
QFT Beyond Fixed Order

Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges

Soft Bremsstrahlung in Classical E&M, and in QED. The dipole factor & coherence.


2. Infrared Singularities and Infrared Safety

IR Poles & Sudakov Logarithms. Probabilities > 1. 

Summing over degenerate quantum states (KLN theorem). IRC Safety.


3. QCD as a Weakly Coupled Conformal Field Theory 

The emission probability; Double-Logarithmic Approximation

The no-emission probability; Sudakov Factor; exponentiation; example: jet mass.


4. Parton Showers

DLA as differential evolution kernels; unitarity and detailed balance.

Sampling the Sudakov; perturbation theory as a Markov Chain; Monte Carlo.

Quantum Field Theory II

Applications and Phenomenology

Peter Skands

Monash University



The total probability to emit a photon?
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๏Having done the  integral, the total probability is now given by:

•We can artificially regulate this by introducing a  (formally equivalent to a 
photon mass) and a  (~ equivalent to a mass for the radiating particle) 

๏ Logarithmically divergent. 
๏ These are the (leading) infrared divergences of QED (also exist in QCD)

๏Interpretation as a probability has a problem
•For sufficiently small kmin and/or , this probability becomes > 1 
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Interpreting Probabilities > 1
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๏The Born-level    event rate for p p’ scattering

๏The radiative cross section   photon rate in p p’ scattering

๏What would an experimentalist conclude if their photon detector 
was triggering at a higher rate than their p’ detector?

•Simply that each p’ was accompanied by more than one photon on average!

•The regulator variables  then represent an (arbitrary) definition of the 
smallest photon energies and angles we can resolve in a given context.

๏➤ Expect  ~ number of “resolved” photons

σpp′￼
∝ →

σpp′￼+γ ∝ →

kmin, θmin

σpp′￼+γ(kmin, θmin)/σpp′￼
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σpp′￼+γ

σpp′￼

= ⟨nγ⟩pp′￼



So … the total probability to emit a photon?
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๏Still, if we want the total correction to the Born, we must include 
,  

•Looks like total probability to emit a photon (“resolved” or not) is infinite.
•(Related to the infinite range of the Coulomb field  massless photon.)

๏But then … what about our QED perturbation expansion?
•In perturbation theory, each higher-order term is supposed to be smaller than 
the previous one.
•But it looks like our first-order QED correction is not only larger than the Born, 
it is infinite!
•Perhaps not surprising given that bremsstrahlung is essentially a classical 
process; ought to involve an infinite number of quanta (correspondence).

๏

kmin → 0 θmin → 0

↔
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Resolved and Unresolved Quantum States
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๏We deal with UV divergences through renormalisation 
•Redefine couplings & fields to absorb anything smaller than wavelength of our 
probe

๏The analogy for IR divergences is: 
•“bare electron” and “bare photon” ➤ “electron + unresolved photons” and 
“resolved photons”.

๏To the rescue:
•1. In QM, we must sum over degenerate quantum states. 

• Saves fixed-order perturbation theory (next slide).
•2. Reinterpret divergent cross section for one emission in terms of divergent 
number of emissions, with finite total cross section 

๏ ➤ infinite-order resummations & parton showers (next lectures).
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1. IR Divergences in Fixed-Order Perturbation Theory
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•In the IR limit (Born + infinitely soft/collinear photon), the Born +  final state 
is indistinguishable from the Born state. 
•Complete calculation must include both emission and reabsorption amplitudes

γ

(note: not the 1-loop 
diagram squared)
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•➜ Kinoshita-Lee-Nauenberg Theorem: IR singularities cancel each other out, order by order:

Same IR singularities (from poles of propagators going on shell) but opposite signs!
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๏Sum over ‘degenerate quantum states’
•

At NLO:

(General proof beyond scope of this course)

E.g.:



(Slide on Notation)
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At NLO:

๏Note: the equation on the previous slide was written quite schematically:

σNLO
X = ∫ M(0)

X

2
dΦX + ∫ M(0)

X+1

2
dΦX+1 + ∫ 2Re [M(1)

X M(0)*
X ] dΦXReally,

Lorentz-Invariant Phase Spaces Note: should really also 
show flux factor, 

symmetry/averaging 
factors, and PDF factorsσNLO

X = ∫ dσB
X + ∫ dσR

X+1 + ∫ dσV
XCan also write:

“Born”
(LO)

“Real”
(NLO)

“Virtual”
(NLO)



yield configurations where a certain number of essentially non-interacting particles are

emitted between a pair of hard radiators. By carrying out the colour algebra, it becomes

evident that non-ordered gluon emission inside a colour-ordered system is equivalent to

photon emission off the outside legs of the system [18,42]. For simplicity, these subleading

colour contributions are also denoted as squared matrix elements |Mm|2, although they

often correspond purely to interference terms between different amplitudes.

