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General-Purpose Event Generators

Calculate Everything = solve QCD — requires compromise!

Improve lowest-order perturbation theory,
by including the ‘most significant’ corrections
— complete events (can evaluate any observable you want)

The Workhorses

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String.
HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering.
SHERPA : Begun in 2000. Originated in “matching” of matrix elements to showers: CKKW-L.

+ MORE SPECIALIZED: ALPGEN, MADGRAPH, HELAC, ARIADNE, VINCIA, WHIZARD, (a)MC@NLO, POWHEG, HEJ,
PHOJET, EPOS, QGSJET, SIBYLL, DPMJET, LDCMC, DIPSY, HIJING, CASCADE, GOSAM, BLACKHAT, ...




PYTHIA

PYTHIA anno 1978
(then called JETSET)

LU TP 78-18
November, 1978

A Monte Carlo Program for Quark Jet
Generation

T. Sjostrand, B. Soderberg

A Monte Carlo computer program is
presented, that simulates the
fragmentation of a fast parton into a
jet of mesons. It uses an iterative
scaling scheme and is compatible with
the jet model of Field and Feynman.

PR = = - ——————

Note:
Field-Feynman was an early fragmentation model
Now superseded by the String (in PYTHIA) and
Cluster (in HERWIG & SHERPA) models.
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SUBROUTINE JETGEN{ND

COMMON /JET/ K(100:20s P£100452

£OMMON /PAR/ PUDs PS1: QIGMAs (X%: EBEG: WF1IN» IFLEBEG
COMMON /DATA1/ MESQ(?4+2) s CHIXtha12Ys PMAS{LY)
IFLEGN=(10-1FLBEG)Y/S

W=2.%EBEG

1=0

I1PD=0

4 FLAVOUR AND PT FOR FIRST GUARK

IFLi=1ABRS(IFLBEG?
PT1=QIGMA*SRRT (~ALOG{RANF (01}
PHUI1=4.28T2xRANF ()
pY4=PT4#COG(PHI1?

PY{=PT1#GIN{(PHIL)

100 I=1+1

= FLAVOUR AND PT FOR NEXT ANTIGUARK
IFLZ=1+INT(RANF (02 /PUD)
PT2=SIGNA*3QRT(—ALOGiRANFiD)))

PHIZ=6.2832%RANF (02
pY2=PT2+#COS{PHIZ]
PYZ=PTZ#8IN(PHIZ)

3 MESON FORMEDs SPIN ADDED AND FLAVOUR MIXED
KCIs1¥:NESQ(3*{IFL1—13+IFLE=IFLSGN3
ISPIN=INT(P31+RANF{022
K{T22)=1+F*IGPIN+K(I:1)
IFCK(Is1Y . LE.&Y GOTO 110
TMIX=RANF ({2}

KM=K (1421 -56+3%I5FIN N
H(I;2)=8+9*15PIN+1NTiTMIX+cMIX(KMs1}3+1NT(TMIX+CMIX(NM;2})
4, MESON MASS FROM TABLEs PT FROM CONSTITUENTS
440 P{I151=PMAS(K{Is2)]
PCI+1)=PY14+PX2
P{1.2)=PY1+PY2
PMTS=P£I¢1)**2+P(I52)**E+P(155)**E

5 RANDOM CHOICE OF X=€E+PZ)MESONI£E+PE}AVAILABLE GIVES E AND PZ
X=RaNF ()

IFCRANF (DY . LT.CXZ!] ¥l ,-X%%(1,/3.1
PeIs31=(X*H~PMTS/(X2UWII/Z,
Pelshd=CX*W+PMTB/(X¥UWIY/2,

& IF UNSTABLE, DECAY CHAIN INTO STABLE PARTICLES

420 IPD=IPD+Y '

IF(K¢IPD:2).GE.8) CcALL DECAYC(IPDsIX?
IECIPD.LT.1.AND.I.LE.T6) G0T0 120

7 FLAVOUR AND PT OF QUARK FORMED IN PAIR WITH ANTIQUARK ABOVE
IFL4=]FLZ
PX1=-PX2 i
EY4=-PYZ &

g8 1F ENOUSH E+PZ LEFT» GO TO 2
W=(4 ., -XY#U .

IF¢W.GT.WFIN.AND,I.LE.95? GOTO 100
MN=I
RETURHN

END




(PYTHIA)

PYTHIA anno 2013
(now called PYTHIA 8)

LU TP 07-28 (CPC 178 (2008) 852)
October, 2007

A Brief Introduction to PYTHIA 8.1

T. Sjostrand, S. Mrenna, P. Skands

(The Pythia program is a standard tool
for the generation of high-energy
collisions, comprising a coherent set
of physics models for the evolution
from a few-body hard process to a
complex multihadronic final state. It
contains a library of hard processes
and models for initial- and final-state
parton showers, multiple parton-parton
interactions, beam remnants, string
fragmentation and particle decays. It
also has a set of utilities and
interfaces to external programs. [..]

