
QFT with Hadrons

Introduction to B Physics

1. Leptonic Decays of Hadrons: from π → 𝓁ν to B → 𝓁ν 

QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM.


2. On the Structure and Unitarity of the CKM Matrix

The CKM Matrix. The GIM Mechanism. The Unitarity Triangle.


3. Semi-Leptonic Decays and the “Flavour Anomalies”

B → D(*) 𝓁 ν. The Spectator Model. Form Factors. Heavy Quark Symmetry.


B → K(*) 𝓁+ 𝓁-. FCNC. Aspects beyond tree level. Penguins. The OPE. Data.

Peter Skands

Monash University

Quantum Field Theory II  

Applications & Phenomenology



From mW to mb
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๏What does “running” of the Wilson coefficients mean, and what 
consequences does it have?

•

Matrix Equation: Ci(μ) = ∑
j

Uij(μ, mW)Cj(mW)

Peter Skands UniversityMonash

U: “Evolution Matrix”

See, e.g., M. Schwarz “Quantum Field Theory and the Standard Model”, chp.23

๏The “Renormalisation Group Method”: sums (αs ln(mW /μ))n

•Uij obtained by solving differential 
equation (“RGE”) analogous to that 
for other running couplings: 

dCi

d ln μ
= γij Cj

The kernels, , are called the 
“matrix of anomalous dimension”

γij

Expansion parameter is not really  
but 

Large for μ ~ mb ≪ mW

αs
αs ln(m2

W /μ2)

4 RG-Improved Perturbation Theory

There are some important technical aspects which we have ignored in the discussion of the
previous lecture. Recall the one-loop matching results for the Wilson coefficients C1 and C2

from (22):

C1(µ) = 1 +
3

Nc

αs(µ)

4π

(
ln

M2
W

µ2
−

11

6

)
+ O(α2

s) ,

C2(µ) = −3
αs(µ)

4π

(
ln

M2
W

µ2
−

11

6

)
+ O(α2

s) . (41)

Ideally, we would like to integrate out all high-frequency modes perturbatively and then
evaluate the remaining EFT matrix elements 〈Qi(µ)〉 at some low scale µ ∼ few GeV, below
which perturbation theory becomes untrustworthy. The computation of these matrix elements
must use a non-perturbative approach such as lattice QCD, heavy-quark expansions, or chiral
perturbation theory. A glance at the above equations shows a potential problem: the expansion

parameter is not αs

π ∼ 0.1, but αs

π ln
M2

W

µ2 ∼ 0.8. The problem is indeed generic: in the presence

of widely separated scales M % µ, perturbation theory often involves powers of αs ln M
µ rather

than powers of αs. Such large logarithmic terms must be resummed to all orders.
While this problem is particularly acute for almost all practical calculations in QCD, it

is also relevant to theories with smaller coupling constants. For instance, when the gauge
couplings of the Standard Model are extrapolated from low energy up to the GUT scale

MGUT ∼ 1016 GeV, the relevant logarithm is ln
M2

GUT

µ2 ≈ 65. Resummation is essential to
control such large logarithms even if the coupling constants are as small as those for the
electro-weak interactions of the Standard Model.

The general solution to the problem of large logarithms is called “renormalization-group
(RG) improved perturbation theory”. It provides a reorganization of perturbation theory in
which αs ln M

µ is treated as an O(1) parameter, while αs ' 1. Large logarithms are resummed
to all orders in perturbation theory by solving RG equations. The nomenclature of RG-
improved perturbation theory is as follows: At leading order (LO) all terms of the form
(αs ln M

µ )n with n = 0, . . . ,∞ are resummed. The result is an O(1) contribution to the Wilson
coefficient functions. At next-to-leading order (NLO), one also resums terms of the form
αs(αs ln M

µ )n, all of which count as O(αs), and so on. Note that in cases where the term with
n = 0 is absent (such as for C2), there may be O(1) effects after resummation that not seen
at tree level in perturbation theory. This happens also for the Wilson coefficients of the QCD
penguin operators in the effective weak Lagrangian. As shown in (38) the matching conditions
for the coefficients C2,...,6 start at O(αs); yet, after RG resummation these coefficients become
of O(1) and contribute at the same order as the Wilson coefficient C1 of the leading current-
current operator.

