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General-Purpose Event Generators
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Improve lowest-order perturbation theory,  
by including the ‘most significant’ corrections 

→ complete events (can evaluate any observable you want) 

Calculate Everything ≈ solve QCD → requires compromise!

The Workhorses
PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. 
HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. 
SHERPA : Begun in 2000. Originated in “matching” of matrix elements to showers: CKKW-L. 
+ MORE SPECIALIZED: ALPGEN, MADGRAPH, HELAC, ARIADNE, VINCIA, WHIZARD, (a)MC@NLO, POWHEG, HEJ, 
PHOJET, EPOS, QGSJET, SIBYLL, DPMJET, LDCMC, DIPSY, HIJING, CASCADE, GOSAM, BLACKHAT, … 

Reality is more complicated
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(PYTHIA)

PYTHIA anno 1978 
(then called JETSET)
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LU TP 78-18!
November, 1978!
!
A Monte Carlo Program for Quark Jet 
Generation!
!
T. Sjöstrand, B. Söderberg!
!
A Monte Carlo computer program is 
presented, that simulates the 
fragmentation of a fast parton into a 
jet of mesons. It uses an iterative 
scaling scheme and is compatible with 
the jet model of Field and Feynman.

Note:  
Field-Feynman was an early fragmentation model 
Now superseded by the String (in PYTHIA) and 

Cluster (in HERWIG & SHERPA) models.
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LU TP 07-28 (CPC 178 (2008) 852)!
October, 2007!
!
A Brief Introduction to PYTHIA 8.1!
!
T. Sjöstrand, S. Mrenna, P. Skands!
!
The Pythia program is a standard tool 
for the generation of high-energy 
collisions, comprising a coherent set 
of physics models for the evolution 
from a few-body hard process to a 
complex multihadronic final state. It 
contains a library of hard processes 
and models for initial- and final-state 
parton showers, multiple parton-parton 
interactions, beam remnants, string 
fragmentation and particle decays. It 
also has a set of utilities and 
interfaces to external programs. […]

(PYTHIA)

PYTHIA anno 2013 
(now called PYTHIA 8)
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~ 100,000 lines of C++

• Hard Processes (internal, inter-
faced, or via Les Houches events) 

• BSM (internal or via interfaces) 

• PDFs (internal or via interfaces) 
• Showers (internal or inherited) 
• Multiple parton interactions 
• Beam Remnants 
• String Fragmentation 
• Decays (internal or via interfaces) 
• Examples and Tutorial 
• Online HTML / PHP Manual 
• Utilities and interfaces to 

external programs 

What a modern MC generator has inside:
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Divide and Conquer

Factorization → Split the problem into many (nested) pieces
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Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays:  
Use (N)LO matrix elements 
→ Sets “hard” resolution scale for process: QMAX 

Initial- & Final-State Radiation (ISR & FSR):  
Altarelli-Parisi equations → differential evolution, dP/dQ2, as function 
of resolution scale; run from QMAX to ~ 1 GeV (This Lecture)  

MPI (Multi-Parton Interactions) 
Additional (soft) parton-parton interactions: LO matrix elements 

→ Additional (soft) “Underlying-Event” activity  

Hadronization 
Non-perturbative model of color-singlet parton systems → hadrons

+ Quantum mechanics → Probabilities → Random Numbers
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Reca l l  :  Je t s  ≈  Frac ta l s

Most bremsstrahlung is driven 
by divergent propagators → 
simple structure  

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

i

j

k

a

b

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = DGLAP splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs
2 → 4παs(Q2)

Gluon j → “soft”:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “colour antenna” 

Can apply this many times 
→ nested factorizations 

6

(First Lecture)
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Bremsstrahlung
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

✓d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .

Factorization in Soft and Collinear Limits

|M(. . . , pi, pj , pk . . .)|2
jg!0! g2sC

2sik
sijsjk

|M(. . . , pi, pk, . . .)|2

|M(. . . , pi, pj . . .)|2
i||j! g2sC

P (z)

sij
|M(. . . , pi + pj , . . .)|2

P(z) :  “DGLAP Splitting Functions” 

“Soft Eikonal” : generalizes to Dipole/Antenna Functions (more later) 

(calculated process by process)For any basic process
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Bremsstrahlung
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

✓For any basic process (calculated process by process)d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j

d�X ✓

d�X+2 ⇠ NC2g
2
s
dsi2
si2

ds2j
s2j

d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .

Singularities: mandated by gauge theory 
Non-singular terms: process-dependent 

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

+ 2

◆�

|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�SOFT

COLLINEARSOFT +F

COLLINEAR



P.  S k a n d s

Bremsstrahlung
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dσ
X$

dσ
X+1 &
dσ

X+2 &
dσ

X+2&

Iterated factorization 
Gives us a universal approximation to ∞-order tree-level cross sections.  

Exact in singular (strongly ordered) limit. 
Finite terms (non-universal) → Uncertainties for non-singular (hard) radiation

But something is not right … Total σ would be infinite … 

✓For any basic process (calculated process by process)d�X =

d�X+1 ⇠ NC2g
2
s
dsi1
si1

ds1j
s1j
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d�X+2 ⇠ NC2g
2
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dsi2
si2
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d�X+1 ✓

d�X+3 ⇠ NC2g
2
s
dsi3
si3

ds3j
s3j

d�X+2 . . .
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Loops and Legs

Coefficients of the Perturbative Series
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X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

Lo
op

s

Legs

The corrections from 
Quantum Loops are 

missing

Universality (scaling)

Jet-within-a-jet-within-a-jet-...
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Unitarity → Evolution (Resummation)
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Kinoshita-Lee-Nauenberg (Lecture 2):  
(sum over degenerate quantum states = finite) 

Loop = - Int(Tree) + F 
Parton Showers neglect F → Leading-Logarithmic (LL) Approximation

Unitarity: sum(probability) = 1

→ includes both real (tree) and virtual (loop) corrections

Imposed by Event evolution:  

When (X) branches to (X+1): Gain one (X+1). Loose one (X). 

