Recent progress & (some) open issues in top modelling

Peter Skands — June 2025

1. Matching in prod. & decays

Systematics & 2nd-order effects

2. Showers – coherence & recoils

(effects on b jets & B hadrons)

3. Ongoing work in PYTHIA

- The 2nd emission
- Finite Γ_{top}
- Colour reconnections
- New Pythia tunes

Australian Government

Australian Research Council

Matching Systematics with Powheg

- **Ambiguous** for complex processes
 - (such as $t\bar{t}$, single-t, ...)
 - \rightarrow **uncertainty** purely associated with matching scheme (not physical)

Leading colour (LC) structure of $gg \rightarrow t\bar{t}$ @ LO

Complex process = multiple emitters

\rightarrow several overlapping phase spaces

Many possible p_T definitions:

 p_{\perp} with respect to the beam

 p_{\perp} with respect to the IF dipoles

 p_{\perp} (or m_{\perp}) with respect to either of the final-state tops

(How) is **mass** treated in the scale definition(s): p_{\perp}^2 vs $m_{\perp}^2 = m^2 + p_{\perp}^2$?

(+ PYTHIA defines a problematic FF dipole \rightarrow coherence issues)

+ Interpolations/combinations of the above

POWHEG-Box generates 1st emission = the one it judges to be the "hardest" according to its own p_T definition

Leading colour (LC) structure of $gg \rightarrow t\bar{t}$ @ LO

Complex process = multiple emitters \rightarrow several overlapping phase spaces

Many possible p_T definitions:

 p_{\perp} with respect to the beam

 p_{\perp} with respect to the IF dipoles

 p_{\perp} (or m_{\perp}) with respect to either of the final-state tops

(How) is **mass** treated in the scale definition(s): p_{\perp}^2 vs $m_{\perp}^2 = m^2 + p_{\perp}^2$?

(+ PYTHIA defines a problematic FF dipole \rightarrow coherence issues)

+ Interpolations/combinations of the above

POWHEG-Box generates 1st emission = the one it judges to be the "hardest" according to its own p_T definition

Extreme Case: VBF Higgs \leftarrow (colour structure $\sim t\bar{t}$ without the II dipole and the FF masses)

Production: Top quark (and $t\bar{t}$) p_T

Not well modelled by baseline Powheg+PYTHIA Improved @ NNLO QCD

\Rightarrow take difference between nominal and reweighting to NNLO+NNLL as uncertainty

Could be improved upon by MC reaching that accuracy natively

[Mazitelli et al., 2112.12135]

First steps exploring MiNNLO_{PS} for $t\bar{t}$

 \rightarrow Improvement (but still has pThard ambiguity)

Important target for MC community.

Top decay (and line shape): the 2nd emission

Second emission: big differences

- Not controlled by **POWHEG**, nor by **PYTHIA**'s MECs.
- Not as important as 1st. Still highly significant if goal is per-mille precision on \mathcal{M}_{t}

Pythia ≤ 8.309

PYTHIA \leq 8.309 allowed two different coherence/recoil options + a dedicated UserHook "recoilToTop" for use with recoilToColoured = off Theoretically the least bad option (in absence of RF)? Needs validations & feedback.

Pythia ≥ 8.314

$\textbf{PYTHIA} \geq \textbf{8.314}$

Old recoilToColoured flag replace by new mode **recoilStrategyRF**

- **New default** = apply the RF-eikonal suppression factor (at full strength)
 - (I.e., new default is what used to be obtained with the recoilToTop userhook)

+ new option to interpolate smoothly k reweighting factor (thanks to D. Hisrchberger

 \otimes Correction factor \propto weightRF \times

Log of antenna function

Note: important fragmentation bug fix in 8.315 (affects baryon spectra & correlations) Thus, recommend to move directly to 8.315

ngth) Iserhook)

9

3. Ongoing work in PYTHIA

The 2nd emission

VINCIA has improved coherence & recoils through its RF antennae

But previously did not have MECs

Monash student 2025: iterated MECs for $t\bar{t}$ in VINCIA (supervisor: Ludovic Scyboz)