Before we can perform such resummations, we must study in some more detail the renor-
malization of the composite operators in the effective Lagrangian.
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Example:

bi
𝒪1 sj

c̄j

ci

𝒪2

𝒪1 si

c̄j

cj
bi

Examples:

๏ QCD corrections ➤ Large logs & operator mixing (U is not diagonal)

Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125



Quark-Level Matrix Element
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๏For now, all we shall care about is that the Ci(mb) have been calculated 
in the theoretical literature with high precision

•Not just for SM, but for many scenarios of physics BSM as well.

Peter Skands UniversityMonash

ℳ(b → sℓ+ℓ−) =
GF α

2π
V*tsVtb[C9V(mb)[s̄γμ 1

2 (1 − γ5)b][ℓ̄γμℓ]

−2
mb

mB
C7γ(mb)[s̄iσμν qν

q2
1
2 (1 + γ5)b][ℓ̄γμℓ]]

+C10A(mb)[s̄γμ 1
2 (1 − γ5)b][ℓ̄γμγ5ℓ]

Next: add perturbative contributions from other operators

Then: add non-perturbative effects of hadronic resonances

Finally: form factors ➡︎ hadronic matrix elements

B K

E.g., Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125

E.g., SUSY: Ali, Ball, Handoko, Hiller, hep-ph/9910221



Additional Perturbative Contributions
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๏Additional Contributions to O9:
•W-exchange O1,2 :  pairs 
•QCD penguins O3-6 :  pairs (u,d,s,c,b)

cc̄
qq̄

Peter Skands UniversityMonash

Buras, M. Münz, Phys. Rev. D52 (1995) 186. 
Misiak, Nucl. Phys. B393 (1993) 23; +err. Ibid. B439 (1995) 461 

C9V → Ceff
9 (q2) = C9 + gc(q2; C1−6) + gb(q2; C3−6) + guds(q2; C3−4) + 2

9 (3C3 + C4 + 3C5 + C6)

"Loop functions”
q2 = (pB − pK)2 = (pℓ+ + pℓ−)2Recall:

contain ln m2
c /m2

b , ln q2/m2
b , ln μ2/m2

b
Large at low q2

also contain imaginary parts for q2 > 4mq2

Corresponds to on-shell quarks ➤ can propagate over long distances

Perturbative calculation is presumably not valid.
Main worry is gc since it gets contributions from the O(1) C1 coefficient

๏Note also: C7γ → Ceff
7 = C7γ + C5/3 − C6

(*in the scheme used by Buras, Fleischer, hep-ph/9704376)

Question: what do you call a  pair 
with , in a spin-1 state?

cc̄
q2 ∼ 4m2

c



Resonances (and other long-distance states)
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๏Which  states are there?cc̄

Peter Skands UniversityMonash

Which of these could 
be relevant to us?mJ/ψ ∼ 3.1 GeV

mψ (2S) ∼ 3.69 GeV
mψ (1D) ∼ 3.77 GeV

]2 [GeV2q
0 5 10 15 20

2 q
/d

Γd

Photon pole
enhancement (from C7)

J/� �(2S) Broad charmonium
resonances (above the
open charm threshold)

increasing hadronic recoil

increasing dimuon mass

CKM suppressed
light-quark resonances

Sensitive to C7–C9

interference

Sensitivity to
C9 and C10

phasespace
suppression

Figure 7: Cartoon illustrating the dimuon mass squared, q2, dependence of the di↵erential decay rate of B ! K
⇤
`
+
`
� decays.

The di↵erent contributions to the decay rate are also illustrated. For B ! K`
+
`
� decays there is no photon pole enhancement

due to angular momentum conservation.

short lifetime – in contrast to the pseudoscalar mesons ⇡ and K, K⇤ and � are not stable under the strong
interactions. The finite lifetime is neglected in the lattice simulation and represents a source of systematic
uncertainty. Overcoming this limitation is in the focus of current e↵orts [196]. As for the B to pseudoscalar
transitions, combined fits of lattice and LCSR results valid in di↵erent kinematical regimes lead to increased
precision and less dependence on extrapolation models [131].