→ evolution equation with kernel
d�X+1

d�X

Evolve in some measure of resolution ~ hardness, 1/time … ~ fractal scale

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

Z � 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16
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Unitarity → Evolution (Resummation)
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►  Interpretation:  the structure evolves! (example: X = 2-jets) 
•  Take a jet algorithm, with resolution measure “Q”, apply it to your events 
•  At a very crude resolution, you find that everything is 2-jets  

•  At finer resolutions  some 2-jets migrate  3-jets = σX+1(Q) = σX;incl– σX;excl(Q) 
•  Later, some 3-jets migrate further, etc  σX+n(Q) = σX;incl– ∑σX+m<n;excl(Q) 
•  This evolution takes place between two scales, Qin ~ s and Qend ~ Qhad 

►  σX;tot  = Sum (σX+0,1,2,3,…;excl ) = int(dσX) 
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Evolution Equations

What we need is a differential equation 
Boundary condition: a few partons defined at a high scale (QF) 

Then evolves (or “runs”) that parton system down to a low scale (the 
hadronization cutoff ~ 1 GeV) → It’s an evolution equation in QF 

Close analogue: nuclear decay 
Evolve an unstable nucleus. Check if it decays + follow chains of decays.
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In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,

�(Q2
1, Q

2
2) = exp
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Z

Q

2

2

Q

2
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dP (�)

d�

d�

!
= exp

 
�
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s

C A(�) d�

!
, (10)

where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp

✓
�
Z

t

2

t

1

c
N

dt

◆
= exp (�c

N

�t) . (12)

This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�

= g2
s

C A(�) �(Q2
1, Q

2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)

6

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,

�(Q2
1, Q

2
2) = exp

 
�
Z

Q

2

2

Q

2

1

dP (�)

d�

d�

!
= exp

 
�
Z

Q

2

2

Q

2

1

g2
s

C A(�) d�

!
, (10)

where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp

✓
�
Z

t

2

t

1

c
N

dt

◆
= exp (�c

N

�t) . (12)

This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�

= g2
s

C A(�) �(Q2
1, Q

2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)

6

Decay constant Probability to remain undecayed in the time interval [t1,t2]
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Decay probability per unit time

(requires that the nucleus did not already decay)

= 1� cN�t+O(c2N )

∆(t1,t2) :  “Sudakov Factor”
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100 %

First Order

Second 
Order

Third Order

Early 
Times

Late 
Times

Nuclear Decay
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S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

Nuclei remaining undecayed 
after time t

=

Time

50 %

 0 %

-50 %

-100 %

All Orders 
Exponential
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The Sudakov Factor

In nuclear decay, the Sudakov factor counts:  
How many nuclei remain undecayed after a time t 

!

!

The Sudakov factor for a parton system counts: 
The probability that the parton system doesn’t evolve 
(branch) when we run the factorization scale (~1/time) from a 
high to a low scale 
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In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�

= g2
s

C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,

�(Q2
1, Q

2
2) = exp

 
�
Z

Q

2

2

Q

2

1

dP (�)

d�

d�

!
= exp

 
�
Z

Q

2

2

Q

2

1

g2
s

C A(�) d�

!
, (10)

where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= c

N

. (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp

✓
�
Z

t

2

t

1

c
N

dt

◆
= exp (�c

N

�t) . (12)

This case is especially simple, since the decay probability per unit time, c
N

, is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= c

N

�(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�

= g2
s

C A(�) �(Q2
1, Q

2
(�)) , (14)

where Q2
(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2
1, Q

2
) , (15)

6

Evolution probability per unit “time”

(replace cN by proper shower evolution kernels)
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Probability to remain undecayed in the time interval [t1,t2]

(replace t by shower evolution scale)
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What’s the evolution kernel?

DGLAP splitting functions 
Can be derived from collinear limit of MEs (pb+pc)2 → 0 

+ evolution equation from invariance with respect to QF → RGE
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DGLAP 
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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a

c
b

pb = z pa

pc = (1-z) pa

Note: there exist now also alternatives to AP kernels (with same collinear limits!): dipoles, antennae, … 

dt =
dQ2

Q2
= d lnQ2

… with Q2 some measure of “hardness” 
= event/jet resolution 

measuring parton virtualities / formation time / …

cf. conformal (fractal) QCD, Lecture 1 
(and PDF evolution, Lecture 2)
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Coherence
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Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand

Approximations to 
Coherence: 

Angular Ordering (HERWIG) 

Angular Vetos (PYTHIA) 

Coherent Dipoles/Antennae 
(ARIADNE, Catani-Seymour, VINCIA)

More interference effects can be included by matching to full matrix elements

→ an example of an interference effect that can be treated probabilistically
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color

7

p
0 5 10 15 20

ra
te

0

0.01

0.02

0.03

Pythia

Vincia (default)

Vincia (enh. antennae)

20 40 60 80 100 120

-410

-310

-210

20 40 60 80 100 120

-410

-310

-210

Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.

0° 45° 90° 135° 180°

1
180°

2
180°

q Hgluon, beamL

r e
m
it

Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color

7

Coherence at Work

Example: quark-quark scattering in hadron collisions   
Consider one specific phase-space point (eg scattering at 45o)  
2 possible colour flows: a and b
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a) “forward” 
colour flow

b) “backward” 
colour flow
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

http://arxiv.org/abs/arXiv:1210.6345
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Initial-State vs Final-State Evolution
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p2 = t < 0

ISR:FSR:

p2  > 0

Virtualities are 
Timelike: p2>0

Virtualities are 
Spacelike: p2<0

Start at Q2 = QF2 
“Forwards evolution”

Start at Q2 = QF2 
Constrained backwards evolution 
towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft …



P.  S k a n d s

(Initial-State Evolution)

DGLAP for Parton Density 
!

!
!
!

→ Sudakov for ISR
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That way we hope to achieve the most realistic description of mass e⇥ects in the collinear
and soft regions.

The shower inherits some further elements from PYSHOW, such as azimuthal anisotropies
in gluon branchings from polarization e⇥ects.

The relevant parameters will have to be retuned, since the shower is quite di⇥erent
from the mass-ordered one of PYSHOW. In particular, it appears that the five-flavour �QCD

value in PARJ(81) has to be reduced relative to the current default, roughly by a factor
of two (from 0.29 to 0.14 GeV). After such a retuning, PYPTFS (combined with string
fragmentation) appears to give an even better description of LEP1 data than does PYSHOW
[Rud04].

10.3 Initial-State Showers

The initial-state shower algorithms in Pythia are not quite as sophisticated as the final-
state ones. This is partly because initial-state radiation is less well understood theoreti-
cally, and partly because the programming task is more complicated and ambiguous. Still,
the program at disposal is known to do a reasonably good job of describing existing data,
such as Z0 production properties at hadron colliders [Sjö85]. It can be used both for QCD
showers and for photon emission o⇥ leptons (e, µ or ⇤ ; relative to earlier versions, the
description of incoming µ and ⇤ are better geared to represent the di⇥erences in lepton
mass, and the lepton-inside-lepton parton distributions are properly defined).

