and final-state radi-
ation. In DGLAP-style showers, which are anchored in the collinear limits and treat ISR and
FSR separately, this interplay can only be captured at the azimuthally integrated level via
angular ordering, while it is a quite natural element in dipole- and antenna-based formalisms,
in which initial-final colour flows enter on an equal footing with final-final and initial-initial
flows. Hence we would expect the latter (dipole/antenna-style) approaches to offer more ro-
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Figure 16: Detailed comparison of PYTHIA DGLAP and VINCIA LO+PS predictions at parton-
level, hadron-level, and hadron-level plus MPI for the transverse momentum of the first tag-
ging jet (left) and the second tagging jet (right).

bust and reliable modelling of the radiation patterns in VBF than the former (DGLAP-based)
approaches.

To this end, we have compared the VINCIA antenna shower to PYTHIA’s default (“sim-
ple”) shower, including both its (default) DGLAP and its dipole-improved option (“dipole
recoil”). We have shown that at leading order, large discrepancies pertaining to the radiation
of additional jets in the central rapidity regions exist between the default PYTHIA predictions
and the ones obtained with the dipole option and VINCIA, while the latter two appear more
consistent. This effect even concerns observables related to the tagging jets, i.e. those jets
which are described by the matrix element and not the shower. We have confirmed that these
findings apply to both external (LHA) and internal events.

After matching the showers to the NLO, these discrepancies mostly vanish for observables
sensitive to the tagging jets or third jet only, while larger effects remain visible in observables
sensitive to higher jet multiplicities. These findings are largely consistent with the ones from
an earlier study [8], although it is worth highlighting that the disagreement found for the
default PYTHIA shower is fairly less pronounced here after matching it to the NLO via the
POWHEG scheme. We consider this to be an effect of a more careful treatment of the ordering-
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Figure 17: Detailed comparison of PYTHIA DGLAP and VINCIA LO+PS predictions at par-
ton level, hadron level, and hadron-level plus MPI for the transverse momentum (left) and
pseudorapidity of the third jet (right).

variable mismatch between POWHEG and PYTHIA. Based on this, we recommend varying the
POWHEG:pThard mode contained in the PowhegHooks classes to gain an estimate of systematic
matching uncertainties. To reduce the uncertainties pertaining to the use of vetoed showers
with POWHEG samples, a truncated and vetoed shower should be used with both PYTHIA and
VINCIA. As alluded to above, such a scheme is not (yet) available for either of the showers
considered in the present study.

In addition to NLO matching, we have studied the effect of including higher-multiplicity
tree-level matrix elements in the shower via the CKKW-L merging scheme in VINCIA. We
have confirmed that the NLO-matched and one-jet merged calculations lead to comparable
predictions for observables sensitive to the third jet. For a set of inclusive observables, we
presented predictions from a tree-level merged calculation at O(α4

S). This yields corrections of
the order of 20% in the hard tail above around 60 GeV of the transverse momentum spectrum
of the Higgs-plus-tagging-jet system. Considering the mild corrections in the ranges studied
here, it is evident that the sample with four additional jets (i.e. the 2 + 4-jet sample) will
contribute significantly only in the very hard tails HT � 100 GeV and p⊥,Hjj � 150 GeV.

Although not the main focus of this study, we have gained a first estimate of non-
perturbative corrections on the observables studied here. While we generally found only
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Figure 18: Detailed comparison of PYTHIA DGLAP and VINCIA LO+PS predictions at parton
level predictions for the central HT (left) and midpoint HT (right).

minor changes from the inclusion of hadron-level corrections, the inclusion of MPIs had a rel-
atively more significant effect on VINCIA’s predictions than on the ones obtained with PYTHIA’s
default shower. This affected the rate of radiation in soft as well as central pseudorapidity
regions, i.e. precisely the regions in which VINCIA predicts a strong coherent suppression, so
that the MPI contamination becomes relatively more important.