\
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~ 100,000 lines of C++

What a modern MC generator has inside:

e Hard Processes (internal, inter-
faced, or via Les Houches events)

e BSM (internal or via interfaces)
e PDFs (internal or via interfaces)
e Showers (internal or inherited)
e Multiple parton interactions
e Beam Remnants

e String Fragmentation

e Decays (internal or via interfaces)
e Examples and Tutorial

e Online HTML / PHP Manual

e Utilities and interfaces to
external programs



Divide and Conquer

Factorization = Split the problem into many (nested) pieces
+ Quantum mechanics = Probabilities @ Random Numbers

7Devemt — Phard X 7Dde(: X 7DISR X 7DFSR X 7DMPI = 7DHaLd Q...

Hard Process & Decays:
- 11--- ﬂ Use (N)LO matrix elements
— Sets “hard” resolution scale for process: Qmax

mé;m Altarelli-Parisi equations — differential evolution, dP/dQ?, as function
of resolution scale; run from Quax to ~ 1 GeV (This Lecture)

5% K MPI (Multi-Parton Interactions)

Additional (soft) parton-parton interactions: LO matrix elements

[ Initial- & Final-State Radiation (ISR & FSR):

N — Additional (soft) “Underlying-Event” activity

Hadronization
Non-perturbative model of color-singlet parton systems — hadrons




Recall : Jets z FraCtaISFirstLecture)

® Most bremsstrahlung is driven
by divergent propagators —
simple structure

® Amplitudes factorize in

singular limits (= universal
“conformal” or “fractal” structure)

Partons ab — P(z) = DGLAP splitting kernels, with z = energy fraction = E./(Ea+Eb)
“collinear”:
o 2 P(z) 2
M ab,. )2 C Mp(...,a+0,...
| F—l-l( y Ly Uy )| 9s 2(pa'pb)| F( y ) )|
Gluon j = “soft”: Coherence — Parton j really emitted by (i,k) “colour antenna”

Mpii(ononis ik 273 g3 PiPl) ik )

+ scaling violation: g = 4nas(Q?) Can apply this many times

— nested factorizations




Bremsstrahlung

For any basic process dJX —  (calculated process by process)
ds;1 dsi;
2 11 17
do dox 1 ~ Nco2g; dox
* —_— Si1  S1j
X
2 dSZQ dSQ

dox 2 ~ N0292 d0X+1 v

\\\ Si2 82
5 dS;3 d
$¢3 S35 dO'X_|_2

dO'X_|_3 ~ NCQQS
i3 S35

Factorization in Soft and Collinear Limits

P(z) : “DGLAP Splitting Functions”

2 i P(z) )
M(pepy P W 2o TE )
ij
2 Jg—0 28k 2
IM(...,pi,pjpK--)|° "= g¢2C IM(...,pi,Dk,---)
Sijsjk

“Soft Eikonal” : generalizes to Dipole/Antenna Functions (more later)



Bremsstrahlung

For any basic process dJX —  (calculated process by process)
ds;1 dsi;
2 11 17
do dox 1 ~ Nco2g; dox
* —_— Si1  S1j
X
2 dSiQ dSQj

dox 2 ~ NCQQE dox41 v

\\\ Si2 82
dS'g ng'
2 v J dO'X_|_2

dO'X_|_3 ~ NCQQS

Si3  S3j
Singularities: mandated by gauge theory
Non-singular terms: process-dependent
SOFT COLLINEAR

M(Z° = q;0:G: )| 28, 1 Sii S
iz amee e [ (5 20)
IM(Z° = q1qK)| SijSjk  SIK \Sjk  Sij

M(H® = q;9:q:)|? 25, 1 Sii S
M _ qg{Qk)L :ggz(JF[ : +—< L 4 3"“+2>]
IM(H® = qrGK )| SijSjk  SIK \Sjk  Sij

SOFT COLLINEAR +F




Bremsstrahlung

For any basic process dJX —  (calculated process by process)
ds;1 dsi;
2 11 17

do dox 1 ~ Nco2g; dox
—_— Si1  S1j

ds;o dso;
d0X+2NNC29§ = 2“705(7)(4—1 v

\\\ Si2 82
ds;3 dss;
2 2503 273 d0X+2

dO'X_|_3 ~ NCQQS
Si3 33j

Iterated factorization
Gives us a universal approximation to «o-order tree-level cross sections.
Exact in singular (strongly ordered) limit.
Finite terms (non-universal) = Uncertainties for non-singular (hard) radiation

But something is not right ... Total o would be infinite ...




Loops and Legs

Coefficients of the Perturbative Series

The corrections from

X X+ SN Quantum Loops are
missing

X+1T X+2 X+3

Universality (scaling)
X+2 —X+3 — ... .

Jet-within-a-jet-within-a-jet-...




