
for physicists
C++ Crash Course

P. Skands - Monash University - Feb 2019

Morning 3h:
Basics

Afternoon 3h:
Advanced

45 mins slides + 2h15 hands-on 15 mins slides + 2h45 hands-on

START START

Content

• Compiled Code

• The main program

• The Standard Library (STL)

• Scope

• Loops

• Functions, Modularity, Libraries

• Make & Makefiles

• Vectors and Maps

• Pointers (& memory)

• Classes

• Working with a real code

Basics Advanced

Beware:
Inheritance, templates, iterators, inlining,
operator overloading, shared libraries,
preprocessor directives, compiler flags,
exception handling, debugging,
parallelisation, and much else not covered or
not in depth here.

Disclaimer
• This course is ultra brief

• Focus on concepts

• Aim: get to be able to write and work with some code

Disclaimer
Still, this is pretty dry stuff

At the end of today, use it
to collide particles

Compiled Code

Code Binary
(machine code)

int main() {
 // This is an example code
 int someNumber = 4;
 int otherNumber = 5;
 int sum = someNumber + otherNumber;
 // Exit program. Return status code
 return 0;
}

00000000: cffa edfe 0700 0001 0300 0080 0200 0000
00000010: 1000 0000 6803 0000 8500 2000 0000 0000 h.....
00000020: 1900 0000 4800 0000 5f5f 5041 4745 5a45 H...__PAGEZE
00000030: 524f 0000 0000 0000 0000 0000 0000 0000 RO..............
00000040: 0000 0000 0100 0000 0000 0000 0000 0000
00000050: 0000 0000 0000 0000 0000 0000 0000 0000
00000060: 0000 0000 0000 0000 1900 0000 3801 0000 8...
00000070: 5f5f 5445 5854 0000 0000 0000 0000 0000 __TEXT..........
00000080: 0000 0000 0100 0000 0010 0000 0000 0000
00000090: 0000 0000 0000 0000 0010 0000 0000 0000
000000a0: 0700 0000 0500 0000 0300 0000 0000 0000
000000b0: 5f5f 7465 7874 0000 0000 0000 0000 0000 __text..........
000000c0: 5f5f 5445 5854 0000 0000 0000 0000 0000 __TEXT..........
…

main.cc a.outg++ main.cc
Source Code ExecutableCommand

(assuming your C++ compiler is called g++)

Same principle
as FORTRAN

main.cc main.exeg++ main.cc -o main.exe

main.cc a.outg++ main.cc
Source Code ExecutableCommand

main.cc maing++ main.cc -o main

To compile and
execute code:

> g++ main.cc -o main
> ./main
>

Nothing happens, because
we are not writing
anything to the screen yet.

The computer
doesn’t care

Think a.out is a
stupid name?

Your default toolbox
The Standard Library

• To get some output, we’ll use some functionality from the “standard
library”, a very useful box of tools to start from.
• Just an example. Lots more where that came from. Google it.

// STL headers are put in <…> brackets.
// Include the STL header file that deals with input- and output streams
#include <iostream>

// Having included that header file, we can now use it in our main program

int main() {
 // This is an example code
 int someNumber = 4;
 int otherNumber = 5;
 int sum = someNumber + otherNumber;
 // Write out result to the screen
 std::cout << sum << std::endl;
 // Exit program. Return status code
 return 0;
}

“std::” means: look for these functions in the namespace “std”

You’ll see many of these include statements in real C++ code

Ordinary code lines always end on “;”

(see next slide)

http://www.cplusplus.com/reference/

http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/

Namespaces
• When you link lots of code together, what if several different variables

have the same name? Namespaces protect against that.
• E.g., stuff from the Standard Library lives in the namespace std

• Since we use the std functions a lot, let’s include that namespace

// Include the STL header file that deals with input- and output streams
#include <iostream>

// Automatically look for things in the std namespace
using namespace std;

int main() {
 int someNumber = 4;
 int otherNumber = 5;
 int sum = someNumber + otherNumber;
 // Write out result to the screen
 cout << sum << endl;
 // Exit program. Return status code
 return 0;
}

The std:: namespace
and using std

The code has gotten easier to
read, more compressed, at the
price of being less explicit about
where “cout” and “endl” are
really coming from.