With this study we also proposed two new observables, the scalar transverse momentum
sum in the central pseudorapidity region and around the pseudorapidity midpoint between
the two tagging jets. We have shown that both of these observables are sensitive to multi-jet
radiation, but highlighted that the former becomes dominated by the tagging jets in the hard
region HT & 60 GeV. As an alternative, we demonstrated that the HT sum around the
midpoint between the tagging jets is free of this contamination, with the Born sample only
giving a negligible contribution. Due to the strong suppression of radiation in this region, both
observables do however receive corrections from the modelling of multi-parton interactions,
which would be relevant to study further.

While it has been considered a coherent shower before, this has been the first time that
the radiation pattern of the VINCIA antenna shower was studied with a dedicated focus on its
coherence. At the same time, we have here showcased NLO matching and tree-level merging
methods with VINCIA, which are both publicly available as of the PYTHIA 8.306 release.
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A POWHEG+VINCIA Setup

As mentioned in section 2.3.1, a dedicated vetoed-shower UserHook for POWHEG+VINCIA was
developed as part of this work and is included in the standard PYTHIA distribution from
version 8.306 onwards. At the time of submission of this manuscript, it is included in the file
PowhegHooksVincia.h, in the directory include/Pythia8Plugins/, which also contains the
standard PowhegHooks.h file. (Note that these two files may be merged into one in a future
release; if so, simply omit the corresponding step below.)

Assuming you have a main program that is set up to run POWHEG+PYTHIA (such as the
example program main31.cc included with PYTHIA), the following changes (highlighted in
red) will modify it to run POWHEG+VINCIA:

• Include the PowhegHooksVincia.h header file:
#include "Pythia8Plugins/PowhegHooksVincia.h"

(you can leave any existing #include "Pythia8Plugins/PowhegHooks.h" statement;
the two will not interfere with each other).

• Replace the POWHEG+PYTHIA user hook pointer by a POWHEG+VINCIA one:
shared ptr<PowhegHooks> powhegHooks;

powhegHooks = make shared<PowhegHooksVincia>();

pythia.setUserHooksPtr((UserHooksPtr)powhegHooks);

In addition, the following settings should be used:

• Switch on VINCIA’s showers and allow them to fill all of phase space:
PartonShowers:model = 2 # Use Vincia’s shower model.

Vincia:pTmaxMatch = 2 # Power showers (to be vetoed by hook).

• Enable shower vetoes via the PowhegHooksVincia (same as for PowhegHooks):
POWHEG:veto = 1 # Turn shower vetoes on.

• Turn QED/EW showers and interleaved resonance decays off:
Vincia:ewMode = 0 # Switch off QED/EW showers.

Vincia:interleaveResDec= off # No interleaved resonance decays.

While enabling QED showers (Vincia:ewMode = 1 | 2) should not pose any problems
in the matching, it is not validated (yet). We recommend against using the EW shower
(Vincia:ewMode = 3) with the POWHEG matching.

• Since POWHEG-BOX event samples come unpolarised, VINCIA’s helicity shower should
be turned off (the helicity shower needs a polarised Born state):
Vincia:helicityShower = off # Use helicity-averaged antennae.

We note that VINCIA offers the possibility to polarise Born configurations using matrix
elements provided via interfaces to external generators. We have not studied this in the
present work.

• In the POWHEG-specific settings, the number of outgoing particles in the Born process
is defined as usual, e.g. =2 for the 2 → 2 example in main31.cc, or =3 for the 2 → 3
VBF-type processes studied in this work:
POWHEG:nFinal = 3 # Number of outgoing particles in the Born process.
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• We highly recommend varying the POWHEG:pThard mode, for both PYTHIA and VINCIA,
to estimate matching systematics. This is how the shaded bands in most of the plots
shown in this paper were obtained.
POWHEG:pThard = 2 # Vary (=0,=1,=2) to estimate matching systematics.