Unitarity — Evolution (Resummation)

Kinoshita-Lee-Nauenberg (Lecture 2):
(sum over degenerate quantum states = finite) 0

g Loop = - Int(Tree) + F

Parton Showers neglect F = Leading-Logarithmic (LL) Approximation

When (X) branches to (X+1): Gain one (X+1). Loose one (X).
— evolution equation with kernel

dUX+1
dO‘X

Evolve in some measure of resolution ~ hardness, 1/time ... ~ fractal scale

— includes both real (tree) and virtual (loop) corrections




Unitarity — Evolution (Resummation)

» Interpretation: the structure evolves! (example: X = 2-jets)
* Take a jet algorithm, with resolution measure “Q7, apply it to your events
* At a very crude resolution, you find that everything is 2-jets




Evolution Equations

What we need is a differential equation
Boundary condition: a few partons defined at a high scale (Qf)

Then evolves (or “runs”) that parton system down to a low scale (the
hadronization cutoff ~ 1 GeV) — It’s an evolution equation in Qf

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant Probability to remain undecayed in the time interval [t;,t;]
dP(t) b2
t1
Decay probability per unit time =1 —cnAt 4 O(cRy)
dPres(t —dA
( ) = — CN A(tl, If)

dt dt

(requires that the nucleus did not already decay)

[ Aty 1) : “Sudakov Factor” ]




Nuclear Decay

. . . t9
Nuclei remaining undecayed _ B B dp
after time t = A(t1,12) = exp ( /t1 di dt
100 %
Seco
rder
50 %
Exponential
Early [ | Late
0% T Times |T|meI — ——
-50 % |-

-100 %




The Sudakov Factor

N
In nuclear decay, the Sudakov factor counts:
How many nuclei remain undecayed after a time t
Probability to remain undecayed in the time interval [¢;,t;]
2
A(t1,t2) = exp <—/ CN dt) = exp (—cy At)
t1
\ J

The Sudakov factor for a parton system counts:

The probability that the parton system doesn’t evolve
(branch) when we run the factorization scale (~1/time) from a
high to a low scale

Evolution probability per unit “time”

dPreS (t) _dA
= — A
dt i~ evalnh

(replace t by shower evolution scale)

(replace cn by proper shower evolution kernels)
- J




What’s the evolution kernel?

cf. conformal (fractal) QCD, Lecture 1
(and PDF evolution, Lecture 2)

DGLAP splitting functions

Can be derived from collinear limit of MEs (pp+pc)? = O

+ evolution equation from invariance with respect to Qr = RGE

DGLAP |4 22
(E.g., PYTHIA) Poqel2) = Cp— s
P, ; . be(2) dtdz . s\ T ONCTTOA Ty
,C
c Peqq(?) = Tr(z*+(1-2)%),
7 1+ 22
P, = ¢ ,
Db = 2 Pa q qv(z) €q 1_2
c = ]- a 1 —+ Z
pe=(1-z)p P (2) = € 1 |
— Z
4 )
dQ2 .. with Q% some measure of “hardness”
dt = — dIn Q2 = event/jet resolution
Qz measuring parton virtualities / formation time / ...
\_ J

Note: there exist now also alternatives to AP kernels (with same collinear limits!): dipoles, antennae, ...



Coherence

QED: Chudakov effect (mid-fifties)

WVAVAVAVAVAVAVAVAVAY o
cosmic ray v atom

Approximations to
A R Coherence:
Angular Ordering (HERWIG)

Illustration by T. Sjéstrand

reduced normal
ionization ionization Angular Vetos (PYTHIA)

Coherent Dipoles/Antennae
(ARIADNE, Catani-Seymour, VINCIA)

emulsion plate

QCD: colour coherence for soft gluon emission
2 2

— an example of an interference effect that can be treated probabilistically

More interference effects can be included by matching to full matrix elements



Coherence at Work

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions

Consider one specific phase-space point (eg scattering at 45°)
2 possible colour flows: a and b

a) “forward”
colour flow 2 |

> <

Pemit

b) "backward” 0° 45° 90° 135° 180°
colour flow 0 (gluon, beam)

> <

Figure 4: Angular distribution of the first gluon emission in
qq — qq scattering at 45°, for the two different color flows.
The light (red) histogram shows the emission density for the

forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

P. Skands



http://arxiv.org/abs/arXiv:1210.6345

Initial-State vs Final-State Evolution

Virtualities are Virtualities are
Timelike: p%2>0 Spacelike: p?<0
3 Start at Q2 = Qf?
“Start at Q* = QFZ. . Constrained backwards evolution
Forwards evolution

towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft ...




(Initial-State Evolution)

DGLAP for Parton Density

ik ol

— Sudakov for ISR

Contains a ratio of PDFs

(" )

B [ [tmax da’ fo(@', 1) agpe(t) T
A(:Eptmaxat) - eXpi_/t dt Z/ ! beEt’ 2T P_)bc (l”)}

¢ trax aabc(t/) :L,/fa (:C/ t/)
p— — dt/ /d Pa—> C : ?
AP <\ /t ; . 2 el 2) xfy(x,t)

9 | y




Initial-Final Interference

A tricky aspect for many parton showers. Illustrates that quantum # classical !

Who emitted that gluon?

Initial

Initial
State State + State

4 - 4 -
k4 - k4 -
d -~ d -~
4 - 4 -
> 4 5 'y
4 - ’
4 -~ d -
4 -~ * -
-~ 4

Real QFT = sum over amplitudes, then square — interference (IF coherence)

Respected by dipole/antenna languages (and by angular ordering), but not by
conventional DGLAP (- all PDFs are “wrong”)

Separation meaningful for collinear radiation, but not for soft ...




Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the (LL) bremsstrahlung terms of the rest of
the perturbative series (approximate infinite-order resummation)

Universality (scaling)

—
Jet-within-a-jet-within-a-jet-...