Beyond the form-factors, the next most significant uncertainties are hadronic uncertainties associated
to non-factorisable corrections. These are illustrated in Fig. 6. Diagrams (a) and (b) represent the leading
order short-distance contributions from the operators Q7...10 that factorise “naively” into a hadronic and
leptonic current. The size of the non-factorisable e↵ects and the theoretical methods required to compute
them vary strongly with q2 (see Fig. 7 for a cartoon of the q2 dependence of the di↵erential branching ratio
and the relevant hadronic e↵ects).

At intermediate q2, around the masses of the J/ and  (2S), the charm loop in diagram (c) goes on
shell, the decays turn into non-leptonic decays, e.g. B ! KJ/ (! `+`�), and quark-hadron duality breaks
down [197]. These regions are typically vetoed in the experimental analyses.

At low q2, the relevant non-factorisable e↵ects include weak annihilation as in diagram (f) and hard
spectator scattering as in diagram (g). They have been calculated for b ! s and b ! d transitions involving
vector mesons in QCD factorisation to NLO in QCD [135, 136] as well as in soft-collinear e↵ective theory [198]
and shown to be negligible in B ! K`+`� decays [199, 200]. Weak annihilation and spectator scattering
involving Q8 have been computed also in LCSR [139, 140]. Diagram (c) corresponds to the contribution
of four-quark operators that is usually written as a contribution to the “e↵ective” Wilson coe�cient Ce↵

9
.

Perturbative QCD corrections to the matrix elements of Q1,2 as in diagram (d) are numerically sizeable and
are known from the inclusive decay as discussed above. The main challenge in exclusive b ! s decays at
low q2 is represented by soft gluon corrections to the charm loop shown in diagram (e). These have been
estimated in LCSR [138, 201] but remain a significant source of uncertainty.
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Are they important?

Yes: in resonant region(s), process is really 

, followed by .B → J/ψ K J/ψ → ℓ+ℓ− Cartoon adapted from 
Blake, Lanfranchi, 
Straub, 1606.00916

Hosaka, Iijima, Miyabayashi, Sakai, Yasui, 1603.09229

dΓ
/d

q2

Note: the dilepton q2 spectrum is still relatively clean below the J/psi

(can add resonances with Breit-Wigner functions + “non-factorizable contributions” in )Ceff
9

E.g. : m2
ϕ ∼ 1 GeV2

L=0 L=2L=1

ψ (1D)

ψ (3S), ψ (2D)

(X, Y, Z states 
highlighted in red = 

possible “tetraquark” 
 states)cc̄qq̄

(Blue dots = predictions 
from a conventional quark 

model; agree well below DD 
threshold, not above it.)

(Note: black lines in 
this figure = observed 
charmonium states.)

https://arxiv.org/abs/1603.09229


(Non-Factorizable Contributions?)
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๏We so far did not consider multi-hadronic final states
•But that is effectively what the  intermediate states are.
•Non-factorisable contributions: general problem in multi-hadronic processes.

๏The factorisation ansatz
•Including the  and other  (henceforth ) states as Breit-Wigner distributions in , 
we are effectively factoring the process, into  transition   creation (& decay):

๏

๏ (The creation & decay amplitudes for  are proportional to the  decay constant.)
•Ignores any crosstalk between the  and  currents. 

๏Non-factorizable contributions
•Long-distance interactions between the (hadronic)  and  currents.

๏ Beyond the scope of this course

B → J/ψ K

J/ψ cc̄ ψn Ceff
9

B → K ⊗ ψn

⟨K ℓ+ℓ− Ĥ B⟩ ∼ ⟨ℓ+ℓ− Ĥ ψn⟩ ⟨ψn K Ĥ B⟩ ∼ ⟨ℓ+ℓ− Ĥ ψn⟩ ⟨ψn Ĥ 0⟩ ⟨K Ĥ B⟩
ψn ψn

J/ψ B → K

J/ψ B → K

Peter Skands UniversityMonash

Res. Fact.



Hadronic Matrix Element & Form Factors
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๏We are now ready to look at the hadron-level matrix element

๏Similarly to , axial part does not contribute in . 
๏ But we do need a magnetic form factor, due to the C7 contribution.