• We also recommend checking all accepted emissions rather than only the first few:
POWHEG:vetoCount = 10000

• The following settings are simply left at their recommended values (the same as for
main31.cmnd); see the onlin manual section on POWHEG for details:
POWHEG:pTemt = 0

POWHEG:emitted = 0

POWHEG:pTdef = 1

• For completeness, (we note that we have anyway turned both MPI and QED showers
off in this study):
POWHEG:MPIveto = 0

POWHEG:QEDveto = 2

The event files generated by POWHEG should be provided in exactly the same way as for
PYTHIA+POWHEG. If the POWHEG events were generated in several separate batches, for
instance, the resulting files can be read as usual, using PYTHIA’s “subruns” functionality:

! Powheg Subruns.

Beams:frameType = 4

Main:numberOfSubruns = 3

!--------------------------------------------------------------------

Main:subrun = 0

Beams:LHEF = POWHEG-BOX-V2/VBF_H/run/pwgevents-0001.lhe

!--------------------------------------------------------------------

Main:subrun = 1

Main:LHEFskipInit = on

Beams:LHEF = POWHEG-BOX-V2/VBF_H/run/pwgevents-0002.lhe

!--------------------------------------------------------------------

Main:subrun = 2

Main:LHEFskipInit = on

Beams:LHEF = POWHEG-BOX-V2/VBF_H/run/pwgevents-0003.lhe

B VINCIA CKKW-L Setup

Since PYTHIA version 8.304, the release is shipped with VINCIA’s own implementation of the
CKKW-L merging technique, suitably modified for sector showers.

In the spirit of the last section, let us again assume you have a main program running
CKKW-L merging with PYTHIA’s default (“simple”) shower. (We note that this is a hypothet-
ical setup for the purpose of this study, as the default merging implementation in PYTHIA 8.3
does not handle VBF processes. An algorithmic fix is planned for PYTHIA version 8.307 or
later.) The following changes are needed to alter it to run VINCIA’s CKKW-L merging instead,
with changes again highlighted in red.
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• Turn VINCIA and its sector showers on6:
PartonShowers:model = 2 # Use Vincia’s shower model.

Vincia:sectorShowers = on # Turn sector showers on.

• Disable VINCIA components that are not (yet) handled by the merging:
Vincia:ewMode = 0 # Switch off QED/EW showers.

Vincia:interleaveResDec= off # No interleaved resonance decays.

Vincia:helicityShower = off # Use helicity-averaged antennae.

These three limitations are intended to be temporary and may be lifted in future up-
dates; users are encouraged to check for changes mentioning VINCIA’s merging imple-
mentation in the Update History section of PYTHIA’s HTML manual in releases from
8.307 onwards.

• Enable the merging machinery and set the merging scale definition (in this study, all
event samples were regulated by a kT cut, so kT-merging is turned on):
Merging:doMerging = on # Turn merging machinery on.

Merging:doKTMerging = on # Set kT as merging scale.

• Set the merging scale to the desired value in GeV (note that the cuts on the event
samples should be more inclusive than the ones in the merging!):
Merging:TMS = 20 # Value of the merging scale in GeV.

• Replace the Process string by one obeying VINCIA’s syntax, i.e. encased in curly brackets
and with whitespaces between particles, and switch the dedicated VBF treatment on:
Merging:process = { p p > h0 j j } # Define the hard process.

Vincia:mergeVBF = on # Enable merging in VBF systems.

• Set the number of additional jets with respect to the Born process (e.g. for the VBF
process considered here, the number of additional jets is 4, while the total number of
jets is 6):
Merging:nJetMax = 4 # Merge samples with up to 4 additional jets.
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[13] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Pres-
tel, C. O. Rasmussen and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191, 159 (2015), doi:10.1016/j.cpc.2015.01.024, 1410.3012.

[14] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli and M. Zaro, The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton shower simulations,
JHEP 07, 079 (2014), doi:10.1007/JHEP07(2014)079, 1405.0301.

[15] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06, 043
(2010), doi:10.1007/JHEP06(2010)043, 1002.2581.
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[57] R. Corke and T. Sjöstrand, Improved Parton Showers at Large Transverse Momenta,
Eur. Phys. J. C 69, 1 (2010), doi:10.1140/epjc/s10052-010-1409-0, 1003.2384.

