

59th Rencontres de Moriond: QCD & High Energy Interactions, La Thuile, April 2025

Theory Summary 2025

Peter Skands (Monash University)

EW/BSM $Q \gtrsim M_{\rm EW}$

Fixed-Order pQCD Single-Scale $Q \gg \Lambda$

Resummed pQCD Multi-Scale

 $Q_i \gg Q_j \gg \Lambda$

Hadronization (&UE) Powers, Strings, QGP $Q \sim [\Lambda, 5\Lambda]$

> Hadrons $Q \lesssim \Lambda$

> > $g_{\mu} - 2$

H, Z, X N latching Zt**, C** attice QED

Overview - 38 Theory Talks

Warning!

Omissions, biases, and misrepresentations may be encountered beyond this point

Higgs FLV & CPV

$$\begin{split} \mathcal{D}_{\widetilde{G}} &= f^{ABC} \widetilde{G}_{\mu}^{A\nu} \mathcal{G}_{\mu}^{B\nu} \mathcal{G}_{\rho}^{C\mu}, \qquad \mathcal{O}_{\widetilde{W}} = \epsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} \mathcal{W} \qquad \overline{I}_{\mu}^{I} \mathcal{V} \qquad \mathcal{O}_{V}^{I} \mathcal{V}_{\mu}^{I} \mathcal{V}_{\mu}^{I}$$

 $\hat{O}_{tG} = g_{s} (\bar{Q}\sigma^{\mu\nu}T_{A}t)\tilde{\varphi}G^{A}_{\mu\nu}, \qquad \hat{O}_{tW} = i(\bar{Q}\sigma^{\mu\nu}\tau_{I}t)\tilde{\varphi}W^{\mu\nu}_{\mu\nu}, \qquad \hat{O}_{tW} = i(\bar{Q}\sigma^{\mu\nu}\tau_{I}t)\tilde{\varphi}W^{\mu$

ļ

-V

5

t. sqChechfor is depression of the provide state of the second se

h anoth to the high of the state of the stat tive dia the effect of some HEFT benche to be the transfer of the transfer of the transfer of the transfer of some HEFT benche to the transfer of some the effect of some HEFT benche to the transfer of some the effect of some the transfer of some the effect of some the transfer of some the effect o

n is approximated very well by the HSL. fusion is also refer to the section p is the proximated very well by the HSL. fusion is also refer to the section be and the section of the result to the provide the section in the reference of the result of the

the wither a light of the support of in the Π_{ncL}^{SM} for large values of the $\Pi_{\text{respective}}^{\text{max}}$ and $\Pi_{\text{respective}}^{\text{max}}}$ and $\Pi_{\text{respective}}^{\text{max}}$ and $\Pi_{\text{respective}}^{\text{max}}$ and $\Pi_{\text{respective}}^{\text{max}}}$ and $\Pi_{\text{respective}}^{\text{max}}$ and $\Pi_{\text{respective}}^{\text{max}}$ and $\Pi_{\text{respective}}^{\text{max}}$ and $\Pi_{\text{respective}}^{\text{max}}}$ and $\Pi_{\text{respective}}^{\text{max$

 $= \frac{y_t g_s \overline{t}_L \mathcal{S}_{Hj}^{\mu\nu} T^a G^a_{rata} (p)}{H_j (PT, for all of f$

con Ton the tra dan brot at +1

Moriond QCD 2025

2222

 $p_{T,H}$

Drell-Yan

Zhan: Intrinsic DY pT

FOPT divergent for $p_T \rightarrow 0$, calls for resummation

TMD PDF framework allows to resum logs of (p_T/M_Z)

Use MC "parton branching method" to evolve TMD PDFs

Starting point: assume Gaussian intrinsic component k_T/q_s : only affects low-p_T part of spectrum