Again we begin with a fairly model-independent overview before zooming in on the
old virtuality-ordered algorithm implemented in PYSSPA. The new transverse-momentum-
ordered formalism in PYPTIS, described at the end, shares much of the same philosophy,
apart from the quite important choice of evolution variable, of course.

10.3.1 The shower structure

A fast hadron may be viewed as a cloud of quasi-real partons. Similarly a fast lepton
may be viewed as surrounded by a cloud of photons and partons; in the program the two
situations are on an equal footing, but here we choose the hadron as example. At each
instant, each individual parton initiates a virtual cascade, branching into a number of
partons. This cascade of quantum fluctuations can be described in terms of a tree-like
structure, composed of many subsequent branchings a � bc. Each branching involves
some relative transverse momentum between the two daughters. In a language where
four-momentum is conserved at each vertex, this implies that at least one of the b and
c partons must have a space-like virtuality, m2 < 0. Since the partons are not on the
mass shell, the cascade only lives a finite time before reassembling, with those parts of
the cascade that are most o⇥ the mass shell living the shortest time.

A hard scattering, e.g. in deeply inelastic leptoproduction, will probe the hadron at a
given instant. The probe, i.e. the virtual photon in the leptoproduction case, is able to
resolve fluctuations in the hadron up to the Q2 scale of the hard scattering. Thus probes
at di⇥erent Q2 values will seem to see di⇥erent parton compositions in the hadron. The
change in parton composition with t = ln(Q2/�2) is given by the evolution equations

dfb(x, t)

dt
=

⇤

a,c

⌅ dx⇥

x⇥
fa(x

⇥, t)
�abc

2⇥
Pa�bc

�
x

x⇥

⇥
. (187)

Here the fi(x, t) are the parton-distribution functions, expressing the probability of finding
a parton i carrying a fraction x of the total momentum if the hadron is probed at virtuality
Q2. The Pa�bc(z) are given in eq. (164). As before, �abc is �s for QCD shower and �em

for QED ones.
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step by step one moves ‘backwards’ in ‘time’, towards smaller Q2, all the way back to the
parton-shower initiator at the cut-o� scale Q2

0. This procedure is possible if evolved parton
distributions are used to select the hard scattering, since the fi(x, Q2) contain the inclusive
summation of all initial-state parton-shower histories that can lead to the appearance of
an interacting parton i at the hard scale. What remains is thus to select an exclusive
history from the set of inclusive ones. In this way, backwards evolution furnishes a very
clear and intuitive picture of the relationship between the inclusive (parton distributions)
and exclusive (initial-state showers) description of the same physics.

10.3.2 Longitudinal evolution

The evolution equations, eq. (187), express that, during a small increase dt, there is a
probability for parton a with momentum fraction x⇥ to become resolved into parton b
at x = zx⇥ and another parton c at x⇥ � x = (1 � z)x⇥. Correspondingly, in backwards
evolution, during a decrease dt a parton b may be ‘unresolved’ into parton a. The relative
probability dPb for this to happen is given by the ratio dfb/fb. Using eq. (187) one obtains

dPb =
dfb(x, t)

fb(x, t)
= |dt|

⇧

a,c

⌃ dx⇥

x⇥
fa(x⇥, t)

fb(x, t)

�abc

2⇥
Pa�bc

�
x

x⇥

⇥
. (188)

Summing up the cumulative e�ect of many small changes dt, the probability for no radi-
ation exponentiates. Therefore one may define a form factor

Sb(x, tmax, t) = exp

⇤

�
⌃ tmax

t
dt⇥

⇧

a,c

⌃ dx⇥

x⇥
fa(x⇥, t⇥)

fb(x, t⇥)

�abc(t⇥)

2⇥
Pa�bc

�
x

x⇥

⇥⌅

= exp

⇤

�
⌃ tmax

t
dt⇥

⇧

a,c

⌃
dz

�abc(t⇥)

2⇥
Pa�bc(z)

x⇥fa(x⇥, t⇥)

xfb(x, t⇥)

⌅

, (189)

giving the probability that a parton b remains at x from tmax to a t < tmax.
It may be useful to compare this with the corresponding expression for forward evolu-

tion, i.e. with Sa(t) in eq. (166). The most obvious di�erence is the appearance of parton
distributions in Sb. Parton distributions are absent in Sa: the probability for a given
parton a to branch, once it exists, is independent of the density of partons a or b. The
parton distributions in Sb, on the other hand, express the fact that the probability for
a parton b to come from the branching of a parton a is proportional to the number of
partons a there are in the hadron, and inversely proportional to the number of partons b.
Thus the numerator fa in the exponential of Sb ensures that the parton composition of
the hadron is properly reflected. As an example, when a gluon is chosen at the hard scat-
tering and evolved backwards, this gluon is more likely to have been emitted by a u than
by a d if the incoming hadron is a proton. Similarly, if a heavy flavour is chosen at the
hard scattering, the denominator fb will vanish at the Q2 threshold of the heavy-flavour
production, which means that the integrand diverges and Sb itself vanishes, so that no
heavy flavour remain below threshold.

Another di�erence between Sb and Sa, already touched upon, is that the Pg�gg(z)
splitting kernel appears with a normalization 2NC in Sb but only with NC in Sa, since
two gluons are produced but only one decays in a branching.

A knowledge of Sb is enough to reconstruct the parton shower backwards. At each
branching a⇥ bc, three quantities have to be found: the t value of the branching (which
defines the space-like virtuality Q2

b of parton b), the parton flavour a and the splitting
variable z. This information may be extracted as follows:
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⇤(x, tmax, t)

29

Contains a ratio of PDFs
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Initial-Final Interference
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Separation meaningful for collinear radiation, but not for soft …

Who emitted that gluon?

Real QFT = sum over amplitudes, then square → interference (IF coherence) 

Respected by dipole/antenna languages (and by angular ordering), but not by 
conventional DGLAP (→ all PDFs are “wrong”)

+

A tricky aspect for many parton showers. Illustrates that quantum ≠ classical !

Initial  
State

Final  
State

Initial  
State

Final  
State
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Bootstrapped Perturbation Theory

Start from an arbitrary lowest-order process (green = QFT amplitude squared) 

Parton showers generate the (LL) bremsstrahlung terms of the rest of 
the perturbative series (approximate infinite-order resummation)
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+0 +1 …
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No. of Bremsstrahlung Emissions 
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations

Note! LL ≠ full QCD! (→ matching)
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Born {p} :  partons

But instead of evaluating O directly on the Born final state,  
first insert a showering operator

Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
collinear factorization, which is to say 1 → 2 branching in shower evolution. (PYTHIA 8 combines
a 1 → 2 splitting probability with a 2 → 3 phase-space mapping.) In the present paper, we continue
the development of a leading-log (LL) parton shower [33] based on dipole antennæ, that is 2 → 3
branching. We choose a simpler context than hadron collisions, that of electron–positron collisions.
This allows us to set aside the questions of initial-state emission as well as those of the underlying
event.