B → Dℓν B → Kℓ+ℓ−

Peter Skands UniversityMonash

ℳ(B → Kℓ+ℓ−) =
GFα

2π
VtbV*ts [ Ceff

9 ⟨K(pK) s̄γμ(1 − γ5)b B(pB)⟩ [ℓ̄γμℓ]

+C10A⟨K(pK) s̄γμ(1 − γ5)b B(pB)⟩ [ℓ̄γμγ5ℓ]

−2
mb

mB
Ceff

7 ⟨K(pK) s̄iσμν qν

q2
(1 + γ5)b B(pB)⟩ [ℓ̄γμℓ]]

⟨K(pK) s̄γμ(1 − γ5)b B(pB)⟩ = f+(q2)(pB + pK)μ + f−(q2)(pB − pK)μ

⟨K(pK) s̄iσμν qν

q2
(1 + γ5)b B(pB)⟩ =

fT(q2)
mB + mK

(q2(pB + pK)μ − (m2
B − m2

K)qμ)

K is not a “heavy-light” system (ΛQCD/ms ~ 1) ➜ cannot play Isgur-Wise trick; have to keep both f+ and f-

(Recall: )pB − pK = q

pB pK

q



(Example of Form-Factor Parametrisations)
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๏Main method is called “Light Cone Sum Rules” (LCSR)
•The ones below are admittedly rather old; from hep-ph/9910221

Peter Skands UniversityMonash

at s = m2
B∗

s
. In the present work we thus choose a different parametrization which avoids this

problem:
F (ŝ) = F (0) exp(c1ŝ + c2ŝ

2 + c3ŝ
3). (3.7)

The term in ŝ3 turns out to be important in B → K transitions, where ŝ can be as large as
0.82, but can be neglected for B → K∗ with ŝ < 0.69. The parametrization formula works
within 1% accuracy for s < 15 GeV2. For an estimate of the theoretical uncertainty of these
form factors, we have varied the input parameters of the LCSRs, i.e. the b quark mass, the
Gegenbauer-moments of the K and K∗ distribution amplitudes and the LCSR-specific Borel-
parameters M2 and continuum threshold s0 within their respective allowed ranges specified in
[52, 49] and obtain the three sets of form factors given in Tabs. 3–5, which represent, for each
ŝ, the central value, maximum and minimum allowed form factor, respectively. We plot the
form factors in Figs. 1 and 2.

Our value of T1(0) is consistent with the CLEO measurement of B(B → K∗γ)exp = (4.2 ±
0.8 ± 0.6) · 10−5 [70]. From the formula for the decay rate,

Γ(B → K∗γ) =
G2

Fα|V ∗
tsVtb|2

32π4
m2

bm
3
B(1 − m2

K∗/m
2
B)3|C7

eff |2|T1(0)|2 , (3.8)

the central values of the parameters given in Table 6, T1(0) = 0.379 and with τB = 1.61 ps we
find B(B → K∗γ)th = 4.4 · 10−5.

4 Decay Distributions

In this section we define various decay distributions whose phenomenological analysis will be
performed in the next section.

Eq. (2.2) can be written as

M =
GFα

2
√

2π
V ∗

tsVtbmB

[

T 1
µ

(

%̄ γµ %
)

+ T 2
µ

(

%̄ γµ γ5 %
)]

, (4.1)

where for B → K%+%−,

T 1
µ = A′(ŝ) p̂µ + B′(ŝ) q̂µ , (4.2)

T 2
µ = C ′(ŝ) p̂µ + D′(ŝ) q̂µ , (4.3)

and for B → K∗%+%−,

T 1
µ = A(ŝ) εµραβε

∗ρp̂αB p̂βK∗ − iB(ŝ) ε∗µ + iC(ŝ) (ε∗ · p̂B)p̂µ + iD(ŝ) (ε∗ · p̂B)q̂µ , (4.4)

T 2
µ = E(ŝ) εµραβε

∗ρp̂αB p̂βK∗ − iF (ŝ) ε∗µ + iG(ŝ) (ε∗ · p̂B)p̂µ + iH(ŝ) (ε∗ · p̂B)q̂µ , (4.5)

with p ≡ pB + pK,K∗. Note that, using the equation of motion for lepton fields, the terms in
q̂µ in T 1

