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Factorization Summary

Factorization: expresses the independence of long-wavelength (soft)
emission on the nature of the hard (short-distance) process.
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Parton Densities

LHC Coverage
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Evolution in Q“ by DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

Changing O? ~ changing the scale at which we look at the
parton (zooming in/out on the fractal)

However, setting the factorisation scale u = Q is our choice; unphysical
Require cross section independent of u (at calculated order) = RGE

X, (12 Qs 1 X/Zz, 2 Ol 1
dq( y ) _ / dZqu(Z) q( /Z P ) o _/O dZqu(Z) Q(X,,uz)

dinp2 2w 27
1 + z2
Pqq is real g «— q splitting kernel: p,,(z) = Fy—>
. i
A gain-loss equation - O
First term: some partons flow from higher x'=x/z to x (POSITIVE) k Xi =z X;
Second term: some partons at x flow to lower x'=zx (NEGATIVE) xe = (1-2) x;




PDF DGLAP : Details

Awkward to write real and virtual parts separately. Use more compact
notation:
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The (LO) DGLAP Evolution Kernels
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Evolution in Q“ by DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

Require cross section independent of ur(at calculated order) = RGE
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LO vs NLO

O_Ehzzz dx; d(I)ffi/h(SU@',QZ)
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Relevant to use the right
PDFs with the right
Matrix Elements

da'%_)f(ilji, (I)f, Q%—w)

dZCi d(I)f
-
The “best fit” depends
on the matrix elements
you use when doing the fit
\

NLO matrix elements
contain low-x
enhancements (they are
larger than LOXDGLAP)

— need less low-x PDFs

(+ momentum conservation
— more partons at high x
— larger cross sections)




(Advanced) PDF Uncertainties

Much debate recently on PDF errors

20
Attempt to propagate -

15 &

experimental errors through
PDF fits = 68% CL

10

But “tensions’ between
different data sets
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— 90%, or something else?

+ Different groups (CTEQ, ~10

\_ 4
MSTW, NNPDE etc) use A . \
different ansatze for shape of v Gluon PDF uncertainty, Q* = (10 GeV)%
f(x) at low-Q boundary P T B! E Y R
107> 10 107" 107° 107

Still, good to = 10% even for LO gluon in 10 < x < |0-! (bigger errors at lower Q?)




QCD at Fixed Order

e
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Distribution of observable: O

In production of X + anything

Sum over identical
amplitudes, then square

/ Momentum

2 W« configuration

Fixed Order do ¢
(All Orders) % T Z / d(I)X—Hc Z Mﬁ(l—k 0 (O i O({p}X—i—k))
k=0

ME

= ¢=0
Phase Space
e —— / Matrix Elements Evaluate observable
Sum over

Cross Section for X+k at (1) loops — differential in O

differentially in O “anything” = legs

Truncateat £t =0,/=0,
— Born Level = First Term
Lowest order at which X happens

P. Skands 11



Loops and Legs

Another representation

/{W 74

(1882-1970)
Nobel Prize 1954

Loops

X X+l X+2 X+3

X+l X+2 X+3

Legs




Loops and Legs

Another representation

X @ NLO

(includes X+ @ LO)

Loops

X+2 X+3

Note: X+ jet

observables
X+2 X+3 s

only correct at
LO

Legs




Loops and Legs

Another representation

X @ NNLO

(includes X+1 @ NLO)
(includes X+2 @ LO)

Note: X+ jet
observables

only correct at
NLO

Loops

Note: X+2 jet
observables

only correct at
LO




Cross sections at LO

Born: S
AN
0),2 .
O-Born:/‘M)<(>‘ A
Born + n
2
JX+1 /‘MX+1|
X+2

Infrared divergent (cf Lecture 1) = Must be regulated

R = some Infrared Safe phase space region
(Often a cut on p1 > n GeV)

Careful not to take it too low!




Cross sections at NLO

L0 / PP s [ 2relas P

(note: this is not the |-loop diagram squared)

qk

qk

KLN Theorem (Kinoshita-Lee-Nauenberg)

Sum over ‘degenerate quantum states’ :
Singularities cancel at complete order (only finite terms left over)

— 0o+ Finite { / \M}?L\Z}wmne { / zRe[M§§>M§§>*]}
O'NL()(6+6_ — qq) = 0L0(6+e_ — qq) (1 —|—‘|‘ O(ag))




The Subtraction ldea

How do | get finite{Real} and finite{Virtual} ?