In sec. 2, we describe in greater detail the ingredients needed for such a shower, as well as our
normalization conventions, and compare the origins of different singularities and corresponding log-
arithms in different shower formalisms. We also discuss the different matching approaches in more
detail. In sec. 3, we discuss the evolution integral, and show how to cast it in a general form whose
specializations correspond to a wide variety of interesting evolution variables. We then solve the re-
sulting evolution equation. In sec. 4, we discuss the shower algorithm, as well as improvements that
can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-

3

Born 
+ shower S : showering operator

{p} :  partons

Most showers, with the exception of ARIADNE and the Winter–Krauss shower [32], are based on
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a 1 → 2 splitting probability with a 2 → 3 phase-space mapping.) In the present paper, we continue
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can be made to its logarithmic accuracy. In sec. 5, we discuss the details of matching the dipole-
antenna shower to tree-level matrix elements, at both leading and subleading color. The procedure
we use to evaluate the remaining perturbative uncertainties is described in sec. 6, and in sec. 7, we
comment on hadronization; in sec. 8, we compare the results of running the unitarity-based approach
implemented in VINCIA to LEP data and to PYTHIA 8. We make some concluding remarks in sec. 9.

2 Nomenclature and Conventions

In this section, we introduce the basic elements of our perturbative formalism, which is largely based
on ref. [33]. First, in sec. 2.1, we illustrate how the KLN theorem may be used to rewrite the coeffi-
cients of perturbation theory as the expansion of an all-orders Markov chain, using NLO as an explicit
example. Then, in sec. 2.2, we briefly describe each of the ingredients that enter our dipole-antenna
shower formalism.

2.1 Perturbation Theory with Markov Chains

Consider the Born-level cross section for an arbitrary hard process, H , differentially in an arbitrary
infrared-safe observable O,

dσH
dO

∣∣∣∣Born
=
∫

dΦH |M (0)
H |2 δ(O −O({p}H)) , (1)

where the integration runs over the full final-state on-shell phase space of H (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote {p}H (without the δ function, the
integration over phase space would just give the total cross section, not the differential one).

To make the connection to parton showers, and to discuss all-orders resummations in that context,
we may insert an operator, S , that acts on the Born-level final state before the observable is evaluated,
i.e.,

dσH
dO

∣∣∣∣S
=
∫

dΦH |M (0)
H |2 S({p}H ,O) . (2)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appear-

3

H = Hard process

Unitarity: to first order, S does nothing

S({p}H ,O) = � (O �O({p}H)) + O(↵s)
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(Markov Chain)

The Shower Operator

To ALL Orders 
!
!
!
!
!
!

All-orders Probability that nothing happens
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S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

“Nothing Happens”

“Something Happens”

(Exponentiation) 
Analogous to nuclear decay 

N(t) ≈ N(0) exp(-ct)

S({p}X,O) = δ(O −O({p}X))

S({p}X,O) =

(

1 −
∫ thad

tstart

dt
dP
dt

)

δ(O−O({p}X)) +

∫ thad

tstart

dtX+1
dP

dtX+1
δ(O−O({p}X+1))

S({p}X,O) = ∆(tstart, thad)δ(O−O({p}X))−
∫ thad

tstart

dt
d∆(tstart, t)

dt
S({p}X+1,O)

P =

∫

dΦX+1

dΦX

wX+1

wX

∣

∣

∣

∣

PS

PDGLAP =
∑

i

∫

dQ2

Q2
dz Pi(z)

PAntenna =

∫

dsijdsjk

16π2s

|M3(sij, sjk, s)|2

|M2(s)|2

∆(t1, t2) = exp

(

−
∫ t2

t1

dt
dP
dt

)

“Evaluate Observable”→ 

“Continue Shower”→ 
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2. Generate another Random Number, Rz ∈ [0,1] 

To find second (linearly independent) phase-space invariant 

Solve equation                                      for z (at scale t) 

With the “primitive function” Iz(z, t) =

Z z

zmin(t)
dz

d�(t0)

dt0

����
t0=t

Rz =
Iz(z, t)

Iz(zmax

(t), t)

A Shower Algorithm

1. Generate Random Number, R ∈ [0,1] 
Solve equation                      for t (with starting scale t1) 

Analytically for simple splitting kernels,  
else numerically (or by trial+veto) 
→ t scale for next branching

25

R = �(t1, t)
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Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived from Z decay
as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.

factor, and ā0ijk is a generic color- and coupling-stripped dipole-antenna function, with superscript 0 to
denote a tree-level quantity. The three-particle matrix element is averaged azimuthally (over φ). Note
that our use of lower-case letters for the antenna function is intended to signify that it corresponds to
what is called a sub-antenna in ref. [36] for which lower-case letters are likewise used2.

For illustration, contours of constant value of ā0qgq̄(s, sqg, sgq̄) as derived from Z decay are shown
in fig. 1, over the 2 → 3 phase space, with an arbitrary normalization and a logarithmic color scale.
This function is called A0

3 in ref. [36] and is identical to the radiation function used for qq̄ → qgq̄
splittings in ARIADNE. One clearly sees the large enhancements towards the edges of phase space,
with a double pole (the overlap of two singularities, usually called soft and collinear) sitting at the
origin, and single singularities (soft or collinear) localized on the axes.

Writing the coupling factor as g2 = 4παs and combining it with the phase space factor, eq. (12),
we have the following antenna function normalization

a0IK→ijk(s, sij, sjk) ≡
1

√
λ
(
s,m2

I ,m
2
K

)
αs

4π
Cijk ā0ijk(s, sij , sjk) . (15)

That is, we use the notation ā for the coupling- and color-stripped antenna function, and the notation
a for the “dressed” antenna function, i.e., including its coupling, color, and phase-space prefactors.

Note that g2×(phase-space normalization) leads to a factor αs/(4π) independently of the type of
branching. As we believe that the formalism becomes more transparent if the origin of each factor
is kept clear throughout, we shall therefore use this factor for all branchings, instead of the more
traditional convention of using αs/(2π) for some branchings and αs/(4π) for others. Obviously, this
convention choice will be compensated by our conventions for the color factors and antenna-function
normalizations, such that the final result remains independent of this choice.