µ vanish and those in T 2
µ become suppressed by one power of the lepton mass. This

effectively eliminates the photon pole in B′ for B → K.
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f+ f0 fT A1 A2 A0 V T1 T2 T3

F (0) 0.319 0.319 0.355 0.337 0.282 0.471 0.457 0.379 0.379 0.260

c1 1.465 0.633 1.478 0.602 1.172 1.505 1.482 1.519 0.517 1.129

c2 0.372 −0.095 0.373 0.258 0.567 0.710 1.015 1.030 0.426 1.128

c3 0.782 0.591 0.700 0 0 0 0 0 0 0

Table 3: Central values of parameters for the parametrization (3.7) of the B → K and B → K∗

form factors. Renormalization scale for the penguin form factors fT and Ti is µ = mb. c3 can
be neglected for B → K∗ form factors.

f+ f0 fT A1 A2 A0 V T1 T2 T3

F (0) 0.371 0.371 0.423 0.385 0.320 0.698 0.548 0.437 0.437 0.295

c1 1.412 0.579 1.413 0.557 1.083 1.945 1.462 1.498 0.495 1.044

c2 0.261 −0.240 0.247 0.068 0.393 0.314 0.953 0.976 0.402 1.378

c3 0.822 0.774 0.742 0 0 0 0 0 0 0

Table 4: Parameters for the maximum allowed form factors.

f+ f0 fT A1 A2 A0 V T1 T2 T3

F (0) 0.278 0.278 0.300 0.294 0.246 0.412 0.399 0.334 0.334 0.234

c1 1.568 0.740 1.600 0.656 1.237 1.543 1.537 1.575 0.562 1.230

c2 0.470 0.080 0.501 0.456 0.822 0.954 1.123 1.140 0.481 1.089

c3 0.885 0.425 0.796 0 0 0 0 0 0 0

Table 5: Parameters for the minimum allowed form factors.
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Max 

Min 

Central 

•(and there are corresponding ones for )B → K*



The  B → K ℓ+ ℓ-    Decay Distribution 
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๏Squared matrix element + trace algebra

•

๏

With  

๏ And     ,   
๏ Note: we assumed lepton mass vanishes ➜ no dependence on f- any more!

๏Phase Space
•Useful Trick: factor  phase space into two  ones using 

•

•

|ℳ | 2 =
G2

F α2

4π2
|V*tsVtb |2 D(q2) (λ(m2

B, m2
K, q2) − u2)

D(q2) = Ceff
9 (q2) | f+(q2) +

2mb

mB + mK
Ceff

7 fT(q2)
2

+ |C10A |2 f+(q2)2

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ac u ≡ 2pB ⋅ (pℓ+ − pℓ−)

1 → 3 1 → 2

∫ d4q δ(4)(q − p1 − p2) = 1

Peter Skands UniversityMonash

Exercise: starting from the standard form of dLIPS for a  decay, show that :


 

1 → 3

dΓB→Kℓ+ℓ−

dq2 du
=

|ℳ |2

29π3m3
B

Exercise: do the steps


Hint: use advantage of OPE basis: 
operators are orthogonal. E.g., axial and 

vector currents can’t interfere.



What does data say?
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XIII International Conference on Beauty, Charm and Hyperon Hadrons (BEACH 2018)
IOP Conf. Series: Journal of Physics: Conf. Series1137 (2019) 012025

IOP Publishing
doi:10.1088/1742-6596/1137/1/012025
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Figure 3. (Colours online) Di↵erential branching fraction for various b ! sµµ transitions
measured at LHCb, superimposed to SM predictions [2–5,40].

LHCb, including RD+ and the baryonic observables R
⇤
(⇤)
c

.