[58] T. Plehn, D. Rainwater and P. Z. Skands, Squark and gluino production with jets, Phys.
Lett. B 645, 217 (2007), doi:10.1016/j.physletb.2006.12.009, hep-ph/0510144.

[59] S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP
12, 045 (2003), doi:10.1088/1126-6708/2003/12/045, hep-ph/0310083.

[60] K. Hamilton, P. Richardson and J. Tully, A Modified CKKW matrix element merging
approach to angular-ordered parton showers, JHEP 11, 038 (2009), doi:10.1088/1126-
6708/2009/11/038, 0905.3072.

[61] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated
showers, JHEP 05, 053 (2009), doi:10.1088/1126-6708/2009/05/053, 0903.1219.

[62] S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated
showers, JHEP 08, 123 (2011), doi:10.1007/JHEP08(2011)123, 1009.1127.

[63] P. Nason and C. Oleari, Generation cuts and Born suppression in POWHEG (2013),
1303.3922.

36



SciPost Physics Submission

[64] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04,
063 (2008), doi:10.1088/1126-6708/2008/04/063, 0802.1189.

[65] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72, 1896
(2012), doi:10.1140/epjc/s10052-012-1896-2, 1111.6097.

[66] A. Buckley, J. Butterworth, D. Grellscheid, H. Hoeth, L. Lönnblad, J. Monk, H. Schulz
and F. Siegert, Rivet user manual, Comput. Phys. Commun. 184, 2803 (2013),
doi:10.1016/j.cpc.2013.05.021, 1003.0694.

[67] C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet
version 3, SciPost Phys. 8, 026 (2020), doi:10.21468/SciPostPhys.8.2.026, 1912.05451.

[68] E. Boos et al., Generic User Process Interface for Event Generators, In 2nd Les Houches
Workshop on Physics at TeV Colliders (2001), hep-ph/0109068.

[69] J. Alwall et al., A Standard format for Les Houches event files, Comput. Phys. Commun.
176, 300 (2007), doi:10.1016/j.cpc.2006.11.010, hep-ph/0609017.

37





9
Conclusions

In this thesis, work on Monte Carlo event generators with a special focus on parton
showers was presented. Monte Carlo event generators are indispensable tools for collider
phenomenology, i.e., the study of particle interactions in high-energy collisions, as they
facilitate tests of our understanding of the Standard Model as well as searches for previ-
ously unexplained new-physics phenomena. This thesis addressed two pressing issues in
state-of-the-art event generators: the increasing computational overhead related to event
generation and the need for higher-precision simulations.

In chapter 2, a brief introduction to Quantum Field Theory and the Standard Model,
the theoretical framework underpinning modern particle physics, was given. After review-
ing the weak and strong interactions as local gauge theories, the master formula for the
calculation of cross sections in collider experiments was highlighted and their importance
in particle physics phenomenology detailed. Subsequently, chapter 3 covered the meth-
ods employed in Monte Carlo event generators and contained a detailed overview over
existing implementations. Special attention was paid to an in-depth description of parton
showers as well as matching and merging techniques. The discussion in chapters 2 and 3,
in particular the latter, provides the foundations of the remaining chapters of this thesis,
in which, based on published works, the core results are presented.

The full-fledged implementation of so-called sector showers in the VINCIA antenna
shower has been presented in chapter 4, extending a previous proof-of-concept implemen-
tation of final-state sector showers [327] to initial-state radiation and showers in coloured
resonance decays. The most prominent feature of sector showers is that they are maxi-
mally bijective, meaning that the minimal possible number of so-called shower histories is
produced during the shower evolution. In best cases (when only gluons are emitted), any
given multi-parton configuration can be traced back through a single sequence of interme-
diate states. For configurations with multiple quark pairs, the number of histories is given
by the number of viable quark pair permutations. For each permutation, the history is
again unique. The sector-shower implementation in VINCIA has been made public with
the PYTHIA 8.304 release.