2Thus, in the notation of ref. [36], our dipole-antenna functions would be ā0
3 = A0

3, d̄03 = d03, ē03 =
1
2E

0
3 , f̄0

3 = f0
3 , and

ḡ03 =
1
2G

0
3.

7

t

t1

(t,z)

3. Generate a third Random Number, Rφ ∈ [0,1] 

Solve equation                    for φ → Can now do 3D branching R' = '/2⇡

Note: on this slide, I use results from the theory of Random numbers, interesting in itself but would need more time to give details
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Perturbative Ambiguities

The final states generated by a shower algorithm 
will depend on

6

where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential26

→ gives us additional handles for uncertainty estimates, beyond just μR 

(+ ambiguities can be reduced by including more pQCD → matching!)

Ordering & Evolution-
scale choices

Recoils, kinematics

Non-singular terms, 
Reparametrizations, 
Subleading Colour

Phase-space limits / suppressions for 
hard radiation and choice of 

hadronization scale 
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So combine them!

Jack of All Orders, Master of None?

Nice to have all-orders solution 
But it is only exact in the singular (soft & collinear) limits 

→ gets the bulk of bremsstrahlung corrections right, but fails equally 
spectacularly: for hard wide-angle radiation: visible, extra jets 

… which is exactly where fixed-order calculations work!
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has
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Figure 22: The double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

4 Matching at LO and NLO

The essential problem that leads to matrix-element/parton-shower matching can be illustrated
in a very simple way. Assume we have computed the LO cross section for some process, F ,
and that we have added an LL shower to it, as in the left-hand pane of figure 22. We know
that this only gives us an LL description of F + 1. We now wish to improve this from LL to LO
by adding the actual LO matrix element for F + 1. Since we also want to be able to hadronize
these events, etc, we again add an LL shower off them. However, since the matrix element for
F + 1 is divergent, we must restrict it to cover only the phase-space region with at least one
hard resolved jet, illustrated by the half-shaded boxes in the middle pane of figure 22.

Adding these two samples, however, we end up counting the LL terms of the inclusive cross
section for F + 1 twice, since we are now getting them once from the shower off F and once
from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-
hand pane of figure 22. This double-counting problem would grow worse if we attempted to
add more matrix elements, with more legs. The cause is very simple. Each such calculation
corresponds to an inclusive cross section, and hence naive addition would give

�tot = �0;incl + �1;incl = �0;excl + 2�1;incl . (66)

Recall the definition of inclusive and exclusive cross sections, equation (59): F inclusive = F
plus anything. F exclusive = F and only F . Thus, �F ;incl =

P1
k=0 �F+k;excl.

Instead, we must match the coefficients calculated by the two parts of the full calculation
— showers and matrix elements — more systematically, for each order in perturbation theory,
so that the nesting of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three
different ways in which we can consider matching the two [74]: slicing, subtraction, and
unitarity. The following subsections will briefly introduce each of these.

4.1 Slicing

The most commonly encountered matching type is currently based on separating (slicing)
phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of ap-
proach was first used in HERWIG [111], to include matrix-element corrections for one emission
beyond the basic hard process [112, 113]. This is illustrated in figure 23. The method has

— 45 —

Matching



P.  S k a n d s

Summary: Parton Showers

Aim: generate events in as much detail as mother nature 
→ Make stochastic choices ~ as in Nature (Q.M.) → Random numbers 

Factor complete event probability into separate universal pieces, treated 
independently and/or sequentially (Markov-Chain MC) 

Improve Born-level theory by including ‘most significant’ 
corrections 

Resonance decays (e.g., t→bW+, W→qq’, H0→γ0γ0, Z0→μ+μ-, …) 

Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits) 

Hard radiation (matching) 

Hadronization (strings/clusters, discussed tomorrow)  

Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein 
correlations, colour reconnections, hadron decays, … 

Coherence* 
Soft radiation → Angular ordering or Coherent Dipoles/Antennae

28
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Image Credits: istockphoto

Matching
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Example:              .

Born + Shower 

!

!

!

Born + 1 @ LO 

30

22

+

+

2

Shower Approximation	


to Born + 1

+ … 
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1

Example:              .

31

2

+
|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

◆�

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF


2sik
sijsjk

+
1

sIK

✓
sij
sjk

+
sjk
sij

+ 2

◆�

Total Overkill to add these two.  All we really need is just that +2 … 

2

+ …

Born + Shower 

!

!

!

Born + 1 @ LO 
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Adding Calculations

Born × Shower X+1 @ LO

32

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut	


& nothing below

X+1 …

X+1 X+2 X+3 …

X+1 X+2 X+3 …

(with pT cutoff, see previous lectures)
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Adding Calculations

Born × Shower X+1 @ LO × Shower

33

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME above pT cut	


& nothing below

X+1 …

X+1 X+2 X+3 …

X+1 X+2 X+3 …

…
Shower approximation above pT cut	


& nothing below

(with pT cutoff, see previous lectures)
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→ Double Counting

Born × Shower + (X+1) × shower

34

…

… 

Fixed-Order Matrix Element

Shower Approximation

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

Double Counting of 
terms present in 
both expansions

Worse than useless

…
Double counting above pT cut	


& shower approximation below
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Interpretation

35

► A (Complete Idiot’s) Solution – Combine 
1. [X]ME + showering 
2. [X + 1 jet]ME + showering 

3. … 

► Doesn’t work 
•  [X] + shower is inclusive 

•  [X+1] + shower is also inclusive 

≠ 

Run generator for X (+ shower) 

Run generator for X+1 (+ shower) 

Run generator for … (+ shower) 

Combine everything into one sample 

What you 
get 

What you 
want 

Overlapping “bins” One sample 
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Matching 1: Slicing

First emission: “the HERWIG correction” 
Use the fact that the angular-ordered HERWIG parton shower has a “dead 
zone” for hard wide-angle radiation (Seymour, 1995) 

!

!

Many emissions: the MLM & CKKW-L prescriptions 

36

P. Skands Introduction to QCD
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Figure 23: HERWIG’s original matching scheme [112, 113], in which the dead zone of the
HERWIG shower was used as an effective “matching scale” for one emission beyond a basic
hard process.

since been generalized by several independent groups to include arbitrary numbers of addi-
tional legs, the most well-known of these being the CKKW [114], CKKW-L [115, 116], and
MLM [117, 118] approaches.

Effectively, the shower approximation is set to zero above some scale, either due to the
presence of explicit dead zones in the shower, as in HERWIG, or by vetoing any emissions
above a certain matching scale, as in the (L)-CKKW and MLM approaches. The empty part of
phase space can then be filled by separate events generated according to higher-multiplicity
tree-level matrix elements (MEs). In the (L)-CKKW and MLM schemes, this process can be
iterated to include arbitrary numbers of additional hard legs (the practical limit being around
3 or 4, due to computational complexity).