→ Extract q_s from ratio between low and high p_T Low $\sqrt{s} \lesssim 10 \,\text{GeV}: q_s \sim 1 \,\text{GeV}$ Higher $\sqrt{s}: q_s$ increases

Vladimirov & Zhan

 $pp \rightarrow \gamma\gamma + jet \& pp \rightarrow pp$

03/04/20

Marcoli & Praszalowicz

N3LO

Pelloni: 4-loop gg splitting functions

Hekhorn: aN3LO PDFs & Higgs Cross Sections

MSHTxNNPDFnnlo MSHTxNNPDFan3lo NNPDFan3lo MSHTan3lo PDF4LHC21 MSHTxNNPDFnnlo(qed) MSHTxNNPDFan3lo(qed) NNPDFan3lo(qed) MSHTan3lo(qed)

► NB: N³LO cross sections are a long term project ...

Perturbative Uncertainties

Gocke (Mon): main uncertainties in top are ISR + FSR + "recoil" uncertainties (even with MiNNLOPS), JES (sens. to hadrochemistry), UE, and b-tagging Grohsjean (Mon): main uncertainties for toponium η_t : bb4l (offsh, tt & tW int), FSR modelling

Poncelet (Thu): missing higher orders in fixed-order and resummed predictions (MHOU)

Generic perturbative expansion: $f(\alpha) = \alpha_s^n N_c^m \, \mathrm{d}\bar{\sigma}^{(0)} \left[1 + \alpha_s N_c \left(\frac{\mathrm{d}\bar{\sigma}^{(1)}}{\mathrm{d}\bar{\sigma}^{(0)}} \right) + \mathbf{\tilde{g}}_s^2 \right]_{\mathbb{R}^{1.5}}^{\circ}$ ratio 1.0 Introduce a parametrisation of unknown coefficients in terms of *ZZ "Theory nuisance parameters" θ $\frac{\mathrm{d}\bar{\sigma}_{\mathrm{TNP}}^{(N+1)}}{\mathrm{d}\bar{\sigma}^{(0)}} = \sum^{N} f_{k}^{(j)} \left(\vec{\theta}, x\right) \left(\frac{\mathrm{d}\bar{\sigma}^{(j)}}{\mathrm{d}\bar{\sigma}^{(0)}}\right)$ ddj=1E.g., Bernstein or Chebyshev polynomials

Fixed Orders & Logs

Becher: In processes involving **disparate scales** $Q_i \gg Q_i$, higher-order corrections are enhanced by large logarithms $\alpha_s^n \ln^m(Q_i/Q_i)$, which can spoil fixed-order truncation. (Max log power $m \leq 2n$ depends on problem.)

Shower Logs

How to build an NNLL accurate parton shower

► NLO matching

- ► Correct α_s^2 rate of **neighbour**
- ► Correct α_s^2 rate for a single so α_s^2
- ► Correct α_s^2 rate for a single **c** α_s^2
- ► Correct α_s^3 rate for a single soft-collinear emission

(+ Pythia 8 Hadronization)

 $\mathcal{O}(\alpha_s^3 L^2)$

 α_s^2

 α_s^2

 α_s^2

 $e^- \rightarrow Z \rightarrow$ hadrons

 $\sqrt{s} = M_Z = 91.2 \text{ GeV}$

 $\alpha_s(M_Z) = 0.118$

2-jet@NLO

0.1

0.01

0.