3. Flavour anomalies in rare b decays
Rare decays of heavy-flavoured hadrons can be described by e↵ective Hamiltonians that
encode SM and possible NP contributions in the Wilson coe�cients weighting the operators
participating in the process. In this framework, called Operator Product Expansion (OPE) [37],
a model-independent analysis of e↵ects beyond the SM is possible. In particular, b ! s``
transitions are described by the e↵ective Hamiltonian

Heff = �4GFp
2

VtbV
⇤
ts

X

i

�
CiOi + C0

iO0
i

�
, (5)

where GF is the Fermi constant, Vij are elements of the CKM matrix [38, 39], O(0)
i are local

operators encoding left(right)-handed long distance contributions, and C(0)
i are the corresponding

Wilson coe�cients.
Various discrepancies with the SM predictions have been detected in decays dominated by

the e↵ective vector and axial-vector couplings C9 and C10. Branching fractions of decays such
as B0 ! K0µ+µ�, B0 ! K⇤0µ+µ�, B+ ! K⇤+µ+µ�, B0

s ! �µ+µ�, ⇤0
b ! ⇤0µ+µ�, all

proceeding through a b ! sµµ transition, have been measured at the LHC [2–5,41], at CDF [42]
and at B-factories [7,8]. For all of these channels, interestingly, the SM expectations exceed the
measured value, as visible in Figure 3. The statistical significance of these anomalies is such
that a SM explanation is possible. However, many other small discrepancies – detailed below –
have been registered over the years, resulting altogether in a significant tension with the SM.

3.1. Tests of LFU with b ! s`` decays
Uncertainties in the hadronic form factors, and other hadronic uncertainties, cancel to a very
large extent in the SM predictions for the LFU ratios

RK(⇤) ⌘
Br

�
B ! K(⇤)µ+µ��

Br
�
B ! K(⇤)e+e�

� , (6)

Here just looking at LHCb measurements; From talk by E. Graverini, BEACH 2018
Additional measurements by BaBar and Belle not shown.

For both the K and K* final states, the data is a bit on the low side (compared with SM)?
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Figure 4. (Colours online) LHCb [6], Belle [7] and BaBar [8] measurements of RK (left) and
LHCb measurement of RK⇤ [9] (right), superimposed to SM predictions [43–47]. Previous RK⇤

measurements from Belle and BaBar can be found in [7, 8].

provided the momentum transfer to the lepton pair is su�ciently large [43–47]. These observables
are predicted to be unity with uncertainties below 1% [43]. The LHCb experiment has provided
experimental measurements of these quantities, laying out a common strategy for LFU tests
with rare decays. The RX observables are defined as ratios of e�ciency corrected yields limited
to certain q2 ranges, chosen in order to exclude the J/ and  (2S) resonances, which are
then used as control channels. Electron and muon channel yields are measured relative to
the corresponding, much more abundant resonant modes B ! XJ/ , where X is the strange
meson under study and the J/ meson decays to either a µµ or ee pair. This way, thanks to the
topological similarity between the nonresonant and resonant modes, the systematic uncertainties
related to the di↵erences in the reconstruction of electron and muon tracks largely cancel.

In order to test the validity of the analysis procedure, the e�ciency corrected
resonant yields are compared, and the important cross-check observable rJ/ ⌘
Br (B ! XJ/ (! µµ)) / Br (B ! XJ/ (! ee)), expected to be unity, is measured. This way,
the electron and muon reconstruction e�ciencies, as well as the e�ciency of the o✏ine selection,
are validated. The electron mode is much more challenging from an experimental point of view,
and the low reconstruction e�ciency for dielectron final states represents the dominant factor
in the statistical uncertainty associated to the LHCb measurements.

The ratio RK was measured with B+ ! K+`+`� decays in the 1.1 < q2 < 6.0 GeV2/c4

range, finding RK = 0.745+0.090
�0.074 (stat) ± 0.036 (syst), about 2.6� below the SM prediction [6].

The ratio RK⇤ was later measured with B0 ! K⇤0`+`� decays in two disjoint q2 bins, finding

RK⇤ = 0.66+0.11
�0.07 (stat) ± 0.03 (syst) for 0.045 < q2 < 1.1 GeV2/c4 (7)

RK⇤ = 0.69+0.11
�0.07 (stat) ± 0.05 (syst) for 1.1 < q2 < 6.0 GeV2/c4 (8)

with a SM compatibility at the 2.2-2.5� level [9]. At the same time, the control ratio rJ/ was
found compatible with unity within 1�, with rJ/ = 1.043 ± 0.006 (stat) ± 0.045 (syst) [9]. The
main systematic uncertainties for both ratios arise from double-misidentification of J/ decay
products, from bremsstrahlung losses a↵ecting the B mass shape in the electron channel, and
from the determination of the trigger and selection e�ciencies. Some of these uncertainties also
depend on the size of the simulated samples used to assess the e�ciencies, and are expected to
shrink if more events are simulated. The RK and RK⇤ measurements from LHCb are shown
in the left- and right-hand panel of Figure 4, respectively, where they are compared to the SM
predictions and to the measurements performed by the Belle [7] and BaBar [8] experiments.