The “using” statement means we now automatically look in the std namespace

Disambiguation

Scope
• In C++, variables are automatically created and destroyed

• (This saves memory, compared with never killing them, but it means
you have to think about what’s alive and what’s dead)

with if … then … else example

// STL headers and namespace
#include <iostream>
using namespace std;

int main() {
 int someNumber = 4;
 int otherNumber = 5;
 int sum = someNumber + otherNumber;
 if (sum != 9) {
 string message=“You cannot count”;
 sum = 9;
 } else {
 string message=“You count just fine”;
 }
 // Print whether things went well or not
 cout<<message<<endl;
 // Exit main program
 return 0;
}

This isn’t going to work.

The variable “message” only exists
inside each of the if clauses
separately. Destroyed when they end.

I.e., it does not exist outside those
“scopes”.

(But since “sum” exists globally, the
part where it is reset to 9 does work)

Scope
• In C++, variables are automatically created and destroyed

• (This saves memory, compared with never killing them, but it means
you have to think about what’s alive and what’s dead)

with if … then … else example

// STL headers and namespace
#include <iostream>
using namespace std;

int main() {
 int someNumber = 4;
 int otherNumber = 5;
 int sum = someNumber + otherNumber;
 string message;
 if (sum != 9) {
 message=“You cannot count”;
 sum = 9;
 } else {
 message=“You count just fine”;
 }
 cout<<message<<endl;
 // Exit main program
 return 0;
}

Solution:

Move declaration of message outside
the if () scope.

Loops

• printf(“…”) is old-fashioned C. In C++, use cout<<“ … “<<endl;

• count++ : increase the variable count by one (hence the name C++)

// Pseudocode for a “for” loop.
for (starting condition; ending condition; iteration operation) {
 …
}

Some nice tricks:
 i += 5; // Add 5 to i
 i *= 2; // Multiply i by 2
 i /= 2; // Divide i by 2 (but beware integer division! E.g., 5/6 = 0, but 5.0/6.0 = 0.8333)
Also works with strings (example of overloading)
 message += “ appended text”;

For and While
// Pseudocode for a “for” loop.
for (int i=1; i<=500; i++) {
 cout<<“I will not throw paper airplanes in class”<<endl;
}

// Pseudocode for a “while” loop.
int i = 0;
while (++i <= 500) {
 cout<<“I will not throw paper airplanes in class”<<endl;
}

++i <= 500 : add 1, then compare (preferred today)
i++ <= 500 : compare using original i, then add 1

// Alternative pseudocode for a “while” loop.
int i = 0;
while (i++<=500) {
 cout<<“I will not throw paper airplanes in class”<<endl;
}

and ++i vs i++

Functions
• If you know you’re going to be using the geometric mean of two

integers a lot, encapsulate it in a function
• Note: sqrt() resides in the cmath header, so we must include that too

// STL headers and namespace
#include <cmath>
#include <iostream>
using namespace std;

// You can put functions above your main program
double geoMean(int i1, int i2) {
 return sqrt(i1*i2);
}

int main() {
 int someNumber = 4;
 int otherNumber = 5;
 double mean = geoMean(someNumber,otherNumber);
 cout<<“Geometric mean is = “<<mean<<endl;
 // Exit main program
 return 0;
}

Note: this function will happily take negative inputs and
will then happily crash. Protecting against garbage
parameters is important but not part of this tutorial

Note also: only takes integer inputs. Kind of special
purpose. Better to define in terms of doubles.