Ferrario Ravasio

Gaps between jets

transverse energy E_T in gap below Q_0

Factorization Restoration

Factorization expresses separation of scales

corrections arise – the super-leading logarithms One might think that these effects are numeric hard scale $Q \sim \sqrt{er}y \frac{\sin all}{hec}$ ause they only arise in higher or but I argue that they can naturally be of the same der as a ode-lbeel coarie bione visitien imperativ study these seffect side add-the correspondence and add-the correspondence add-the correspo corrections to ARisting inference and the calculations. SLLs are caused by a subtle quantum effect: the jet-veto scale @hange of two Coulomb gluons (or Glauber gluons) tween the two initial-state partons in the scatte process, sendiglagatithatibisdeadataion breakdow color coherence, the fact the sum of soft-gluon e sion off two collinear partons has the same effect Soft-collinear factorization violation **Collinear factorization violation** Х by Glauber gluons at $\mu \sim Q_0$ at $\mu \sim Q$ a single soft emission off the parent parton. C coherence, however, is the basis for proofs of Q hadronic scale $\Lambda_{\text{factorization theorems, which underly the theorem$ PDF factorization restored for $\mu < Q_0$ calculation of all the province sections entry province gives rise to the slept the feat but a breaking rc/·

PDF Factorization: long-distance physics contained in universal PDFs ➤ used for all LHC processes — but only proved for (inclusive) Drell-Yan [CSS] Relies on **collinear factorization**. Valid for timelike splittings. Broken for spacelike ones. How bad is it? **Factorization restoration through Glauber gluons:**

next-to-next-to-leading order (NNNLO) of perturnation observables such as jet cross sections, in which from the jets, the state-of-the-art is NNLO, see

Proof that factorization works at 3-loop order

α_{s} from hard processes

Pires: NNLO α_s from **dijets** at LHC and HERA Sensitivity from cross section $\propto \alpha_s^2 \otimes \text{LO} \& \text{PDFs}$ Used: NNLOJET w reduced scale dependence + SLC contributions for the first time for LHC α_s Central scales: $\mu_{\text{LHC}}^2 = m_{jj}^2 \& \mu_{\text{HERA}}^2 = Q^2 + \langle p_T \rangle_{1,2}^2$

Main Result: "LHC dijets":

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1178 \ (14)_{\rm (fit, PDF)} \ (1)_{(\mu_0)} \ (17)_{(\mu_{\rm R}, \mu_{\rm F})}$

LHC + HERA $\alpha_{\rm s}(m_{\rm Z}) = 0.1180 \,(10)_{\rm (fit, PDF)} \,(1)_{(\mu_0)} \,(22)_{(\mu_{\rm R}, \mu_{\rm F})}$

+ Test of RGE running for 7 GeV < μ < 7 TeV

α_s from B and D decays

Che: $\alpha_{\rm s}$ from inclusive semileptonic B decays					
HQE: • $\Gamma\left(B \to X_c \ell \bar{\nu}\right)$ $\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right)$ =	$\mathcal{E} = \Gamma_0 \begin{bmatrix} C_0 \\ C_0 \end{bmatrix} C$	$C_{\mu_{\pi}} = \frac{C_{\mu_{\pi}}}{C_{\mu_{\pi}}} + \frac{\mu_{\pi}}{2m_{b}^{2}} + \frac{\mu_{\pi}}{2m_{b}^{2}}$	$\frac{1}{2} + C_{\mu_{G}} \frac{\mu_{G}^{2}}{2m_{G}^{2}}$		
$C_0 = \mathbf{c}_0 + \mathbf{c}_1 \frac{\alpha_s}{\pi}$	$+\mathbf{c}_2\left(\frac{\alpha_s}{\pi}\right)$	$)^2 + \mathbf{c}_3 \left(-\frac{\mathbf{c}_3}{2} \right)^2$	$\left(\frac{x_s}{\pi}\right)^3 +$		
(+ indirect sensit	2π. ³ .īvity (?) froi	m running	quark r		
Get IV _{cb} I, Guark masses	s from othe	er measure	emensts		
Γ_{sl}	prediction $[\%]$ o	,(FGeV) [[6]	$\alpha_s \rangle^3$		
$ V_{cb} = 0.0410 \pm 0.0007$ $\overline{m}_b(\overline{m}_b) = 4.18^{+0.03}_{-0.02} \text{ GeV}$ $\overline{m}_b(\overline{m}_b) = 1.27 \pm 0.02 \text{ CeV}$	3.4 (1.4) 3.0 (1.1) 2.1 (1.4)	3.1 (1.3) 2.7 (1.0) 1.8 (1.2)	$\left(\frac{1}{\pi}\right)$		
$m_c(m_c) = 1.27 \pm 0.02 \text{ GeV}$ R-scale $\mu = 5^{+5}_{-2.5} \text{ GeV}$ High order power corrections	4.4(2.2)	4.0(2.0)	Cor		
$\begin{aligned} \tau_{B^{\pm}} &= 1.638 \pm 0.004 \mathrm{ps} \\ \mathcal{B}(B^{\pm} \to X_c \ell \nu) &= 10.8 \pm 0.4 \% \end{aligned}$	-	$0.0 \\ 0.2 \\ 2.4 (1.8)$	$\Delta \alpha_s M_s$		
Sum	6.7(3.2)	6.5(3.4)	pc		
	$\overline{m}_b (5 \text{ Ge})$	$\overline{W} \overline{m}_{c}(5)$	GeV)		
riond QCD 202					