In order to match smoothly with the shower calculation, the higher-multiplicity matrix ele-
ments must be associated with Sudakov form factors (representing the virtual corrections that
would have been generated if a shower had produced the same phase-space configuration),
and their ↵s factors must be chosen so that, at least at the matching scale, they become identi-
cal to the choices made on the shower side [119]. The CKKW and MLM approaches do this by
constructing “fake parton-shower histories” for the higher-multiplicity matrix elements. By ap-
plying a sequential jet clustering algorithm, a tree-like branching structure can be created that
at least has the same dominant structure as that of a parton shower. Given the fake shower
tree, ↵s factors can be chosen for each vertex with argument ↵s(p?) and Sudakov factors can
be computed for each internal line in the tree. In the CKKW method, these Sudakov factors
are estimated analytically, while the MLM and CKKW-L methods compute them numerically,
from the actual shower evolution.

Thus, the matched result is identical to the matrix element (ME) in the region above the
matching scale, modulo higher-order (Sudakov and ↵s) corrections. We may sketch this as

Matched (above matching scale) =

MEz }| {
Exact ⇥

correctionsz }| {
(1 + O(↵s)) , (67)

where the “shower-corrections” include the approximate Sudakov factors and ↵s reweighting
factors applied to the matrix elements in order to obtain a smooth transition to the shower-
dominated region.

Below the matching scale, the small difference between the matrix elements and the
shower approximation can be dropped (since their leading singularities are identical and this
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Examples: MLM, CKKW, CKKW-L

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV	


SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 	



gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

S l ic ing :  The  Cos t

37

0.1s

1s

10s

100s

1000s

Z→n : Number of Matched Emissions

2 3 4 5 6
1s

10s

100s

1000s

10000s

Z→n : Number of Matched Emissions

2 3 4 5 6

1. Initialization time 
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

SHERPA (C
KKW-L)

2. Time to generate 1000 events 
(Z → partons, fully showered & 
matched. No hadronization.)

1000 SHOWERS

(example of sta
te of th

e art)
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The Gain

Example: W + Jets 
Number of jets in 
pp→W+X at the LHC 

From 0 (W inclusive) to 
W+3 jets 

PYTHIA includes 
matching up to W+1 jet 
+ shower 

With ALPGEN, also the 
LO matrix elements for 2 
and 3 jets are included 

(but Normalization still 
only LO)

38

mcplots.cern.ch

W
ith Matching

W
ithout Matching

RATIO

ETj > 20 GeV
|ηj| < 2.8

Number of Jets

W+Jets
LHC 7 TeV
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Matching 2: Subtraction

LO × Shower NLO

39

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

…

… 

Fixed-Order Matrix Element

Shower Approximation

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

LO × Shower NLO - ShowerNLO

40

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

…

… 

Fixed-Order Matrix Element

Shower Approximation … Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

Expand shower approximation to 
NLO analytically, then subtract:

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

LO × Shower (NLO - ShowerNLO) × Shower

41

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

…

… 

Fixed-Order Matrix Element

Shower Approximation

… Fixed-Order ME minus Shower 
Approximation (NOTE: can be < 0!)

X X …

X X X X …

Born X+1 X X …

… Subleading corrections generated by 
shower off subtracted ME 

Examples: MC@NLO, aMC@NLO
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Matching 2: Subtraction

Combine → MC@NLO 
Consistent NLO + parton shower (though correction events can have w<0) 

Recently, has been almost fully automated in aMC@NLO

42

X X+1 …

X X+1 X+2 X+3 …

Born X+1 X+2 X+3 …

NLO: for X inclusive 
LO for X+1 
LL: for everything else

Note 1: NOT NLO for X+1

Note 2: Multijet tree-level 
matching still superior for X+2

NB: w < 0 are a problem because they kill efficiency:   
Extreme example: 1000 positive-weight - 999 negative-weight events → statistical precision 
of 1 event, for 2000 generated (for comparison, normal MC@NLO has ~ 10% neg-weights)

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

Frixione, Webber, JHEP 0206 (2002) 029

Examples: MC@NLO, aMC@NLO
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Matching 3: ME Corrections

Standard Paradigm:  
Have ME for X, X+1,…, X+n;   

Want to combine and add showers   →    “The Soft Stuff”  

Works pretty well at low multiplicities 
Still, only corrected for “hard” scales; Soft still pure LL. 

At high multiplicities: 
Efficiency problems: slowdown from need to compute and 
generate phase space from dσX+n, and from unweighting 
(efficiency also reduced by negative weights, if present)  

Scale hierarchies: smaller single-scale phase-space region 

Powers of alphaS pile up 

Better Starting Point: a QCD fractal?

43
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(shameless VINCIA promo)

Interleaved Paradigm:  
Have shower; want to improve it using ME for X, X+1, …, X+n. 

Interpret all-orders shower structure as a “trial 
distribution” 

Quasi-scale-invariant: intrinsically multi-scale (resums logs) 

Unitary: automatically unweighted (& IR divergences → multiplicities) 

More precise expressions imprinted via veto algorithm: ME 
corrections at LO, NLO, …  → soft and hard corrections 

No additional phase-space generator or σX+n calculations → fast  

+ Can get Automated Theory Uncertainties 
For each event: vector of output weights (central value = 1)  

+ Uncertainty variations. Faster than N separate samples; only 
one sample to analyse, pass through detector simulations, etc.

44

(plug-in to PYTHIA 8 for ME-improved final-state showers, uses helicity matrix elements from MadGraph)

LO: Giele, Kosower, Skands, PRD84(2011)054003           NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1303.4974
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Matching 3: ME Corrections

First Order 
PYTHIA: LO1 corrections to most SM and BSM decay processes, 
and for pp → Z/W/H (Sjöstrand 1987) 
POWHEG (& POWHEG BOX): LO1 + NLO0 corrections for 
generic processes (Frixione, Nason, Oleari, 2007) 

Multileg NLO: 
VINCIA: LO1,2,3,4 + NLO0,1 (shower plugin to PYTHIA 8; 
formalism for pp soon to appear) (see previous slide) 

MiNLO-merged POWHEG: LO1,2 + NLO0,1 for pp → Z/W/H 
UNLOPS: for generic processes (in PYTHIA 8, based on 
POWHEG input) (Lönnblad & Prestel, 2013)
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Illustrations from: PS, TASI Lectures, arXiv:1207.2389
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Start at Born level Virtues:  
No “matching scale” 