No. of Quantum Loops
(virtual corrections)

%,
—+2 —+3 @,
2
T T Cancellation of real & virtual singularities
—+2 —+3 TExponentiation

fluctuations within fluctuations

Note! LL # full QCD! (= matching)

(real corrections)




The Shower Operator

H = Hard process

dog _ /dq)H My 12 85(0 — O({p}a))

Born 10

Born {p} : partons

But instead of evaluating O directly on the Born final state,
first insert a showering operator

{p} : partons

Born dog 0
s — /dCbH ’M]({)‘Q S({p}H, O) S : showering operator

+ shower dO

Unitarity: to first order, S does nothing

S(irtu,0) =0(0 = O@pin)) + Olas)



The Shower Operator

To ALL Orders (Markov Chain)

S({prx, 0) = Altsiart, thaa)0(O—O({p)x))

“Nothing Happens” —  “Evaluate Observable”

thad dA .
- [Tt D0
tstart dt

“Something Happens” —  “Continue Shower”

All-orders Probability that nothing happens

2 qp (Exponentiation)
A(th tg) =exp | — dt — Analogous to nuclear decay
4 dt N(t) = N(0) exp(-ct)



A Shower Algorithm

Note: on this slide, | use results from the theory of Random numbers, interesting in itself but would need more time to give details

1. Generate Random Number, R € [0,1]

Solve equation R = A(tl, t) for ¢ (with starting scale #7)

Analytically for simple splitting kernels,
else numerically (or by trial+veto)
— t scale for next branching

0 i S
70, o
21\ g
L e

o_oﬁk : ; ; — |
00 02 04 06 0.8 1.0

Yi = Sii/Sik = 1-Xk

2. Generate another Random Number, R, € [0,1]

To find second (linearly independent) phase-space invariant

I.(z,t
Solve equation R, = 2(2t) for z (at scale )
I (Zmax(t), t)
2 /
With the “primitive function” I, (z’ t) — / dz dA (,t )
Zmin (t) dt t'=t

3. Generate a third Random Number, Ry, € [0,1]
Solve equation R, = ¢/27 for ¢¢ = Can now do 3D branching



Perturbative Ambiguities

The final states generated by a shower algorithm
will depend on

. Ordering & Evolution-
1. The choice of perturbative evolution variable(s) ¢lel, ‘ scale choices

2. The choice of phase-space mapping dCD,Ef]Jrl /d®,,. <«<—— Recoils, kinematics

3. The choice of radiation functions a;, as a function of the phase-space variables.

\ Non-singular terms,
. . . . Reparametrizations,
4. The choice of renormalization scale function pyp. SEb|eading Colour

Phase-space limits / suppressions for
hard radiation and choice of
hadronization scale

5. Choices of starting and ending scales.

— gives us additional handles for uncertainty estimates, beyond just pr
(+ ambiguities can be reduced by including more pQCD — matching!)




Jack of All Orders, Master of None?

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits

— gets the bulk of bremsstrahlung corrections right, but fails equally
spectacularly: for hard wide-angle radiation: visible, extra jets

... which is exactly where fixed-order calculations work!

So combine them!

F @ LOXLL F+1 @ LOXLL F&F+1 ™ TOXLL
2(| o || o2 | ... 2| o@ | o
§* 1 0(()1) a%l) aél) e + §* 1 J(()l) ugl) Uél) . —
<o - A0 [ 0| 6@ |, <of ,© H A0 [ 50 |
0 1 2 3 - 0 1 2 3 e

k (legs) k (legs)




Summary: Parton Showers

Aim: generate events in as much detail as mother nature

— Make stochastic choices ~ as in Nature (Q.M.) = Random numbers

Factor complete event probability into separate universal pieces, treated
independently and/or sequentially (Markov-Chain MC)

Improve Born-level theory by including ‘most significant’
corrections
Resonance decays (e.g., t=bW*, W—qq’, H' =y, Z’—u'y, ...)
Bremsstrahlung (FSR and ISR, exact in collinear and soft” limits)

Hard radiation (matching)
Hadronization (strings/clusters, discussed tomorrow)

Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein
correlations, colour reconnections, hadron decays, ...

Coherence*
Soft radiation = Angular ordering or Coherent Dipoles/Antennae

P. Skands
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Image Credits: istockp

P. Skands



Example: H® — bb

Born + Shower

2 2

Shower Approximation
to Born + |

Born +1 @ LO




Fxample: H® — bb

Born + Shower

28; 1 S S
S I + gichl © <3+~7’f)]+,,,
Si755k SIK \Sjk Sij

Born +1 @ LO

2s; 1 (s S
ooy |2y L (20 5ty

Si7S 5k SIK \Sjk Sij

Total Overkill to add these two. All we really need is just that +2 ...