A CKKW-L-based tree-level multi-jet merging scheme tailored to VINCIA’s sector
showers was introduced in chapter 5. The maximally bijective nature of sector show-
ers reduces the factorial scaling of the number of shower histories to an effective linear
scaling with the number of final-state particles. As the number of histories drives the effi-
ciency and memory footprint of CKKW-L-style merging schemes, the use of sector showers
drastically improves the memory allocation and event-generation time to an approximate
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constant scaling with the particle multiplicity. This was demonstrated in vector boson
production at the LHC with up to nine additional jets. The new merging scheme, dubbed
MESS as an abbreviation for matrix elements plus sector showers, has been implemented
in VINCIA and was made publicly available with the PYTHIA 8.304 release.

Another major bottleneck in state-of-the-art event generation is the evaluation of one-
loop matrix elements, which is typically done by interfacing automated one-loop providers.
In chapter 6, a new C++ interface to the MCFM parton-level event generator has been
presented. It gives access to MCFM’s extensive library of analytic one-loop matrix ele-
ments in a way that they can be used in any event generation framework. The interface
was tested both with the PYTHIA and SHERPA event generators. For a large number of
processes pp → n with n ≤ 4, it was shown that the corresponding one-loop matrix ele-
ments are evaluated at least a factor ten faster using the interface than with automated
tools. In a typical next-to-leading order merged setup of SHERPA, it was demonstrated
that the use of the new interface decreases the particle-level event-generation time by
30%–80%. The interface has been made publicly available in a pre-release of MCFM 10.0
and will be part of the next major MCFM release. It is the first publicly-available analytic
one-loop provider.

The precision frontier has been addressed in chapter 7, where a novel method to match
parton showers to next-to-next-to-leading order calculations has been outlined. Facilitated
by the use of VINCIA’s sector showers in conjunction with iterated (next-to-)leading-order
matrix-element corrections and the MCFM interface, the method allows, for the first time,
the fully-differential matching at this precision similar in style to the POWHEG method.
As a proof of feasibility, all components of the matching scheme have been implemented
and validated in VINCIA for the simplest case of e+e− → 2j.

In chapter 8, VINCIA’s sector shower was employed in a study of Higgs boson pro-
duction via vector boson fusion. The distinct colour topology of these processes poses
a non-trivial environment for parton showers, as the radiative suppression in the cen-
tral rapidity region has to be modelled appropriately. It has been demonstrated that
both VINCIA’s sector shower and PYTHIA’s dipole-improved shower reproduce this co-
herent suppression more faithfully than PYTHIA’s default transverse-momentum-ordered
DGLAP shower. The reliability of these predictions was tested as higher-order perturba-
tive corrections are incorporated via the POWHEG next-to-leading order matching scheme
in PYTHIA and VINCIA and via multi-jet merging with up to four additional jets using
VINCIA’s CKKW-L implementation. The latter was suitably extended to deal with pro-
cesses with jets on the Born level. With a judicious and careful setup, all three showers
can be brought to agreement for observables sensitive to radiation up to the matched
order. Systematic uncertainties pertaining to the use of the POWHEG matching scheme
with the PYTHIA framework have been addressed. This study provided a strong proof that
VINCIA can be employed for the simulation of non-trivial processes in real-life setups. In
addition, for the first time, an implementation of vetoed showers for POWHEG matching
with VINCIA has been provided. It has been made publicly available with the PYTHIA
8.306 release.

With the implementations detailed in this thesis, PYTHIA 8.3 offers three different, ded-
icated parton-shower models with associated matching and merging algorithms: PYTHIA’s
default DGLAP shower, the VINCIA antenna shower, and the DIRE dipole shower. The
availability of three independent showers offers great potential for cross checks and the
assessment of uncertainties.

The ever-increasing demand for detailed simulations of collider processes drives the
development of Monte Carlo tools regarding their efficiency as well as their accuracy
and precision. With the advent of the high-luminosity LHC, the precision constraints
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and efficiency bottlenecks of current event-generation tools will be more pressing than
ever before. The unprecedented amount of data not only of the high-luminosity LHC
but also future collider experiments will only be of its anticipated value if it can be
compared to theoretical predictions with high statistical significance. This issue is well
known and efforts to tackle these challenges are ongoing. In this thesis, a small subset
of these efforts was presented, focussed on the improvement of parton showers and their
systematic combination with fixed-order calculations.