// Headers and namespace
#include <cmath>
using namespace std;

// Avoid name clashes: define a namespace
namespace averages {
// List of functions provided
 double geoMean(int i1, int i2);
}

geomean.h
Header File

Modularity
Someone asked you to produce a code to calculate the geometric mean.
How would you deliver it? As a library which they can link to.

geomean.cc
Source Code

// Put all declarations in .h file.
#include “geomean.h”

// The .cc file contains the meat
double averages::geoMean(int i1, int i2) {
 return sqrt(i1*i2);
}

geomean.og++ -c geomean.cc
Object FileCommand
(machine code)

+

Contains the
compiled code for

this code piece

http://geomean.cc

Linking

maing++ main.cc geomean.o -o main
ExecutableCommand

// Include headers and namespace
#include <iostream>
include “geomean.h”
using namespace std;
using namespace averages;

int main() {
 int someNumber = 4;
 int otherNumber = 5;
 double mean = geoMean(someNumber,otherNumber);
 cout<<“Geometric mean is = “<<mean<<endl;
 // Exit main program
 return 0;
}

main.cc

Note: at the time main.cc is compiled, it needs
to have access to the header file geomean.h.
That means I need to have a copy of it, in
addition to geomean.o, and I need to know
where both of those files reside.

(machine code)

So you got your geomean code compiled.
How do you use it?

Same principle
as FORTRAN

http://main.cc
http://main.cc

Libraries
• Libraries are collections of object files:

• You can create one, libgeomean.a, by using the “ar” utility, which
should exist on your unix system

• ar cru libgeomean.a geomean.o stuff.o otherstuff.o

• You can link your main program to them

maing++ main.cc -o main libgeomean.a
ExecutableCommand

More precisely, “static libraries”; shared ones not covered here

(machine code)

Often, you will link your code to several
libraries, and they won’t all be in the same place.

g++ main.cc -o main -I/usr/local/include -L/usr/local/lib -lgeomean -larithmean

include path for header files include path for library files
shorthand

Same principle
as FORTRAN

http://main.cc

Define what target we normally want to make
default : main

Define a variable. This one a list of objects to include in libgeomean.a
LIBOBJECTS= geomean.o

This defines the rule for creating libgeomean.a
libgeomean.a : $(LIBOBJECTS)
 ar cru libgeomean.a $(LIBOBJECTS)

This defines the rule for creating geomean.o from geomean.cc and geomean.h
geomean.o : geomean.cc geomean.h
 g++ -c geomean.cc

Make the main program
main : main.cc libgeomean.a
 g++ main.cc -o main libgeomean.a

Normally we also define a way to clean up
clean :
 rm -f main ./*.o ./*.a

Makefile

Make
& Makefiles

• Say you’ve got a couple of auxiliary .cc files. You want to compile them
into objects, put them in a library, and link your main program to it

> make
g++ -c geomean.cc
ar cru libgeomean.a geomean.o
g++ main.cc -o main libgeomean.a
>

Same principle
as FORTRAN

note:
use
tabs

note: no
space

before =

C++ Vectors
• Vectors are examples of a C++ container

• Data types designed to store other data

// Include headers and namespace
#include <vector>
using namespace std;

int main() {
 vector<int> numbers;
 // Put some numbers on the “back” of the vector
 numbers.push_back(4);
 numbers.push_back(5);
 double sum = numbers[0] + numbers[1];
 // Exit main program
 return 0;
}

 // Alternative with a loop. Start sum off at zero.
 double sum = 0.0;
 // Determine length of vector (= length of loop)
 int length = numbers.size();
 for (int i=0; i<=length; ++i) sum += numbers[i];

http://www.cplusplus.com/reference/vector/vector/

C/C++ start counting at zero

For simple tasks,
you can also use an
array

int numbers[2];
numbers[0] = 4;
numbers[1] = 5;

or:
int numbers[2] = {4, 5} ;

Wrong. Should be < not <= Why?