First step: classify IR singularities using universal functions

EXAMPLE: factorization of amplitudes in the soft limit

4 — . — )
=
Soft Limit o moy ot k
(E; > 0): . ;
.m+] "-<
K
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Universal 28k 2m7  2miy

Siik(mr, mg) =

“Soft Eikonal” SijSjk Sy Sik




The Subtraction ldea

Add and subtract IR [imits (SOFT and COLLINEAR)
B R AP 155 ‘ Dipoles (Catani-
dJNLO B /d(I)m-H ( " ./dCI)m_H —I— ./dCIDm :| Seymour)

Global Antennae
Choice of subtraction terms:

(Gehrmann,
Singularities mandated by gauge theory

Gehrmann-de Ridder,
Glover)

Sector Antennae
(Kosower)

Non-singular terms: up to you (added and subtracted, so vanish)

SOFT COLLINEAR
MZO% i0iq 2 287; 1 S i S ;
Mz a0l oy [ L (2020
IM(Z° — qrdK))| Sjk  Sij

MHO—> i 7 ) |2 28@ 1 Sii S
M _ qg{Qk)L :g§2(JF[ L < Lt 3"“+2>]
IM(H® = q1qK)| Sjk  Sij

SOFT COLLINEAR  +F
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Structure of o(NNLO)

NNLO

|-Loop * |-Loop |-Loop x Real (X+1)

%

A0 = 3104 [ (10 2R @)+ [ oRelar ) M0 [ M

ke v

dr

q

Two-Loop * Born Interference Real x Real (X+2)




Why Go Numerical?

Part of Z = 4 jets ...

5.3 Four-parton tree-level antenna functions 1 1 3
: : ag(1,3,4,2) = 512554 — 279834 + 819 — 555
The tree-level four-parton quark-antiquark antenna contains three final states: quark- S1234 | S1352451348234 | 2 2
gluon-gluon-antiquark at leading and subleading colour, A9 and AY and quark-antiquark-
: . . 0 . : +———— [3s12523 — 3512534 + 453y — $23534 + S33 + 534]
quark-antiquark for non-identical quark flavours Bj as well as the identical-flavour-only $135245134
contribution C{. The quark-antiquark-quark-antiquark final state with identical quark 53, 1 |’1 ) '|
o.~0o. . | o

flavours is thus described by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the qggq final state are: Thls IS One Of the Slmplest
Allle B, 45, 20) = (1, 8,4,2) a2, 4,3,1). 20 processes ... computed at tree

a
A(1,,35,44,27) = a3(1,3,4,2) +a(2,4,3,1) +a3(1,4,3,2) +a3(2,3,4,1) , (5.28)

1 1
a(1,3,4,2) = { (2512514 + 2512593 + 2575 + 574 + 53]

51234 | 2513524534 $1351345234 =
1 1
W [38128%4 — 48%2834 + 28?2 — 834] +8138134(813 + 823) [312824 + 512534 + 28%2]
1
+————— [3s12503 — Bs12534 + 4Ty — S23834 + S + 534 - 253,
saisisi 1 Now compute and add the h
+2813524 [2812 + s14 + 823] + 13591 [4812 + 3593 + 2824] .
| quantum corrections
P (512534 + 523534 + S24534] n L
v 134 ) ) ) s13(813 + 523) (814 + 824) (513 + 514)
+— [3512524 + 6512834 — 4512 — 3594834 — So4 — 3534] 1 9
51351345234 +513(513 593 (513 £ 511) [s12824 + 2575
+3135134 [—6512 — 3523 — S24 + 2834] :
s 2o 20 2o Then maybe worry about
245345134 . .
1
P N R U S PSP simulating the detector
245134 534 (5.30)

1 28198148 t
2 2 2 12514824
to 5 [2512514 + 2874823 + 2514524] - OO i
5345134 53451345234

+ [—2812814 — 4514894 + 28%4]

2
5345134

1
2 2 2
[—2812814 — 487 + 2514524 — 574 — 824]

st I + Additional Subleading Terms ...

+ [—8s12 — 2893 — 2524] + —5— [s12 + S23 + S24]
5345134 S134

2819 + S14 — So4 — S34| + + O(e) » 5.29
251345234 [ 24~ 534 25134 ( )} (5.29)




Riemann Sums

2rY = e *sin(8x%) +1 Midpoint Rule

\ Sample Points = 6 :
| Numerical Quadrature
| . Approximation = 2.059280 (1826-1866)




Higher Dimensions

Fixed-Grid (Product) Rules scale exponentially with D

m-point rule in 1 dimension

o—o——=- — m function evaluations per bin

1 2

. in 2 dimensions

€I9 ? o—© — m?2 evaluations per bin

&

(> . - . D °
] e ln® dimensions — mP per bin

n-particle phase space grows like 3n-4
e.g. D3=5 D4=8 Ds=1I




Numerical Precision

Convergence is slower in higher Dimensions!