Adding Calculations

Born x Shower

X X+ X+2 X+3

X+l X+2  X+3

X+1T @ LO

(with pt cutoff, see previous lectures)

- Fixed-Order Matrix Element

Shower Approximation

X+l

X+l X+2 X+3

X+l X+2 X+3

Fixed-Order ME above pr cut
- & nothing below




Adding Calculations

Born x Shower

X+1 @ LO x Shower

(with pt cutoff, see previous lectures)

X X+ X+2 X+3

X+l X+2  X+3

X+

X+ X+2 X+3

X+l X+2  X+3

- Fixed-Order Matrix Element

Shower Approximation

Fixed-Order ME above pr cut
& nothing below

Shower approximation above pr cut
& nothing below




— Double Counting

Born x Shower + (X+1) x shower

Double Counting of
terms present in

both expansions

X+
X+l X+2  X+3
X+l X+2  X+3

Worse than useless

- Fixed-Order Matrix Element

Shower Approximation

Double counting above pt cut
& shower approximation below



Interpretation

» A (Complete Idiot’s) Solution — Combine

1. [X]ye + showering Run generator for X (+ shower)

2. [X + 1 jet]ye + showering Run generator for X+1 (+ shower)

3. ... Run generator for ... (+ shower)
» Doesn’t work Combine everything into one sample

e [X]+ shower is inclusive

e [X+1] + shower is also inclusive

X inclusive X exclusive
What you X+1 inclusive X+1 exclusive What you
get X+2 inclusive # X+2 inclusive want

Overlapping “bins” One sample



Matching 1: Slicing

Examples: MLM, CKKW, CKKW-L

First emission: “the HERWIG correction”

Use the fact that the angular-ordered HERWIG parton shower has a “dead
zone” for hard wide-angle radiation (seymour, 1995)

F @ LO; xLL (HERWIG Matched)

F @ LOxLL-Soft (HERWIG Shower) F+1 @ LOXLL (HERwWIG Corrections)

2| o |o2| ... 2| o | & ... 2| o || o
21| o0 | o || o pul-1| IRCN U T = Bl o || o0 || o
= = 2
<o - 20 || s@ ] ;o <o/ o0 RN 0 | ;o <4 - A0l o | o
10 1 2 3 ... 0 1 2 3 10 1 2 3
k (legs) k (legs) k (legs)

Many emissions: the MLM & CKKW-L prescriptions

F @ LO xLL-Soft (excl) F+1 @ LOXxLL-Soft (excl) F+2 @ LOXLL (incl) F @ LOyxLL (MLM & (L)-CKKW)

2 0(()2) ... 2 g(g?) ... 2 gé2> ... 2 g(@
21| o0 || o B e W e 1| EORCEN N = Zaf| o0 | o®
S S S S
o B ] S ] S [ S e e
1T o 1 2 0 1 2 0 1 2 1T o 1 2
k (legs) k (legs) k (legs) k (legs)

(CKKW & Ldonnblad, 2001)

(Mangano, 2002)

(+many more recent; see Alwall et al., EPJC53(2008)473)



Slicing: The Cost

1. Initialization time 2. Time to generate 1000 events
(to pre-compute cross sections (Z — partons, fully showered &
and warm up phase-space grids) matched. No hadronization.)
10000s
1000 SHOWERS
1000
1000s > Q>
o
100s S\
¥
100s \2
S
10s
10s
1s
1s 0.1s
2 3 4 5 6 2 3 4 5 6
Z—n : Number of Matched Emissions Z—n : Number of Matched Emissions

Z—udscb ; Hadronization OFF ;ISR OFF ; udsc MASSLESS ;b MASSIVE ; Ecm = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 (+MADGRAPH 4.4.26) ;
gec/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)



P. Skands

The Gain

Example: W + Jets

Number of jets in
op—=?W+X at the LHC

-rom O (W inclusive) to
W+3 jets

PYTHIA includes
matching up to W+1 jet
+ shower

With ALPGEN, also the
LO matrix elements for 2
and 3 jets are included

(but Normalization still
only LO)

oW +2 Nidjets) [pb]

10°

0.5

mcplots.cern.ch
WiJets

7000 GV o]e

- Number of Jets B
" ATLAS
n Alpgen + Pythia 6 (350:P201
f Pythia 6 (350:P2011)
.
b
LHC 7 TeV Y #,
W+]ets 43\2 Qxy
Erj > 20 GeV 3‘/17 .
g
il < 2.8 A
. . &
1 ] 1 | - ] ) ! !
0 1 2 3
Njel
Ratio to ATLAS
0 1 2 3

! 1
Rivet 1.8.07= 66k events

l.
mcplots.cem.ch




Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

LO x Shower NLO

X+ X X+

X+ X+2 X+3

X
X

X+2  X+3

X+2  X+3

Fixed-Order Matrix Element

Shower Approximation




Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

LO x Shower NLO - Showernio
X X+l X X+
X X+l X+2 X+3 .. X X+l X+2  X#3

X+ X+2 X+3 Born [ X+l X+2 X+3
Expand shower approximation to
- Fixed-Order Matrix Element NLO analytically, then subtract:

: : Fixed-Order ME minus Shower
Shower Approximation Approximation (NOTE: can be < 0!)

