Pythia-PanScales Joint Session

PYTHIA contributions / discussions

1. The Vincia QED Module

2. Interleaved MPI?

3. Pythia's Contrib

1. Types of (QED) Showers

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.

HERWIG, SHERPA, PHOTOS

 $2s_{e^-e^+}$

Beyond 2-body Systems: QED Multipoles

PYTHIA QED

Determines a "best" set of dipoles. No genuine multipole effects.

I.e., interference beyond dipole level only treated via "principle of maximal screening" Works as a parton shower evolution (+ MECs) \succ interleaved with QCD, MPI, ...

YFS QED [Yennie-Frautschi-Suura, 1961 > several modern implementations]

Allows to take full (multipole) soft interference effects into account

"Scalar QED"; no spin dependence.

I.e., starts from purely soft approximation; collinear terms not automatic Is not a shower; works as pure afterburner, adding a number of photons to a final state with predetermined kinematics; no interleaving

VINCIA QED [Kleiss-Verheyen, 2017 ➤ Brooks-Verheyen-PS, 2020]

Allows to take full (multipole) soft interference effects into account Not limited to scalar QED; includes spin dependence

I.e., starts from antenna approximation; including collinear terms Works as a parton shower evolution; can be interleaved (+ MECs).

QED Multipole Radiation Patterns

Example: Quadrupole final state (4-fermion: $e^+e^+e^-e^-$)

Soft Photon Emission: [Dittmaier, 2000]

$$|M_{n+1}(\{p\}, p_j)|^2 = -8\pi\alpha \sum_{x,y}^n \sigma_x Q_x \sigma_y Q_y \frac{1}{s}$$

Opposite-charge pairs \succ positive terms Same-charge pairs ➤ negative terms

$|M_n(\{p\})|^2$

What's the problem?

Example: Quadrupole final state (4-fermion: $e^+e^+e^-e^-$)

Why was this not done as a shower before?

The orange terms are negative \succ negative weights (+ big cancellations) YFS is able to get around that by not being formulated as a shower. Utilises that the sum is always non-negative.

What does VINCIA do differently?

Example: Quadrupole final state (4-fermion: $e^+e^+e^-e^-$)

Sectorize phase space: for each possible photon emission kinematics p_{γ} , find the 2 charged particles with respect to which that photon is softest \succ "Dipole Sector"

Use dipole *kinematics* for that sector, but sum **all** the positive and negative antenna terms (w spin dependence) to find the **coherent emission** probability.

Phys.Lett.B 811 (2020) 135878 [arXiv:2002.04939]

Antenna phase-space factorisation is exact, also for massive particles

- + Universal mass corrections are included in the eikonals
- Should have faithful representation of "dead cone" effect (radiation from massive particles strongly damped for $\theta_{\gamma} \lesssim E/m$ [Gehrmann-de Ridder, Ritzmann, PS, 2012]

Also automatically includes $\gamma \rightarrow e^+e^-, \mu^+\mu^-, \dots$ splittings

► First steps towards application of VINCIA QED to Hadron Decays **PhD project of Giacomo Morgante** (in collaboration with Warwick) [Giele, Kosower, PS, 2011, + more recent] Generic spin structures, generic Matrix-Element Corrections So far ignoring: Form Factors, VMD contributions, BRs, ...

+ Can be interleaved with event evolution, e.g., with **Resonance Decays** Brooks, **PS**, Verheyen, SciPost Phys. 12 (2022) 3, 101 [arXiv:2108.10786]

Technical Structure & Comments

Rob Verheyen wrote VinciaQED to be largely modular, standalone.

Only relies on a few common Vincia utilities like kinematics maps

Inherits from a base class he called **VinciaModule**.

(Could be relabelled PerturbativeModule or something like that)

In Vincia, we ask our QCD evolution for a trial scale, and also the QED module for a trial scale, then pass the highest back to Pythia.

The QED module simply looks at the current event and constructs all needed branchers etc on the fly.

 \implies Automatically picks up new charges from $g \rightarrow q\bar{q}$ branchings and/or MPI, without any need for dedicated update methods.

Note: **interfacing** and **porting** are very different.

I would vastly prefer **interfacing**, and would be happy to discuss & collaborate on any modifications of the module that would be needed to make that happen.

Discussion of interleaving with MPI

Already in Pythia (& Vincia), MPI and shower pT definitions are not exactly the same

In PanScales, main question would presumably be about rapidity dependence?

1. Poor man's solution: just treat as global "clock"? Always pass a large scale back to Pythia -> you go first

2. Rapidity-dependent evolution eqs could open possibility for new treatments of saturation?

And would you like Pythia to handle the MPI showers?

Reminder and Discussion of Pythia Contrib

Over to Phil ...

+ Melissa raised the issue that they have trouble passing the total cross section, due to weights issues. Sounds like this ties into our weights discussion.

10