No negative-weight events 
Can be very fast

Examples: PYTHIA, POWHEG, VINCIA

http://arxiv.org/abs/arXiv:1207.2389
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Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV
SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 (+MADGRAPH 4.4.26) ; 

gcc/gfortran v 4.6 -O2 ; single 3.06 GHz core (4GB RAM)

Time to generate 1000 showers 
(seconds)
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Initialization Time (seconds)
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Hadronization 
Time (LEP)

Global Sector SHERPA
Old Global Old Sector

SHERPA 1.4.0
VINCIA 1.029

Figure 7: Comparison of computation speeds between SHERPA version 1.4.0 [27] and VINCIA 1.029 +
PYTHIA 8.171, as a function of the number of legs that are matched to matrix elements, for hadronic Z
decays. Left: initialization time (to precompute cross sections, warm up phase-space grids, etc, before event
generation). Right: time to generate 1000 parton-level showered events (not including hadronization), with
VINCIA’s global and sector showers shown separately, with and without (“old”) helicity dependence. For
comparison, the average time it takes to hadronize such events with PYTHIA’s string hadronization model [28]
is shown as a dashed horizontal line. Further details on the setup used for these runs are given in the text.

complicated structures in phase space. This means that even fairly clever multi-channel strate-
gies have a hard time achieving high efficiency over all of it. In GKS, this problem is circum-
vented by generating the phase space by a (trial) shower algorithm, which is both algorithmi-
cally fast and is guaranteed to get at least the leading QCD singularity structures right1. Since
those structures give the largest contributions, the fact that the trials are less efficient for hard
radiation has relatively little impact on the overall efficiency2. Combining this with the clean
properties of the antenna phase-space factorization and with matching at the preceding orders,
the trial phase-space population at any given parton multiplicity is already very close to the
correct one, and identical to it in the leading singular limits, producing the equivalent of very
high matching-and-unweighting efficiencies.

• Finally, the addition of helicity dependence to the trial generation in this paper allows us to
match to only a single helicity amplitude at a time, at each multiplicity. This gives a further
speed gain relative to the older approach [9] in which one had to sum over all helicity con-
figurations at each order. In addition, the MHV-type helicity configurations tend to give the
dominant contribution to the spin-summed matrix element. MHV amplitudes are also those
best described by the shower because they contain the maximum number of soft and collinear
singularities.

The speed of the old (helicity-independent) VINCIA algorithm was examined in [7], for the pro-
cess of Z decay to quarks plus showers, and was there compared to SHERPA [27], as an example of a
slicing-based multileg matching implementation. In fig. 7, we repeat this comparison, including now

1A related type of phase-space generator is embodied by the SARGE algorithm [25], and there are also similarities with
the forward-branching scheme proposed in [26].

2As long as all of phase-space is covered and the trials remain overestimates over all of it, something which we have
paid particular attention to in VINCIA, see [9].

Z→udscb ; Hadronization OFF ; ISR OFF ; udsc MASSLESS ; b MASSIVE ; ECM = 91.2 GeV ; Qmatch = 5 GeV	


SHERPA 1.4.0 (+COMIX) ; PYTHIA 8.1.65 ;  VINCIA 1.0.29 + MADGRAPH 4.4.26 ; 	



gcc/gfortran v 4.7.1 -O2 ; single 3.06 GHz core (4GB RAM)

Speed

46

1. Initialization time 
(to pre-compute cross sections 

and warm up phase-space grids)

SHERPA+COMIX

PYTHIA+VINCIA

2. Time to generate 1000 events 
(Z → partons, fully showered & 
matched. No hadronization.)

VINCIA (GKS)

(example of sta
te of th

e art)

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

se
co

nd
s

SHERPA (CKKW-L)

!
polarized

unpolarized

1000 SHOWERS

sector

global

http://arxiv.org/abs/arXiv:1301.0933
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Summary: Two ways to compute Quantum Corrections

Fixed Order: consider a specific physical process 
Explicit solutions (to given perturbative order) 

Standard-Model: typically NLO or NNLO 
Beyond-SM: typically LO or NLO 

Limited generality 

Event generators: consider all possible physical processes 
(within perturbative QFT) 

Approximate solutions 
Process-dependence = subleading correction (→ matching)  

Maximum generality  
Emphasis is on universalities; physics 
Common property of all processes is, eg, the limits in which they factorize!

47

LO: Leading Order (Born)	


NLO = Next-to-LO, … 

LL: Leading Log + some NLL = Next-to-LL, …

Increasingly, the gold standard is calculations that combine the best of both worlds! 
These are, however, subtle, and the structure of the perturbative series remains intriguing
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Simple Monte Carlo Example: Number of AEPSHEP 
students who will get hit by a car this week

Complicated Function: 
Time-dependent  

Traffic density during day, week-days vs 
week-ends 

   (i.e., non-trivial time evolution of system) 

No two students are the same 
Need to compute probability for each 
and sum 

   (simulates having several distinct types of “evolvers”) 

Multiple outcomes: 
Hit → keep walking, or go to hospital? 
Multiple hits = Product of single hits, or 
more complicated?

48
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Monte Carlo Approach

Approximate Traffic 
Simple overestimate:  

highest recorded density  
of most careless drivers,  
driving at highest recorded speed 
…  

Approximate Student 
by most completely reckless and accident-prone student 
(wandering the streets lost in thought after these lectures …)

49

This extreme guess will be the equivalent of our 
simple overestimate from yesterday:
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Off we go… 
Throw random accidents according to:

Density of  
Cars

Hit Generator

50

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

0

@�
nstudX

i=1

Z te

t0
dt

Z

x
dx⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

1

A

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌥̂(x, t)

dN (t)

dt
= �P (t)N (t) = �

Z

x
dx

nstudX

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

Solve the equation:

R = (t0, t)

3

Sum over  
students

Student-Car 
hit rate

Density of 
Student i

Hit rate for  most 
accident-prone 

student

Rush-hour 
density 
of cars

Too 
Difficult

Simple 
Overestimate

R=

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

R = (te-t0)∆x

te : time 
of accident

↵
max

n
stud

⇢cmax

(Also generate trial xe, e.g., uniformly in circle around Puri)
(Also generate trial i; a random student gets hit)
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!