P. Skands




Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

L O x Shower (NLO - ShowernLo) x Shower
X X+ X X
X X+ X+2 X+3 X X X X

X+  X+2 X+3 Born X+ X X
, : Fixed-Order ME minus Shower
- Fixed-Order Matrix Element Approximation (NOTE: can be < 01)
- : Subleading corrections generated by
Shower Approximation e shower off subtracted ME




Matching 2: Subtraction

Examples: MC@NLO, aMC@NLO

Combine = MC@NLO Frixione, Webber, JHEP 0206 (2002) 029

Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been almost fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

X X+ Note 1: NOT NLO for X+1

NLO: for X inclusive
LO for X+1

LL: for everything else X+2  X+3 |~ Note 2: Multijet tree-level
matching still superior for X+2

X+2 X+3

NB: w < 0 are a problem because they kill efficiency:
Extreme example: 1000 positive-weight - 999 negative-weight events — statistical precision
of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)




Matching 3: ME Corrections

Standard Paradigm:
Have ME for X, X+1,..., X+n;
Want to combine and add showers —  “The Soft Stuft”

Works pretty well at low multiplicities

Still, only corrected for “hard” scales; Soft still pure LL.

At high multiplicities:
Efficiency problems: slowdown from need to compute and

generate phase space from dox.,, and from unweighting
(efficiency also reduced by negative weights, if present)

Scale hierarchies: smaller single-scale phase-space region

Powers of alpha$ pile up

Better Starting Point: a QCD fractal?




(shameless VINCIA promo)

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

Interleaved Paradigm:

Have shower; want to improve it using ME for X, X+1, ..., X+n.

Interpret all-orders shower structure as a “trial
distribution”
Quasi-scale-invariant: intrinsically multi-scale (resums logs)
Unitary: automatically unweighted (& IR divergences = multiplicities)

More precise expressions imprinted via veto algorithm: ME
corrections at LO, NLO, ... — soft and hard corrections

No additional phase-space generator or Ox., calculations — fast

+ Can get Automated Theory Uncertainties
For each event: vector of output weights (central value = 1)

+ Uncertainty variations. Faster than N separate samples; only
one sample to analyse, pass through detector simulations, etc.

LO: Giele, Kosower, Skands, PRD84(2011)054003 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

P. Skands



http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1303.4974

Matching 3: ME Corrections

Examples: PYTHIA, POWHEG, VINCIA

Start at Born level

a Virtues:
|MF|2 S A No “matching scale”
No negative-weight events
. " .. Can be very fast
Generate “shower” emission +2 Y

LL
— > | Mpq]* ™ Z a; |Mp|*

+1

mOO

oo | [ [ [ (D
[ Mpiq]?
>

> a;
> ai| Mp[*

a;

+0 +1 +2 +3 Legs

o First Order
Unitarity‘of Shower PYTHIA: LO, corrections to most SM and BSM decay processes,

N__ Virtual /Real and for pp = Z/W/H (Sjostrand 1987)
-0 — —

POWHEG (& POWHEG BOX): LO, + NLO,, corrections for
generic processes (Frixione, Nason, Oleari, 2007)

Repeat

Correct to Matrix Element Multileg NLO:
\__ ) ) Lo VINCIA: LO, , , , + NLO,, (shower plugin to PYTHIA 8;
~e [Mp[* — [Mp|” + 2Re[MpMp] + /Real formalism for2p3p4soon tooappear) (see previous slide)

MINLO-merged POWHEG: LO, , + NLO, , for pp = Z/W/H
UNLOPS: for generic processes (in PYTHIA 8, based on

| — — POWHEG input) (Lonnblad & Prestel, 2013)
Illustrations from: PS, TASI Lectures, arXiv:1207.2389



http://arxiv.org/abs/arXiv:1207.2389

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

1. Initialization time 2. Time to generate 1000 events
(to pre-compute cross sections (Z — partons, fully showered &
and warm up phase-space grids) matched. No hadronization.)
10000
1000 SHOWERS
1000 1000 9
) W
2 100 100
O
O
Q
@ 10 10 unpolarized
o VINCIA (GKS)xy polarized
| PYTHIA+VINCIA |
——V—V—~ @ global" YT Hadronization
Time (LEP)
0.1 0.1
2 3 4 5 6 2 3 4 5 6
Z—n : Number of Matched Legs Z—n : Number of Matched Legs

Z—udscb ; Hadronization OFF ;ISR OFF ; udsc MASSLESS ;b MASSIVE ; Ecm = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ; VINCIA 1.0.29 + MADGRAPH 4.4.26 ;
gec/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

P. Skands



http://arxiv.org/abs/arXiv:1301.0933

Summary: Two ways to compute Quantum Corrections

Fixed Order: consider a specific physical process

Explicit solutions (to given perturbative order)

Standard—fv\odelf typically NLO or NNLO LO: Leading Order (Born)
Beyond-SM: typically LO or NLO NLO = Next-to-LO, ...

Limited generality

Event generators: consider all possible physical processes
(within perturbative QFT)

ApprOXi mate 50| utions LL: Leading Log + some NLL = Next-to-LL, ...

Process-dependence = subleading correction (= matching)

Maximum generality

Emphasis is on universalities; physics
Common property of all processes is, eg, the limits in which they factorize!

Increasingly, the gold standard is calculations that combine the best of both worlds!
These are, however, subtle, and the structure of the perturbative series remains intriguing



Complicated Function:
Time-dependent

Traffic density during day, week-days vs
week-ends

(i.e., non-trivial time evolution of system)

No two students are the same

Need to compute probability for each
and sum

(simulates having several distinct types of “evolvers”)

Multiple outcomes:
Hit = keep walking, or go to hospital?