… Interesting …
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LHCb measurement of RK⇤ [9] (right), superimposed to SM predictions [43–47]. Previous RK⇤

measurements from Belle and BaBar can be found in [7, 8].

provided the momentum transfer to the lepton pair is su�ciently large [43–47]. These observables
are predicted to be unity with uncertainties below 1% [43]. The LHCb experiment has provided
experimental measurements of these quantities, laying out a common strategy for LFU tests
with rare decays. The RX observables are defined as ratios of e�ciency corrected yields limited
to certain q2 ranges, chosen in order to exclude the J/ and  (2S) resonances, which are
then used as control channels. Electron and muon channel yields are measured relative to
the corresponding, much more abundant resonant modes B ! XJ/ , where X is the strange
meson under study and the J/ meson decays to either a µµ or ee pair. This way, thanks to the
topological similarity between the nonresonant and resonant modes, the systematic uncertainties
related to the di↵erences in the reconstruction of electron and muon tracks largely cancel.

In order to test the validity of the analysis procedure, the e�ciency corrected
resonant yields are compared, and the important cross-check observable rJ/ ⌘
Br (B ! XJ/ (! µµ)) / Br (B ! XJ/ (! ee)), expected to be unity, is measured. This way,
the electron and muon reconstruction e�ciencies, as well as the e�ciency of the o✏ine selection,
are validated. The electron mode is much more challenging from an experimental point of view,
and the low reconstruction e�ciency for dielectron final states represents the dominant factor
in the statistical uncertainty associated to the LHCb measurements.

The ratio RK was measured with B+ ! K+`+`� decays in the 1.1 < q2 < 6.0 GeV2/c4

range, finding RK = 0.745+0.090
�0.074 (stat) ± 0.036 (syst), about 2.6� below the SM prediction [6].

The ratio RK⇤ was later measured with B0 ! K⇤0`+`� decays in two disjoint q2 bins, finding

RK⇤ = 0.66+0.11
�0.07 (stat) ± 0.03 (syst) for 0.045 < q2 < 1.1 GeV2/c4 (7)

RK⇤ = 0.69+0.11
�0.07 (stat) ± 0.05 (syst) for 1.1 < q2 < 6.0 GeV2/c4 (8)

with a SM compatibility at the 2.2-2.5� level [9]. At the same time, the control ratio rJ/ was
found compatible with unity within 1�, with rJ/ = 1.043 ± 0.006 (stat) ± 0.045 (syst) [9]. The
main systematic uncertainties for both ratios arise from double-misidentification of J/ decay
products, from bremsstrahlung losses a↵ecting the B mass shape in the electron channel, and
from the determination of the trigger and selection e�ciencies. Some of these uncertainties also
depend on the size of the simulated samples used to assess the e�ciencies, and are expected to
shrink if more events are simulated. The RK and RK⇤ measurements from LHCb are shown
in the left- and right-hand panel of Figure 4, respectively, where they are compared to the SM
predictions and to the measurements performed by the Belle [7] and BaBar [8] experiments.

๏Regardless of the complications in analysing these decays, we can 
again also use them as tests of lepton universality

•Now, form the two ratios:

•
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Figure 3. (Colours online) Di↵erential branching fraction for various b ! sµµ transitions
measured at LHCb, superimposed to SM predictions [2–5,40].

LHCb, including RD+ and the baryonic observables R
⇤
(⇤)
c

.