 \Rightarrow Expect ME-corrected branching rates for (at least) 1st and 2nd branchings (Also working on approaches to formal NLL accuracy in VINCIA \leftrightarrow PANSCALES)

Finite Γ_{top} See slides from 2022 LHC Top WG meeting Interleaved resonance decays (IRD) = default in VINCIA [Brooks, PS, Verheyen, 2108.10786] **IRD:** Unstable particles only radiate at wavelengths shorter than their widths, then

disappear from event evolution; replaced by their decay products

Changes soft interference & recoils \Rightarrow modifications to lineshape beyond Γ_{top}

In principle, can then do MECs also beyond narrow-width limit, e.g., at $gg \rightarrow bW^+ \bar{b}W^$ level and/or six-fermion level: have not looked into this yet due to lack of manpower

Colour Reconnections

QCD CR Model [Christiansen & PS, 2005] d²σ/d*y*d*p*_T (∞b/GeV/*c*) ALICE Prompt Λ_{c}^{+} 10² Proposes a physical/mathematical |y| < 0.5underpinning for CR p-Pb / A, $s_{NN} = 5.02 \text{ TeV}$ ^{-0.96} < y < 0.04 ¹⁰ **Stochastic** colour correlations ^{Prompt D⁰} approximating SU(3) productso2 TeV $3 \otimes \overline{3} = 8 \oplus 1, 3 \otimes 3 \stackrel{|y|}{=} 6 \stackrel{0.5}{\xrightarrow{}} \overline{3}_{s_{NN}} = 5.02 \text{ TeV}$ Not the final word but does agree with (& even predicted) a number of min-bias and ^{10⁻¹}heavy-flavour observations

10⁻ Probably worth taking seriously in other A⁺_c, D⁰: ± 2.1% (3.7%) lumi. uncertainty not shown for pp(p-Pb) results hadron izartion times etagentic contexts ⁰E.g.: **JES** studies & hadronic **top**²⁰

Note: CR can alter baryon fractions but does not by itself generate strangeness enhancement or other collective effects.

PYTHIA collaboration actively developing **extensions**: SR-CR, ropes, closepacking, shoving, ...

Impact of Particle Composition

ATLAS PUB Note ATL-PHYS-PUB-2022-021 29th April 2022

Dependence of the Jet Energy Scale on the Particle Content of Hadronic Jets in the ATLAS Detector Simulation

[...] It is found that the hadronic jet response, i.e. the ratio of the reconstructed jet energy to the true jet energy, varies by $\sim 1-2\%$ depending on the hadronisation model used in the simulation. This effect is mainly due to differences in the average energy carried by kaons and **baryons** in the jet. Model differences observed for jets initiated by quarks or gluons produced in the hard scattering process are dominated by the differences in these hadron energy fractions indicating that measurements of the hadron content of jets and improved tuning of hadronization models can result in an improvement in the precision of the knowledge of the ATLAS jet energy scale.

For E_T = **[30, 100, 200] GeV** Max JES variation = [3%, 2%, 1.2%]

Fraction of E_T carried by baryons (& kaons) varies significantly

Reweighting to force similar baryon and kaon fractions

Significant potential for improved Jet Energy Scale uncertainties!

Careful Modelling & Constraints Interplay with advanced UE models In-situ constraints from LHC data

Variation largest for **gluon jets**

Max variation → [1.2%, 0.8%, 0.5%]

Revisit comparisons to LEP data w PID

Serious efforts have started towards a replacement of Monash 2013

Reproducible, with uncertainties, and using more data

Updated fragmentation (LEP) tuning:

Want to get involved? b fragmentation at LEP/SLD \leftrightarrow in top decays (and at LHC more generally) Fragmentation tunes optimised for 2-loop running & higher-order matching New options for variations of splitting kernels \leftrightarrow beyond scale variations

Updated pp tuning:

- New "MC-friendly" PDF sets from all main PDF providers. Will replace NNPDF 2.3 LO used in Monash
- Dedicated efforts optimised for 2-loop running & higher-order matching
- Colour reconnections (and other non-perturbative aspects)