Multiple hits = Product of single hits, or
more complicated?

P. Skands




Monte Carlo Approach

Approximate Traffic

Simple overestimate:

highest recorded density
of most careless drivers,
driving at highest recorded speed

Approximate Student

by most completely reckless and accident-prone student
(wandering the streets lost in thought after these lectures ...)

This extreme guess will be the equivalent of our
simple overestimate from yesterday:




Hit Generator

Off we go...

Throw random accidents according to:

) Ngtud T
€ 0]0)
R= [ at [ds E a;(z,t) pi(x,t) pe(z,t) il
to L . Student-Car ~ Density of  Density of ITTICult
1=1 hit rate Student i Cars
Sum over
students

of accident

_ Simple
R = (te-to) Ax (max Tlstud Pemax p
Hit rate for most Rush-hour OvereStlmate
accident-prone density
student of cars

(Also generate trial xe, e.g., uniformly in circle around Puri)
(Also generate trial i; a random student gets hit)



Hit Generator

Accept trial hit (i,x,t) with probability

ai(x,t) pi(x,t) pelx,1)

Omax MNstud Pemax

Prob(accept) =

Using the following:
pc : actual density of cars at location x at time t
pi : actual density of student i at location x at time t
o; : The actual “hit rate” (OK, not really known, but can make one up)

— True number = number of accepted hits
(note: we didn’t really treat multiple hits ... = Markov Chain)




Evolution

B Leading Order B “Experiment”
100 s 100
75 75
% %

of LO 50 of otor 50
25 25
0 0

Born + | +2 Born (exc) +1 (exc) +2 (inc)

Exclusive = n and only n jets

Inclusive = n or more jets



Evolution

B Leading Order B “Experiment”
100 s 100
75 75
% %

of LO 50 of otor 50
25 25
0 0

Born Born (exc) +1 (exc) +2 (inc)

Exclusive = n and only n jets

Inclusive = n or more jets



Evolution

B Leading Order

400 -
300

%

of LO 200

100

Born Born (exc) + | (exc) + 2 (inc)

Cross Section Remains = Total (IR safe)
Number of Partons Diverges (IR unsafe)

Cross Section Diverges




Jets vs Parton Showers

Jet clustering algorithms

Map event from low E-resolution scale (i.e., with many partons/hadrons,
most of which are soft) tO a higher E-resolution scale (with fewer, hard, IR-

safe, jets)
Jet Clustering
Many soft particles (Deterministic™) > A few hard jets
(Winner-takes-all)
QN/\Nmn QNQhad QN Ecm
1 ~ 150 Mev ~ 1 GeV ~Mx [

Parton Showering
(Probabilistic)

Hadronization < Born-level ME

Parton shower algorithms
Map a few hard partons to many softer ones

Probabilistic = closer to nature.
Not uniquely invertible by any jet algorithm™

(" See “Qjets” for a probabilistic jet algorithm, arXiv:1201.1914)
(" See “Sector Showers” for a deterministic shower, arXiv:1109.3608)



http://arxiv.org/abs/arXiv:1201.1914
http://arxiv.org/abs/arXiv:1109.3608

Slicing: Some Subtleties

Choice of slicing scale (=matching scale)

Fixed order must still be reliable when regulated with this
scale

— matching scale should never be chosen more than ~ one
order of magnitude below hard scale.

Precision still “only” Leading Order

Choice of Renormalization Scale

We already saw this can be very important (and tricky) in
multi-scale problems.

Caution advised (see also supplementary slides & lecture notes)



Choice of Matching Scale

Reminder:in perturbative
region, QCD is approximately
scale invariant

B Low Matching Scale
— A scale of 20 GeV for aVWV boson

becomes 40 GeV for something weighing 100
2Mw, etc ... (+ adjust for Ca/Ck if g-initiated)

75
— The matching scale should be written as
a ratio (Bjorken scaling) 50
Using a too low matching scale — X
everything just becomes highest ME >
Caveat emptor: showers generally do not 0 Born (exc) + 1  + 2 (inc)

include helicity correlations



Uncertainty Estimates

a) Authors provide specific “tune variations” b) One shower run
Run once for each variation— envelope + unitarity-based uncertainties = envelope
PS, Phys. Rev. D82 (2010) 0/4018 Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003
Z (hadronic) ’I;‘ =
. o : - 1-Thrust (udsc)
> 1-Thrust (particle-level, charged) - B .
S ° T 10 =
© . Bymias os0:0201) Z - - Vincia
Z 1o %, Z st | S L
- ” R 3 ) & Pythia 6 (353:mpiHi) : - =
’ ‘ ‘6 - @ Pythia 6 (354:ncCR) — —
] ‘6 x:?agggﬁ;g? 10‘1 i
149 T, | § VINCIA + PYTHIA 8 example
PYTHIA 6 example ] 102 L Vincia: uncertamtyBands = on
Perugia Variations S Vincia 1 027+MadGraph4426+Pyth|a 8" 3§
i; 3 - Data from Phys.Rept. 399 (2004:1) 71
«(-é _1O§_IIII|IIII|IIII|I§III I§III
Q o 1
S C
! ! ! | ! | | |3 D o - 5
0 0.1 0.2 0.3 0.4 o —Fllnlte '''''' QMatch —Ordl 1/Np
- 1.4F a // : [
-y 7% 7
; g 12
- e ermea Q % ‘
o s 17 o
o C— = = 0.8% %
. 0'6'/{||||||||||||||||| |||
0 0.1 0.2 0.4
05% 0.1 0.2 0.3 0.4 1-T (UdSC)