[—> More points for less precision %)
l.’:.-\ — /‘:“u
(aftelI’JgC:\g?Ll:;tgons) Conv. Rate
(in D dim)
Trapezoidal Rule (2-point) 2 1/N
Simpson’s Rule (3-point) 3 1/N
... m-point (Gauss rule) m 1/N

See, e.g., See, e.g., F. James,
“Numerical Recipes” “Monte Carlo Theory and Practice”




A Monte Carlo technique: is any technique maklng
use of random numbers to solve a problem

L YT I A T A A -| T p— poa T —— T MG 0 O O 7

- s bw". 3 - —
DALEON y - = JE——— —————— —_—
“ \ : iz | — - = \ m— | R ==
NG : ) - ] g \ =5 [V -
% : ~=8 - — ] T,ﬁ_(_ z‘;::;. R

Conve [SCENCCE. w - This risk, that convergence is only given with a
s certain probability, is inherent in Monte Carlo
" Calculus: {A} converges to B = calculations and is the reason why this technique
7 if an n exists for which aw  was named after the world’s most famous

1 = e o =

o

=2
{ i A ,. gambling casino. Indeed, the name 1s doubly

i . appropriate because the style of gambling in the
s Monte Carlo: {A} converges to B 23 Monte Carlo casino, not to be confused with the

= if n exists for which noisy and tasteless gambling houses of Las
: the probability for Vegas and Reno, is serious and sophisticated.”

=

A F. James, “Monte Carlo theory and practice”,
is > P, for any P[0<P<1] Rept. Prog. Phys. 43 (1980) 1145




Numerical Precision

-
ecccee 0% %0

MC convergence is Stochastic! 833332 oonrse

L . . $33300 %280t
J/n inany dimension S
: Approx
Uncertainty
(after n function evaluations) Co.nv. Rate Cpnv. Rate
(in 1D) (in D dim)
Trapezoidal Rule (2-point) 2 1/N 1/N
Simpson’s Rule (3-point) 3 1/N 1/N
... m-point (Gauss rule) m 1/N 1/N
Monte Carlo 1 1/N 1/N

+ many ways to optimize: stratification, adaptation, ...
+ gives “events” — iterative solutions (but note: not the only reason)
+ interfaces to detector simulation & propagation codes



MC Integration

You want: to know the area of this shape:

Now get a few
friends, some balls,
and throw random

shots inside the

circle

(but be careful to make
your shots truly random)

Count how many
shots hit the shape
inside and how
many miss

/

Assume you know the
area of this shape:
nR?2
(an overestimate)

~
Earliest

Example of

MC

calculation:
Buffon’s
Needle
(1777)

to calculate

T

G. Leclerc, Comte de Buffon (1707-1788)

\_ J

A .= Nhit/Nthrows X nR?

+ I'll stop talking about it now. More in next Lecture



Random Numbers

| will not tell you how to write a Random-number
generator (interesting topic & history in its own right)

Instead, if you want to play with one, link to a random-
number generator, from a library

E.g., ROOT includes one that you can use if you like.

PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under “Random Numbers”:

Random numbers R uniformly distributed in 0 < R < 1 are obtained with

Pythia8::Rndm::flat();

+ Other methods for exp, x*exp, 1D Gauss, 2D Gauss.




& Infrared Safety



Jets as Projections

N/ g

LO partons NLO partons Parton Shower Hadron Level

Jet Definition Jet Definition Jet Definition Jet Definition

jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

WAV VA4

Projections to jets provides a universal view of event

Illustrations by G. Salam
29



There is no unique or “best” jet definition

YOU decide how to look at event

The construction of jets is inherently ambiguous

1. Which particles get grouped together?
JET ALGORITHM (4 parameters)
2. How will you combine their momenta?
RECOMBINATION SCHEME
(e.g., ‘E’ scheme: add 4-momenta)

Jet Definition

Ambiguity complicates life, but gives flexibility
in ones view of events — Jets non-trivial!




Types of Algorithms

1. Sequential Recombination

~— Take your 4-vectors. Combine the ones that have the lowest
‘distance measure’

Different names for different distance measures
Durham kr: AR}, x min(k¥;, k7,)

Cambridge/Aachen : AR%.

k7. = EZ(1 — cos 0;;)

AR?j = (i —n;)° + A¢z2j

Anti-kT: AR?j/ max(k%z-, k%]) + Prescription for hgw to
AC 9 / combine 2 momenta into |
rClus 3-2): — SijSik/ Sijk
-2 Pl W v (or 3 momenta into 2)

—— — New set of (n-1) 4-vectors

. . Look at event at:
Iterate until A or B (you choose which):

A: all distance measures larger than something
B: you reach a specified number of jets specific Niets

specific resolution



Why kr (or pt or AR)?