An appreciably important facet of parton-shower algorithms today and in the future
will be the formal assessment of their logarithmic accuracy. Although this is a highly
active field with rapid developments, no attempt was made within the scope of this thesis
to determine the formal accuracy of VINCIA’s sector showers. This cannot be neglected
in future developments. While sector showers may complicate the analytic assessment of
their accuracy through the use of non-trivial step functions, they offer the possibility for
simple algorithms to address shortcomings. It is, for instance, known that dipole/antenna
showers assign the wrong subleading-colour factor to regions in which emissions have com-
mensurate transverse momentum but disparate angles [288]. To this end, for instance the
assignment of colour factors along the lines proposed in [281,320,321] is straight-forward
as a tentative post-branching state is anyway constructed for every trial branching, from
which the angular ordering of the emission can be read off.

With the availability of full-fledged sector showers a series of further developments
is conceivable. Currently, sector showers are constructed in such a way that emissions
are restricted to their respective phase-space regions via explicit sector vetoes. As this
amounts to a potentially large oversampling of the branching phase space, an immediate
improvement is therefore the refinement of sector sampling methods. This will directly
translate into a speed-up of up to a factor of three, as this is the number by which the
phase space is on average oversampled. Work in this direction is currently ongoing.

In future work, the sector merging approach may be extended towards next-to-leading
order merging. Given the immense efficiency gains observed when switching from conven-
tional CKKW-L tree-level merging to sectorised CKKW-L merging, it is not unreasonable
to expect comparable gains at NLO. As NLO multi-jet merging de-facto represents the
state-of-the-art for many observables and processes studied at the LHC, this will be one of
the key requirements for shaping VINCIA and its sector showers up for the use by experi-
mental collaborations. To this end, not only the implementation of existing schemes, such
as UNloPs or MiNlo, but also the generalisation of NLO matrix-element corrections
should be considered. The latter will be an important ingredient of a generalised NNLO
matching framework in VINCIA.

To date, a wide variety of standard-model processes can be calculated fully-differentially
at NNLO accuracy. Despite the existence of a few techniques to combine these with
parton-shower simulations, NNLO matching has not reached the same maturity as NLO
matching, which by now is well-established. Facilitated by the use of the antenna frame-
work in both the fixed-order calculation and the shower, the proof-of-concept NNLO
matching presented in chapter 7 can be upgraded to a full-fledged framework, including
hadron collisions. This will require the inclusion of second-order antenna functions not
only in VINCIA’s FSR but also ISR evolution, at least for the first (double-)emission. In
this context, it will be interesting to compare this NNLO matching scheme to existing,
merging-based approaches such as UN2LOPS or MiNNLOPS, with a particular focus on
matching-scheme uncertainties.

Extending the last point, a complete second-order shower evolution may be considered
in future developments. This will constitute an important aspect of endeavours to reach
higher logarithmic accuracies with sector showers. As such, it goes hand in hand with
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the assessment of their formal accuracy and efforts to correct shortcomings of the existing
strongly-ordered components.

In chapter 6, it was noted that the calculation of real corrections constitutes one of
the biggest bottlenecks in NLO calculations. To mitigate this, an extension of the MCFM
interface to tree-level matrix elements may be considered in the future, as this will lead
to comparable speed-ups over automated matrix-element generators as seen for one-loop
matrix elements. As NNLO calculations will become more important and more widely
employed, the inclusion of MCFM’s two-loop amplitudes in this interface may be considered
in the future as well.

Lastly, it should be emphasised that as of today, a broad range of Monte Carlo tools
with different specialisations, strengths, and weaknesses exists. In light of both, the
efficiency bottlenecks and the need for revised methods to reliably calculate Monte Carlo
uncertainties, it may be worthwhile to consider more streamlined methods to connect
different areas of expertise and to allow for simple and meaningful scheme and model
variations.
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