http://www.cplusplus.com/reference/vector/vector/

C++ Maps
• Maps are examples of a C++ container

• Data types designed to store other data
// Include headers and namespace
#include <iostream>
#include <map>
using namespace std;

int main() {
 map<string,double> salaries;
 // Put some salaries in the map
 salaries[“Alice”]=200000.0;
 salaries[“Bob”] =150000.0;
 // Print out the salaries
 cout<<“The salary of Alice is $”<<salaries[“Alice”]<<endl;
 cout<<“The salary of Bob is $”<<salaries[“Bob”]<<endl;
 // Exit main program
 return 0;
}

http://www.cplusplus.com/reference/map/map

Note: looping over map entries requires the use
of iterators (intuitively, you iterate through the
entries, since they are not numbered). Not
covered here. If you need them, google them.

http://www.cplusplus.com/reference/map/map

C-TYPE

You now know
a few basics

Time to take a
test drive

Problems
• Using what you have learnt in these slides, write a simple main program that

writes “hello world” in the terminal.

• Using loops, compute and write out the first 10 terms of the Fibonacci sequence;
0, 1, 1, 2 , 3, 5, 8, 13, … ; then try 50 Fibonacci numbers.

• Encapsulate your Fibonacci calculator as a function, and call it from your main
program. The writing out of the numbers should still be done in the main program.

• Recursively? Consider efficiency and speed. The Unix “time” command can be
used to check execution speed. E.g.: time ./a.out

• Put your Fibonacci calculator in a namespace, to disambiguate it.

• Split the Fibonacci calculator off as a separate c++ “library”, fibonacci.cc and
fibonacci.h. Include them in your main program, and link to the library.

• Write a Makefile to handle the dirty work.

Command-Line Arguments
• E.g.:

• You can define
main() to include
arguments.

• Will be read in as
“character arrays”
and then up to you
to convert to
whatever you want
them to be (int,
double, string, …)

How to write a program that takes one or more arguments from the command line

> ./main 50
0, 1, 1, 2, …

#include <iostream>
#include <sstream>
using namespace std;
int main(int argc, char* argv[]) {

 // argc tells how many arguments provided by user.
 // Can use this to check for correct number of arguments
 if (argc <= 1) {
 cout << "Error: no argument provided. Aborting."<<endl;
 return 0;
 }

 // If at least one parameter provided, read it (as “int”):
 int parameter;
 // 1) Convert input character array to input-string-stream
 istringstream myStream(argv[1]);
 // 2) Read parameter from the stream (and cast as “int”)
 myStream >> parameter;
 // Check if parameter could be read ok
 if (!myStream) {
 cout<<"Error: non-integer argument. Aborting."<<endl;
 return 0;
 }

 cout<<"Parameter value = "<<parameter<<endl;
 // Exit main program
 return 0;
}

Advanced C++
… in 3 hours

Some kind advice: Failing to understand pointers when writing C
code is just waiting to shoot yourself in the foot, if not the head.

Memory
• In C++ you can ask what the memory location of anything is. Let’s try:

#include <iostream>
using namespace std;

int main ()
{
 int var1;
 double var2;

 cout << "Address of var1 variable: " << &var1 << endl;
 cout << "Address of var2 variable: " << &var2 << endl;

 return 0;
}

The & (address-of) operator tells us where the variable is
located in memory

Pointers
• We can refer to a variable by using its location in memory (so long as

that location doesn’t change).

• A pointer contains such a memory location, together with information on
how to interpret the data found there (is it int, double, or whatever…)

#include <iostream>
using namespace std;

int main ()
{
 // Declare a normal integer, then declare a pointer to an int
 int var1 = 10;
 int *intPtr;
 // Let the intPtr point to the location of var1
 intPtr = &var1;
 cout<<“The address of var1 is “<<intPtr<<endl;
 // Since intPtr knows it is a pointer to an int,
 // we can dereference it to find out what’s actually there.
 cout << “The value at that address is “ << *intPtr << endl;
 return 0;
}

Pointers and Memory

int rate = 100;

int *s_rate;
(value not specified yet)

s_rate = &rate;

Note: you can even create a pointer to a new object in one go, using new, not covered here.