Attempt to (approximately) capture universal jet-within-jet-

witin-jet... behavior
Approximate full matrix element
“Eikonal”

(universal, always there)

(0)
|MX+1(<(9(7)3)17311~€75)|2 = dra.Cp ( 2Sik
My’ (s)|?

by Leading-Log limit of QCD — universal dominant terms

dSﬂdSlk X dpi dz X dE1 d@zl
S8 Pt z(1—2) / min(FE;, Ey) 0;

(1< F;, 0q < 1)

Rewritings in soft/collinear limits

“smallest” kr (or pt or 0j, or ...) = largest Eikonal



Types of Algorithms

2. “Cone” type

Take your 4-vectors. Select a procedure for which “test cones”
to draw

Different names for different procedures

Seeded : start from hardest 4-vectors (and possibly combinations thereof,
e.g., CDF midpoint algorithm) = “seeds”

Unseeded : smoothly scan over entire event, trying everything
Sum momenta inside test cone — new test cone direction

Iterate until stable (test cone direction = momentum sum direction)



Infrared Safety

Definition
An observable is infrared safe if it is insensitive to

SOFT radiation:

Adding any number of infinitely soft particles
(zero-energy) should not change the value of the
observable

COLLINEAR radiation:

Splitting an existing particle up into two
comoving particles (conserving the total
momentum and energy) should not change the
value of the observable




Safe vs Unsafe Jets

May look pretty similar in experimental environment ...

But it’s not nice to your theory friends ...

Unsafe: badly divergent in pQCD — large IR corrections:

2
IR Sensitive Corrections o« «, log™ <QUV> , m<2n

Q7 -
IR

Even if we have a hadronization model with which to compute
these corrections, the dependence on it = larger uncertainty

Safe — IR corrections power suppressed:

Q%R Can still be computed (MC) but

IR Sate Corrections Q% N can also be neglected (pure pQCD)

Let’s look at a specific example ...



cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone

36

rapidity

Slides from G. Salam



cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity

Slides from G. Salam



cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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cone iteration

_

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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cone iteration

_

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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cone iteration

_

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone

41
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LW
)
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B L L L L

cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone

jet 1

42

rapidity
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone

45

rapidity
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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rapidity
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone
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cone iteration

|CPR iteration issue

Iterative Cone Progressive Removal

— — cone axis
> cone

rapidity

jet 2

52
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|CPR iteration issue

Iterative Cone Progressive Removal

cone iteration — — cone axis
> cone

LW
)
o
B L L L L

jet 1 rapidity
l |

jet 2

Collinear splitting can modify the hard jets: ICPR algorithms are
collinear unsafe —- perturbative calculations give oo

Slides from G. Salam
53




Consequences of Collinear Unsafety

Collinear Safe Collinear Unsafe
| jet 1 | | jet 1 | | jet1 | | jet 1 . | |
jet 2
dg X (=0)  ag X (+o0) ol X (=) o X (+)
Infinities cancel Infinities do not cancel

Invalidates perturbation theory

Real life does not have infinities, but pert. infinity leaves a real-life trace

2 3 4 2 3 4 2 3 3
ar +a; +a; xo0o — as +a; +a. xInps/N— o + o + o
N —

BOTH WASTED



Stereo Vision

Use IR Safe algorithms

hitp://www fastjet fr/

To study short-distance physics

These days, = as fast as IR unsafe algos and widely
implemented (e.g., FASTJET), including

“Cone-like”: SiSCone, Anti-kr, ...

“Recombination-like”: kr,Cambridge/Aachen,Anti-kr...

Then use IR Sensitive observables

E.g., number of tracks, identified particles, ...

To explicitly check hadronization and models of IR physics

More about IR in lecture on soft QCD ...


http://www.fastjet.fr
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P. Skands

Uncalculated Orders

Naively O(&) - True in efe” |

=

g (ECM

T

onto(ee™ = qq) = oro(ete” — qq) <1 | | O(ag))

Generally larger in
Typical “K” factor in

nadron collisions

Op (= ONnLO/OL0) = 1.5 £ 0.5

Why is this? Many pseudoscientific explanations

Explosion of # of diagrams (Npiagrams = n!)