Accept trial hit (i,x,t) with probability

Hit Generator
Sudakov Form Factor = Number of students

that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

dN (t)

dt
= �P (t)N (t) = �

⇤

x
dx

nstud�

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

⌅
⇤L,max NL + ⇤R,max NR

⇥
⌥cmax

Solve the equation:

R = �(t0, t)

4

Prob(accept) = 

51

→ True number = number of accepted hits 
(note: we didn’t really treat multiple hits … → Markov Chain)

↵
max

n
stud

⇢cmax

Using the following: 
ρc : actual density of cars at location x at time t 

ρi : actual density of student i at location x at time t 
αi : The actual “hit rate” (OK, not really known, but can make one up)
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Evolution
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Evolution
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% 
of σtot

Evolution
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Jets vs Parton Showers

Jet clustering algorithms 
Map event from low E-resolution scale (i.e., with many partons/hadrons, 

most of which are soft) to a higher E-resolution scale (with fewer, hard, IR-
safe, jets)

55

Jet Clustering 
(Deterministic*) 

(Winner-takes-all)

Parton Showering 
(Probabilistic)

Q ~ Λ ~ mπ 
~ 150 MeV 

Q ~ Qhad 
~ 1 GeV

Q~ Ecm 
~ MX

Parton shower algorithms 
Map a few hard partons to many softer ones 

Probabilistic → closer to nature.                     
Not uniquely invertible by any jet algorithm*

Many soft particles A few hard jets

Born-level MEHadronization

(* See “Qjets” for a probabilistic jet algorithm, arXiv:1201.1914)
(* See “Sector Showers” for a deterministic shower, arXiv:1109.3608)

http://arxiv.org/abs/arXiv:1201.1914
http://arxiv.org/abs/arXiv:1109.3608
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Slicing: Some Subtleties

Choice of slicing scale (=matching scale) 
Fixed order must still be reliable when regulated with this 
scale  

→ matching scale should never be chosen more than ~ one 
order of magnitude below hard scale. 

Precision still “only” Leading Order 

Choice of Renormalization Scale 
We already saw this can be very important (and tricky) in 
multi-scale problems.  

Caution advised (see also supplementary slides & lecture notes)
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Choice of Matching Scale

57

!
→  A scale of 20 GeV for a W boson 
becomes 40 GeV for something weighing 
2MW, etc … (+ adjust for CA/CF if g-initiated)	


!
→ The matching scale should be written as 
a ratio (Bjorken scaling)	


Using a too low matching scale → 
everything just becomes highest ME	


!
Caveat emptor: showers generally do not 
include helicity correlations

0

25

50

75

100

Born (exc) + 1 + 2 (inc)

Low Matching Scale

Reminder: in perturbative 
region, QCD is approximately 

scale invariant	
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Plot from mcplots.cern.ch

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003PS, Phys. Rev. D82 (2010) 074018

a) Authors provide specific “tune variations” 
Run once for each variation→ envelope

b) One shower run  
+ unitarity-based uncertainties → envelope

VINCIA + PYTHIA 8 example 
Vincia:uncertaintyBands = onPYTHIA 6 example 

Perugia Variations 
µR

http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1005.3457
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Plot from mcplots.cern.ch

Giele, Kosower, PS; Phys. Rev. D84 (2011) 054003PS, Phys. Rev. D82 (2010) 074018

b) One shower run  
+ unitarity-based uncertainties → envelope

Matching reduces uncertainty

VINCIA + PYTHIA 8 example 
Vincia:uncertaintyBands = onPYTHIA 6 example 

Perugia Variations 
µR

http://mcplots.cern.ch
http://arxiv.org/abs/arXiv:1102.2126
http://arxiv.org/abs/arXiv:1005.3457
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Peaked Functions

Precision on integral 
dominated by the 
points with f ≈ fmax (i.e., 
peak regions) 
!
→ slow convergence  
if high, narrow peaks

20% 20% 20% 20% 20%

fmax
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Stratified Sampling

→ Make it twice as 
likely to throw points 
in the peak 
!
!
!
!

!

→ faster convergence 
for same number 
of function evaluations

16.7% 16.7% 33.3% 16.7% 16.7%
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6*R1 ∈ [1,2]  
6*R1 ∈ [2,4]  
6*R1 ∈ [4,5]  
6*R1 ∈ [5,6]  

6*R1 ∈ [0,1]  

A B

C

D E

→ Region A
→ Region B
→ Region C
→ Region D
→ Region E

For:

Choose:
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Adaptive Sampling

→ Can even design 
algorithms to 
do this automatically 
as they run  
(not covered here) 
!
→ Adaptive sampling5.6% 22.2% 44.4% 22.2% 5.6%
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Importance Sampling

→ or throw points 
according to some 
smooth peaked  
function for which you 
have, or can construct, 
a random number 
generator 
(here: Gauss)

E.g., VEGAS 
algorithm, by G. 

Lepage

63
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Why does this work?

1) You are inputting knowledge: obviously need 
to know where the peaks are to begin with … (say 
you know, e.g., the location and width of a resonance) 

2) Stratified sampling increases efficiency by 
combining fixed-grid methods with the MC 
method, with further gains from adaptation 

3) Importance sampling:

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

Effectively does flat MC with 
changed integration variables

Fast convergence if  
f(x)/g(x) ≈ 1
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How we do Monte Carlo
Take your system 

Set of radioactive nuclei 

Set of hard scattering processes 

Set of resonances that are going to decay 

Set of particles coming into your detector 

Set of cosmic photons traveling across the galaxy 

Set of molecules  

…

65
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How we do Monte Carlo
Take your system 

Generate a “trial”  (event/decay/interaction/… ) 
Not easy to generate random numbers distributed 
according to exactly the right distribution? 

May have complicated dynamics, interactions …  

→ use a simpler “trial” distribution 

66

Flat with some stratification 

Or importance sample with simple 
overestimating function (for which you can 
generate random #s)
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How we do Monte Carlo
Take your system 

Generate a “trial”  (event/decay/interaction/… )  
Accept trial with probability f(x)/g(x) 

f(x) contains all the complicated dynamics 
g(x) is the simple trial function 

If accept: replace with new system state 

If reject: keep previous system state

And keep going: generate next trial … 

no dependence on g in final 
result - only affects 
convergence rate
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How we do Monte Carlo
Take your system 

Generate a “trial”  (event/decay/interaction/… )  
Accept trial with probability f(x)/g(x) 

f(x) contains all the complicated dynamics 
g(x) is the simple trial function 

If accept: replace with new system state 

If reject: keep previous system state

And keep going: 

no dependence on g in final 
result - only affects 
convergence rate
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Sounds deceptively simple, 
but  … 	


!
with it, you can integrate  

arbitrarily complicated 
functions (in particular 
chains of nested functions),	


over arbitrarily 
complicated regions, in 
arbitrarily many 
dimensions … 


