QFT Beyond Fixed Order

Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges
Soft Bremsstrahlung in Classical E&M, and in QED. The dipole factor & coherence.

2. Infrared Singularities and Infrared Safety

IR Poles & Sudakov Logarithms. Probabilities > 1.
Summing over degenerate quantum states (KLN theorem). IRC Safety.

= 3. QCD as a Weakly Coupled Conformal Field Theory

The emission probability; Double-Logarithmic Approximation
The no-emission probability; Sudakov Factor; exponentiation; example: jet mass.

4. Parton Showers

DLA as differential evolution kernels; unitarity and detailed balance.
Sampling the Sudakov; perturbation theory as a Markov Chain; Monte Carlo.
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Two Axioms tor Infinite-Order Perturbative QCD

This lecture is based on A. Larkoski, “An Unorthodox Introduction to QCD”,:arXiv:1709.06195

1. At high energies, the coupling of QCD, «,, is small.

—> QCD perturbation theory (e.g., with Feynman diagrams) is a good approximation.

Sensible to describe final states in terms of quarks and gluons.

2. At high energies, QCD has no intrinsic scales.

QCD is (approximately) a conformal, or scale-invariant, quantum field theory:

- : massless _ _ ~ /ya auv - - - :
Action integral for SZQCD == 7 G, G + 1y, Dy, invariant under scale transtormations.

The strong coupling is (approximately) constant, independent of energy.

At (asymptotically) high energies, quark masses are negligible.

Strictly speaking, (2) is of course not really true.
There are (quark and hadron) mass scales in the theory, and the strong coupling runs.

But the running is logarithmic (slow), and at energies above ~ 10 GeV only m; is really large

» We will think of fiocp # 0 and m, # 0 as small corrections on a scale-invariant starting point
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Scale-Invariance ot Emission Probability

Scale-invariant dynamics can only depend on dimensionless
quantities (such as energy ratios, or angles)

|
)

the probability for a
quark to emit a gluon?

In such a theory, what
could be the allowed (66666
functional form of, say, ‘Q P(E,, m?) I = . %

must be invariant it we “scale” all energies and masses by a factor, A:

— Constralnt Equathﬂi Note: we scale also the PS element

— 7
P(AE,, X°>m°)|d(AE,) d(A\*m?) = ~P(Eg,m2)ldEg dm”




Simple Guess

What sort of functions fulfil ?

P(AE,, \*m E,))d(\*m?) = P(E,,m*)dE, dm"

\ /

x dE/E and dm?/m?

Dimensionless function of Eg/m
with soft limit f(0) — 1

—> Simplest guess we can write down is: I
dE, dm? D
P(E;,m*)dE,dm* =N Egg o XfE/m’)
I

Dimensionless nhormalisation constant.

Cannot fix this from scale invariance alone. For g — gg, it must be proportional to

832 = 4ra,, times some “Colour Charge” = C¢ = 4/3 for an SU(3) triplet. The 1/x is
chosen to produce the known expressions in QCD (such as the dipole factor).
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The DLA Emission Probability

The “double-logarithmic approximation” (DLA) is obtained
via the soft limit f — 1

E
Express dEg dmgg in terms of dzg d(cos 0,.) with  z, = ﬁ
8 q
2 _
mg, = E,E (1 —cosf,,)

a.Crdz dcosb

T 2z 1—-cos@

W P(z,cos0)dzdcost =

Compare with the expression for the soft- 2 dk  dcos 0,
ohoton probability density we got using  dP, = ———
agrams. - 7 422 k (1-cosy
Feynman diagrams in the previous lecture: T COS Uy,




Most Singular Limit: Simultaneously Sott and Collinear

Taking also the small-angle limit 0, , <1
)
I —cosf ,~ 0,/ g
o, Cr dz db?

T  z 07

P(z,0°%) dz df* —

As discussed in the previous lecture, we should not interpret this as the
probability to emit a single gluon (or photon), but rather as an
expectation value for the average number density of emitted quanta.

Noting that the derivatives are of the form dx/x = d(log x), we rewrite:

Cr dz db? . 1 1
Pz 0?) dzdo? = LCr @0 asCr (log —> d (log )
<

02

T  z 02 T




Unitorm Distribution in Dimensionless (Log) Variables

» A uniform distribution in In(1/z) and In(1/0):

: 1 |
Pz 02)dzdg? = 2EP 9207 asCr (log —> d (log )
<

T z 67 T 02
1 NS o :
log — soft CJQ\\\\Q Emissions uniformly
$ < 0 . X Y distributed in the
oy ® (dimensionless) “Lund plane”
® ’ ¢ Andersson, Gustafson, Lonnblad, Pettersson, Z. Phys C43(1989)625
: — collinear

Note: original Lund plane uses
transverse momentum p7and rapidity

In(p, ,/my) ~ In(z0)
y=—Intan6/2




Practical Example: The invariant mass of a Jet

Let’s apply our notion of a scale-invariant uniform density of emitted gluons in
the log-log Lund plane to compute something real: the invariant mass of a jet, to

oo perturbative order

This calculation will of course only be accurate within the context of the double-log ~
classical (aka eikonal) approximation (DLA); should capture at least the “most important”
bremsstrahlung corrections.