New initial states contributing at higher orders (E.g., gq = Zq)
Inclusion of low-x (non-DGLAP) enhancements

Bad (high) scale choices at Lower Orders, ...

Theirs not to reason why // Theirs but to do and die

Tennyson, The Charge of the Light Brigade




Changing the scale(s)

Why scale variation ~ uncertainty?

Scale dependence of calculated orders must be canceled
by contribution from uncalculated ones (+ non-pert

1
14+ by as(myz)In 2—; + O(a?)

: C

C“S(Q2) = CVS(mZZ)

- 11N¢ — 2ny
N 127

bo

—»  (s(Q7) — (@) IM]* = (@) M| + . ..

— Generates terms of higher order, but proportional to what you
already have (|[M|?)— a first naive” way to estimate uncertainty

*warning: some theorists believe it is the only way ... but be agnostic! There are other things than scale dependence ...



P. Skands

(Factorization: Caveats)

1. The proof only includes the first term in an operator
product expansion in “twist” = mass dimension - spin

— Strictly speaking, only valid for Q2— . Neglects corrections of order

2 2 m<2n

[lIl (Q /A )] (n=2 for DIS)
Q2n

2. The proof only applies to inclusive cross sections

In e’e”, in DIS, and in Drell-Yan. For everything else: factorization
ansatz

Higher Twist :

3. Scheme dependence

In practice limited to MSbar + variations of Qr

4. Interpretation of PDFs as parton number densities
Is only valid at Leading Order



Peaked Functions

1.00 =

o/omax

0.50

0.00

Functions: Breit-Wigner

I ' l ' I

i

(E-MV/T

Precision on integral
dominated by the
points with f = fmax (i.e.,
peak regions)

— slow convergence
if high, narrow peaks




Stratified Sampling

Functions: Breit-Wigner

T T T T T T ] — Make it twice as
likely to throw points
—C .
100~ 7 inthe peak

Choose:
0,1] = Region A
For: [1,2] = Region B
6*R1 € [2,4] @ Region C

o/omax

0.50 . . = 3= [4,5] 7 Region D
“1—" !i’ 5,6] — Region E
16.7% 1 %§33.3%§16. % 16.7%~ — faster convergence
for same number
000 —L——1 ‘ : i —— of function evaluations
(E-M/T



Adaptive Sampling

Functions: Breit-Wigner
I ' I ' I ' l ' |

1.00 - —
— Can even design
algorithms to
: do this automatically
: as they run
0.50 |- -
T (not covered here)

— Adaptive sampling

0.00 | 1 | 1 | 1 | 1 |

(E-MV/T



Importance Sampling

Functions: Breit-Wigner
T T T — or throw points
according to some
smooth peaked
function for which you
have, or can construct,
a random number

1.00 =]

3 1 \ generator
0.50 - THL n (here: Gauss)
E.g., VEGAS
algorithm, by G.
0.00 "2' - . : '.:‘ : Lepage
(E-MY/T



Why does this work?

1) You are inputting knowledge: obviously need

to know where the peaks are to begin with ... (say
you know, e.g., the location and width of a resonance)

2) Stratified sampling increases efficiency by
combining fixed-grid methods with the MC
method, with further gains from adaptation

3) Importance sampling:

Effectively does flat MC with

/ f f(x)dG( ) changed integration variables
a

g(x) Fast convergence if
f(x)/g(x) =



How we do Monte Carlo

Take your system
Set of radioactive nuclei
Set of hard scattering processes

Set of resonances that are going to decay

Set of particles coming into your detector
Set of cosmic photons traveling across the galaxy

Set of molecules

P. Skands




How we do Monte Carlo

Take your system

Generate a “trial” (event/decay/interaction/... )

Not easy to generate random numbers distributed
according to exactly the right distribution?

May have complicated dynamics, interactions ...

— use a simpler “trial” distribution

Flat with some stratification

Or importance sample with simple
overestimating function (for which you can

generate random #5s)




How we do Monte Carlo

fvTake your system

Generate a “trial” (event/decay/interaction/... )
Accept trial with probability f(x)/g(x)

f(x) contains all the complicated dynamics
g(x) is the simple trial function

If accept: replace with new system state

If reject: keep previous system state

no dependence on g in final
result - only affects
convergence rate

L And keep going: generate next trial ...




How we do Monte Carlo

r R
f' Sounds deceptively simple,

but ...

with it, you can integrate

arbitrarily complicated
functions (in particular
chains of nested functions),
over arbitrarily
complicated regions, in
arbitrarily many
dimensions ...

no dependence on g ir
result - only affecik
convergence rate

— And keep going:

P. Skands