Some major uses of Pointers
• 1) You have lots of some kind of variable. You’d like to do a loop where

each one successively is used and/or modified. You can collect them into
a vector, or you can create a pointer to such a variable and let that point to
each one in succession, and then do the operations using the pointer.

• Imagine you a very complicated data structure. You wouldn’t necessarily
want to go to the trouble of creating a vector of such objects, which
would slow you down as well as increase your memory usage.

• 2) Large program with complicated data structures. Define one instance of
each structure. Everyone else gets passed a pointer to that instance.

• Otherwise you risk ending with a proliferation of objects burning
memory and being out of sync with each other.

• 3) Sometimes it’s just easier to say the real one lives over there

• 4) Memory management (again mainly for large complex programs)

Caution: things can move in memory. Reallocations.

Values and References
• When you call a function in C++, a new copy of that variable is created

in the function you called. The original remains unmodified. Only the
value is passed, not the variable itself.

• So if you actually want to give the function your variable to modify?

// This function doesn’t do anything
void timesTwo(int i1) {
 i1 *= 2;
}
// i1 is modified locally inside this function, but
// the calling function doesn’t know or care.

// Send the function a reference.
void timesTwo(int& i1ref) {
 i1ref *= 2;
}
// This function does modify the original variable
// The reference is essentially a memory address,
// like a pointer, but without the need to dereference

Classes
• Classes are generalised

containers which can
contain not only data but
also functions (called
methods)

// Header: example of a class
class Rectangle {
 int width, height;
 public:
 void setDimensions(int,int);
 int area() {return width*height;}
};

// Main program
#include <iostream>
#include “rectangle.h”
using namespace std;
int main () {
 Rectangle rect;
 rect.setDimensions(3,4);
 cout << "area: " << rect.area() << endl;
 return 0;
}

// Implementation
#include “rectangle.h”
void Rectangle::setDimensions (int x, int y) {
 width = x;
 height = y;
}

rectangle.cc

rectangle.h

program.cc

Inheritance
When one object is a specialized version of
another object, there is an “is-a” relationship
between them. For example,
A student is a person.
A car is a vehicle.
A rectangle is a shape.

The specialized object has all of the characteristics of the general
object, plus additional characteristics that make it special.

In object-oriented programming, inheritance is
used to create / reflect such relationships.
+ Intuitive structure
+ avoids code duplication

Inheritance
Inheritance involves a base class and a derived class .

The base class is the general class and
the derived class is the specialized class.

The derived class is based on, or derived from, the base class.
You can think of the base class as the parent and the derived class as the child.

Inheritance
Inheritance involves a base class and a derived class .

The base class is the general class and
the derived class is the specialized class.

The derived class is based on, or derived from, the base class.
You can think of the base class as the parent and the derived class as the child.

class Person {

 public:
 // Constructors
 Person() {setName(“”);}
 Person(string nameIn) {
 setName(nameIn); }
 // Methods to set and get
 void setName(string nameIn) {
 name = nameIn; }
 string getName() {return name;}

 private:
 // Data members
 string name;
}

// Student class inherits from Person
class Student : public Person {

 public:
 void setMajor(Discipline d) {
 major = d; }
 Discipline getMajor() {
 return major; }
 void setAdvisor(Person *p) {
 advisor = p; }
 Person* getAdvisor() {
 return advisor; }

 private:
 Discipline major;
 Person* advisorPtr;
}

Working with Real Code

• We will now use a state-of-the-art C++ code to simulate particle
collisions at the Large Hadron Collider

• Instructions : PDF

• PYTHIA Homepage

http://home.thep.lu.se/~torbjorn/pdfdoc/worksheet8200.pdf
http://home.thep.lu.se/~torbjorn/Pythia.html