The precise definition depends on the number and types of particles involved in the

process. However, all colour orderings are summed over in
∑

m with the appropriate colour

weighting. The jet function J (n)
m defines the procedure for building m jets out of n partons.

The main property of J (n)
m is that the jet observable defined above is collinear and infrared

safe as explained in [39, 40]. In general J (n)
m contains θ and δ-functions. J (n)

m can also

represent the definition of the n-parton contribution to an event shape observable related

to m-jet final states.

From (2.1), one obtains the leading order approximation to the m-jet cross section by

integration over the appropriate phase space.

dσLO =

∫

dΦm

dσB . (2.3)

Depending on the jet function used, this cross section can still be differential in certain

kinematical quantities.

2.1 NLO infrared subtraction terms

At NLO, we consider the following m-jet cross section,

dσNLO =

∫
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)
+
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]

. (2.4)

The cross section dσR
NLO has the same expression as the Born cross section dσB

NLO (2.1)

above except that m → m + 1, while dσV
NLO is the one-loop virtual correction to the m-

parton Born cross section dσB . The cross section dσS
NLO is a (preferably local) counter-term

for dσR
NLO. It has the same unintegrated singular behaviour as dσR

NLO in all appropriate

limits. Their difference is free of divergences and can be integrated over the (m+1)-parton

phase space numerically. The subtraction term dσS
NLO has to be integrated analytically

over all singular regions of the (m + 1)-parton phase space. The resulting cross section

added to the virtual contribution yields an infrared finite result.

A systematic procedure for finding NLO infrared subtraction terms is the antenna

formalism introduced in [10, 41]. The antenna subtraction terms are obtained as sum of

antennae:

dσS
NLO = N

∑
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1

Sm+1

×
∑

j

X0
ijk |Mm(p1, . . . , p̃I , p̃K , . . . , pm+1)|2 J (m)

m (p1, . . . , p̃I , p̃K , . . . , pm+1) , (2.5)

– 6 –

Finite by Universality Finite by KLN
Compute and tabulate (regulated) 

 integrals once and for all  dσS
NLO

Dipoles (Catani-Seymour)

Global Antennae 
(Gehrmann, Gehrmann-de 
Ridder, Glover)

Sector Antennae 
(Kosower, Peskin&Larkoski, …)

… 

(The Subtraction Approach)
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๏Add and subtract universal  IR limits   (SOFT and COLLINEAR)

๏Choice of “subtraction terms”  :
•Singularities mandated by gauge theory
•Non-singular terms: up to you (added and subtracted here, so zero net contribution)

dσS
NLO



Not all observables can be computed perturbatively
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QCD lecture 4 (p. 29)

Jets

Cones
Consequences of collinear unsafety

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

Invalidates perturbation theory

Invalidates perturbation theory(KLN: ‘degenerate states’)

Virtual and Real go into different bins!Virtual and Real go into same bins!

(e
xa

m
pl

e 
by

 G
. S

al
am

)

Note: in real life, hadronisation scale regulates the perturbative divergences in QCD. 
 What this means in practice is that IRC safe observables are relatively insensitive to hadronisation effects 

(they are suppressed by powers of ), whereas IRC unsafe ones are sensitive to hadronisation effects.
⟹

Λ/Q( (

๏All modern collider experiments use “infrared and collinear safe” jet clustering algorithms 
•But this was not always so. E.g., seeded cone algorithms (used at Tevatron) were not collinear safe.



๏ Definition: An observable is infrared safe if it is insensitive to

Perturbatively Calculable ⟺ “Infrared Safe”
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SOFT radiation: 

Adding one (or more) infinitely soft particles (zero-energy) 


should not change the value of the observable

COLLINEAR splittings:

Splitting an existing particle up into two (or more) 

comoving ones (conserving total momentum and energy) 
should not change the value of the observable

 ensures that virtual and real singularities go in “same bin” (of histograms), and hence cancel
 observable can be computed perturbatively & hadronisation effects suppressed by 

→
→ (Λ/Q)n



Note on terminology
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๏My usage of the terms infrared, soft, and collinear:

•Consistent with general distinction between UV and IR singularities in QFT.
•Thus, if I say an observable is “IR safe”, it is both soft and collinear safe.

๏Most others follow a historical convention:
•Infrared only means soft
•To cover both cases one then has to say “Infrared and Collinear Safe”.
•Gets abbreviated to IRC Safe which is what you’ll often see in literature.

Peter Skands UniversityMonash

Infrared {
Soft

Collinear
i.e., Infrared = Soft and/or Collinear



IRC Safety: Examples
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Discuss whether the following observables are both soft and collinear safe, or not. 

For those questions that involve jets, assume an arbitrary but IRC safe jet definition.

A) The number of particles (in an event).


B) The number of jets (in an event).


C) The energy of the hardest particle (in an event).


D) The pT of the hardest particle …


E) The pT of the hardest jet …


F) The number of particles with energies E  Emin , for some given Emin


G) The summed pT of all jets (also called HT)

≥
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