3. Flavour anomalies in rare b decays
Rare decays of heavy-flavoured hadrons can be described by e↵ective Hamiltonians that
encode SM and possible NP contributions in the Wilson coe�cients weighting the operators
participating in the process. In this framework, called Operator Product Expansion (OPE) [37],
a model-independent analysis of e↵ects beyond the SM is possible. In particular, b ! s``
transitions are described by the e↵ective Hamiltonian

Heff = �4GFp
2

VtbV
⇤
ts

X

i

�
CiOi + C0

iO0
i

�
, (5)

where GF is the Fermi constant, Vij are elements of the CKM matrix [38, 39], O(0)
i are local

operators encoding left(right)-handed long distance contributions, and C(0)
i are the corresponding

Wilson coe�cients.
Various discrepancies with the SM predictions have been detected in decays dominated by

the e↵ective vector and axial-vector couplings C9 and C10. Branching fractions of decays such
as B0 ! K0µ+µ�, B0 ! K⇤0µ+µ�, B+ ! K⇤+µ+µ�, B0

s ! �µ+µ�, ⇤0
b ! ⇤0µ+µ�, all

proceeding through a b ! sµµ transition, have been measured at the LHC [2–5,41], at CDF [42]
and at B-factories [7,8]. For all of these channels, interestingly, the SM expectations exceed the
measured value, as visible in Figure 3. The statistical significance of these anomalies is such
that a SM explanation is possible. However, many other small discrepancies – detailed below –
have been registered over the years, resulting altogether in a significant tension with the SM.

3.1. Tests of LFU with b ! s`` decays
Uncertainties in the hadronic form factors, and other hadronic uncertainties, cancel to a very
large extent in the SM predictions for the LFU ratios

RK(⇤) ⌘
Br

�
B ! K(⇤)µ+µ��

Br
�
B ! K(⇤)e+e�

� , (6)

Data

RK*

RK

•Expect R = 1 in SM 
(the complicated stuff 
drops out in the ratio).  

(SM Theory)
(SM Theory)
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Figure 4: Constraints in the Wilson coe�cient plane C
bsµµ
9 vs. C

bsµµ
10 . Left: LFU ratios

only. Right: Combination of LFU ratios, combination of b ! sµµ observables,

BR(Bs ! µ
+
µ
�), and the global fit. The dashed lines show the constraints

before the recent updates [11, 13, 14,41].

pull from the b ! sµµ observables is somewhat reduced once the new physics dependence

of the theory errors is taken into account. We expect the e↵ect to become much more

pronounced with more precise data.

3.2. Two parameter scenarios

Next, we discuss scenarios where two Wilson coe�cients are turned on simultaneously.

In Figure 4 we show the best fit regions in the C
bsµµ
9 vs. C

bsµµ
10 plane. The plot on the

left focuses on the constraints from the LFU ratios RK and RK⇤ . The RK constraint

before the update [11] is shown by the dashed contours. As the measured RK > RK⇤

the best fit range prefers a sizable positive C
bsµµ
10 . The plot on the right shows the result

of the global fit. The Bs ! µ
+
µ
� branching ratio prefers a modest positive C

bsµµ
10 , while

the b ! sµµ observables mainly prefer a negative C
bsµµ
9 . Overall, the best fit point

corresponds to (Cbsµµ
9 , C

bsµµ
10 ) ' (�0.51, 0.30) with a pull of 5.3�.

In Figure 5 we show the viable parameter space of a couple of other Wilson coe�cient

pairs, that were found to give good fits in the past. The plot on the left shows the C
bsµµ
9

vs. C
0 bsµµ
9 plane, while the plot on the right shows the C

univ.
9 vs. �C

bsµµ
9 = �C

bsµµ
10 plane

(defined such that C
bsee
9 = C

univ.
9 and C

bsµµ
9 = C

univ.
9 + �C

bsµµ
9 ). The best fit points
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−

All

SM SM

(Note: what is actually plotted here is the difference between the SM values of  and the 
measured values; sometimes denoted .  Dashed lines show the status before 2021.)
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https://inspirehep.net/literature/1853232
https://arxiv.org/abs/2103.13370


(What Approximations did we Make?)
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๏Top Quark Dominance

๏Low-energy effective theory at quark level
•Matched at finite loop order to full theory
•Running at finite loop order from mW to mb

•Non-leptonic operators contributing to  and , but not 

๏Effect of intermediate c-cbar resonances 
•Non-factorizable contributions
•Other hadronic states: light-quark resonances, open charm, … ?

๏Form Factors

๏QED Corrections at Hadronic Level?
•

Ceff
7 Ceff

9 C10A

Peter Skands UniversityMonash