http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1005.3457

Uncertainty Estimates

a) Authors provide specific “tune variations” b) One shower run
Run once for each variation— envelope + unitarity-based uncertainties = envelope
PS, Phys. Rev. D82 (2010) 0/4018 Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003
Z (hadronic) - =
F 02 o i = - 1-Thrust (udsc)
— 1-Thrust (particle-level, charged) A B :
% " ALEPH -§ 10: - L3
' £2011) - ——\Vincia
< " thia :radHi) © -
2 0 %, T pmssiman > S L |
- & L & Pyihia 6 (353mpHi) - <= =
/’ “ @ Pythia 6 (354:ncCR) A -
'r Hig - remcmers oL
'8 R |  VINCIA + PYTHIA 8 example
PYTHIA 6 example ; 102 L Vincia:uncertaintyBands = on
Perugia Variations | - V|nC|a1027+MadGraph4426+Pyth|a8. '
;: 3 — Data from Phys.Rept. 399 (2004;f) 71
dg _10§_IIII|IIII|IIII|I§III|I§III
Q O 1
S C
6.4 EF 2 0 :
| | | | | | | |JE —_ | = = T
0 0.1 0.2 0.3 101‘_1 EGEJ Y _._[.)ef CMB ._.Filnit.e ...... QMatch *Ord I___I,1I/Né
: © 1.2?
...... = 7
> 1
” o 7
T 2 08
’ e Matching reduces uncertainty
0'6'_IIII|IIII|IIII|IIII‘III
0 0.1 0.2 0.3 0.4 0.5

0575 0.1 0.2 0.3 0.4 1-T (udsc)


http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1005.3457

Peaked Functions

Functions: Breit-Wigner
I ' I ' I ' l ' |

fona _ Pl‘eCl.SlOn on integral
100 } dominated by the
points with f = fmax (i.e.,
peak regions)
© — slow convergence
0.50

if high, narrow peaks

0.00

(E-MV/T

P. Skands




Stratified Sampling

Functions: Breit-Wigner

T T T T T T ] — Make it twice as
likely to throw points
—C .
100~ 7 inthe peak

Choose:
0,1] = Region A
For: [1,2] = Region B
6*R1 € [2,4] @ Region C

o/omax

0.50 . . = 3= [4,5] 7 Region D
“1—" !i’ 5,6] — Region E
16.7% 1 %§33.3%§16. % 16.7%~ — faster convergence
for same number
000 —L——1 ‘ : i —— of function evaluations
(E-M/T



Adaptive Sampling

Functions: Breit-Wigner
I ' I ' I ' l ' |

1.00 - —
— Can even design
algorithms to
: do this automatically
: as they run
0.50 |- -
T (not covered here)

— Adaptive sampling

0.00 | 1 | 1 | 1 | 1 |

(E-MV/T



Importance Sampling

Functions: Breit-Wigner
T T T — or throw points
according to some
smooth peaked
function for which you
have, or can construct,
a random number

1.00 =]

3 1 \ generator
0.50 - THL n (here: Gauss)
E.g., VEGAS
algorithm, by G.
0.00 "2' - . : '.:‘ : Lepage
(E-MY/T



Why does this work?

1) You are inputting knowledge: obviously need

to know where the peaks are to begin with ... (say
you know, e.g., the location and width of a resonance)

2) Stratified sampling increases efficiency by
combining fixed-grid methods with the MC
method, with further gains from adaptation

3) Importance sampling:

Effectively does flat MC with

/ f f(x)dG( ) changed integration variables
a

Fast convergence if

f(x)/g(x) =

g(r)




How we do Monte Carlo

Take your system
Set of radioactive nuclei
Set of hard scattering processes

Set of resonances that are going to decay

Set of particles coming into your detector

Set of cosmic photons traveling across the galaxy

Set of molecules




How we do Monte Carlo

Take your system

Generate a “trial” (event/decay/interaction/... )

Not easy to generate random numbers distributed
according to exactly the right distribution?

May have complicated dynamics, interactions ...

— use a simpler “trial” distribution

Flat with some stratification

Or importance sample with simple
overestimating function (for which you can

generate random #5s)

P. Skands



How we do Monte Carlo

fvTake your system

Generate a “trial” (event/decay/interaction/... )
Accept trial with probability f(x)/g(x)

f(x) contains all the complicated dynamics
g(x) is the simple trial function

If accept: replace with new system state

If reject: keep previous system state

no dependence on g in final
result - only affects
convergence rate

L And keep going: generate next trial ...




How we do Monte Carlo

r R
f' Sounds deceptively simple,

but ...

with it, you can integrate

arbitrarily complicated
functions (in particular
chains of nested functions),
over arbitrarily
complicated regions, in
arbitrarily many
dimensions ...

no dependence on g ir
result - only affecik
convergence rate

— And keep going:

P. Skands