Think of jets as
projections that
provide a universal
view of events

(Note: details

of different
types of jet
LO partons NLO partons Parton Shower Hadron Level definitions &
. _ _ _ clustering
Jet Definition Jet Definition Jet Definition Jet Definition algorithms (kr,
anti-kt, C/A,
v v v Y cones, ...) not
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 covered here.
See e.qg.,
lectures &
K 17 notes by G
At LO, ’Fhe jet Salam.)
Mass IS Zzero 1St—order

jet mass :
J oo-order jet masses Hadron-level

Jjet masses
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Peter Skands Monash ,A University 8




Dimensionless jet-massy observable

w
S

2 2
\)v/ n- = (pa T pb T pc)
C
i =2F E, (1 —cos8,)+2EE (1 —cos@,.)+2E E (1 —cosd,.)

2
< 2 2 2 2
. — E; (z,ﬂb +2.0° 4+ O(z ))
2
= (1.9) m2
>~ jet p) ) )
=~ (c) —> T = > Z Zi9° (a.k.a. “1-Thrust")
< o E2 l
= Jet j
> f

1A The sum runs over all emitted gluons in the plane
n

Want to compute the probability to observe 7 < 7_,

. : : . . ) ) "
.e.: what fraction of events will survive a cut requiring m < E 7. *

Equivalently what fraction of events will fail a cut requiring m2, > E?

?
jet — jetTCllt ‘
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Dominant Emission + Corrections

7 is a sum of positive terms |
log —
Forz < 7, no single term is te :
allowed to be greater than 7, R I
o o o lOg 1/Tcut N i )
One emission dominates: s .
o AN
Uniform log-log density = e N :
emissions exponentially far apart in ~ — 1
. . 09 —

(z,0%) = unlikely for event with log 1/7,,, oz

max(z;) < 7., to get across the line

—> Just compute probability for no emission in forbidden region

Caution: an event with two (or more) emissions in forbidden region can only be
rejected once = Not just a simple integral of unitorm density over that region.

10

-y
Monash ,A University

Peter Skands




The No-Emission Probability

To compute P(no emission), Larkoski splits up phase space in small subregions and
multiplies together probabilities for no emission in any one of them (sce backup slides)

Simpler to use our interpretation of integrated emission probability as average

number of emissions (cf last lecture):

If the emissions are equivalent and independent (fine in our soft limit), we can interpret the average
number of emissions in forbidden region:

. aSCF | ) Average number of emissions with 7 > 7,
<n>(Tcut) T 08 Teut = density times area of region with 7 > 7
271. cut
as the mean of a Poisson distribution:
n
(nexp (—(n)) -
P(n) — ' Probability to have n emissions with 7 > 7_,
n.

Hence the probability for no emissions in the requested region is P(0):

Probability for no a C
o s—F Called the Sudakov
emissions with 7 > 7_, P(O) — eXp — Ing Tcut = =
(in Poissonian limit) 272' OFT actor

(This is the same expression as Larkoski gets.)

Peter Skands
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The (all-orders) Emission Probability

To tind the probability distribution to observe a given value of 7 (i.e., the jet
mass distribution), differentiate the no-branching probability wrt :

_ - ~ - 1)
d as Cp . a,Cr log T as Cp .
p(T) = — exp log” T exXp log” T
dT T 2 | T T 2 Iy

Simple Interpretation: the differential rate of change of the no-emission
orobability is equal to (minus) the rate of emissions.

There is a close analogy with the simple process of nuclear decay.
There the naive decay rate per unit time is given by the decay constant.
But a nucleus can only decay at a given time t it it has not already decayed.

The actual decay rate per nucleus in a sample is therefore ¢ * exp( - c At).

Exercise: identify what plays the role of ¢, t, dt, and At, in our case.
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The Resummed Jet Mass Distribution

Diverges

Note, here using

6 - Leading Order Spectrum , ,
: a, = 1 for illustration
; (no Sudakov factor)
5L a;CrlogT
) 4 (s T
4 - Finite The Sudakov Factor
] Exponentiation of (no-)emission probability resums perturbative corrections
3L Sucokon to all orders with accuracy dictated by the approximations we made.
1 N In real world, used as skeleton onto which further corrections can be imposed
- (mass corrections, running coupling, recoil eftects, terms beyond DLA, ...)
2 |}
1Resummed spectrum
! (with Sudakov tactor)
T a,0r log T - a, Cp .
| exXP log® T
| T T o2
| | | | I — |
- 0.2 0.4 0.6 0.8 1.0 T
NB: the jet mass distribution is of course just one example. Sudakov suppression (and the

Suc

akov peak) is characteristic for any distribution which is IR divergent at tixed order.

-y
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Extra Slides



The No-Emission Probability: Larkoski’s Way

Break up the forbidden area in tiny (differential) subregions:

In any one subregion, i, the probability for no emission is
sC .
P(no emit in region 7) = 1 iy (Area of region 1) .
2 " 1 2
— = log“ T
o0 Total area = — long = Area of region i = = >
S 2 N
No emission in any of these regions:
N _ _
1 .o (j: CQF 10g2 T as CF 9
| log 1/7 | P(no emissions) = | 1 N = CXp | log”

The Sudakov “"Form” Factor

To tind the probability distribution to observe a given value of 7 (i.e., the jet
mass distribution), differentiate the cumulative distribution wrt z:

] . - -
d as Crp . a,Crlog T o, Cr 7
p(T) = ——exp log“ 7| = exp
dT T 2 7 T T 2

log® 7

- 1L : 1