B

Che, Wu

$$\vdash \mathcal{O}(\alpha_s^4)$$

$$petitive = 0.0018$$

$$\alpha_s(5 \text{ GeV})$$

$M_{i}: \alpha_{s}$ from inclusive semileptonic D dec $\alpha_{s}(5 \text{ GeV})$ Understanding of a ct of spectator quark in 0.17, 0.18, 0.19, semileptonic D decays Γ_{SL} Γ_{SL} $\sigma_{s}(5 \text{ GeV})$ $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(5 \text{ GeV})$ $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(5 \text{ GeV})$ D_{l} \mathcal{B}_{SL} (%) τ (10 ⁻¹³ s) Γ_{SL} (10 ⁻¹⁵ G D^{0} $6.46 \pm 0.09 \pm 0.11$ 4.10 ± 0.01 104 ± 2 D^{+} $6.30 \pm 0.13 \pm 0.10$ 5.04 ± 0.04				
$\begin{array}{c} u_{s}(5 \text{ GeV}) \\ \text{Jn} \underbrace{ u_{s}(5 \text{ GeV})}_{0.17, \ 0.18, \ 0.19, \ldots} \\ \text{Semileptonic D decays} \\ \hline \Gamma_{SL} \\ \text{Different BRs and lifetimes:} \\ \hline \overline{m_{L}}(\overline{m_{L}}) \\ \hline D_{i} \\ \mathcal{B}_{SL}(\%) \\ \hline D^{0} \\ 0 \\ 6.46 \pm 0.09 \pm 0.11 \\ 104 \pm 0.01 \\ 104 \pm 2 \\ D^{+} \\ 16.13 \pm 0.10 \pm 0.29 \\ \hline D_{s} \\ 6.30 \pm 0.13 \pm 0.10 \\ \hline 5.04 \pm 0.04 \\ \hline 82 \pm 2 \\ \hline \end{array}$	Wμ : α	, trom inclusive	semilepto	nic D dec
$\begin{array}{c c} \text{Jn} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Diff} \\ \textbf{erent BRs and lifetimes:} \\ \hline m_{L}(\overline{m}_{L}) \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \hline \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \hline \end{array} \\ \\		$a_s(J \cup e v)$	$\langle \rangle$	
$\frac{1}{m_{L}(m_{L})} = \frac{1}{m_{L}(m_{L})} = \frac{1}{m_{L}(5 \text{ GeV})}$ Semileptonic D decays $\frac{1}{SL} = \frac{1}{m_{L}(m_{L})} = \frac{1}{m_{L}(5 \text{ GeV})}$ $\frac{1}{m_{L}(m_{L})} = \frac{1}{m_{L}(5 \text{ GeV})} = \frac{1}{m_{L}(5 \text{ GeV})}$ $\frac{1}{m_{L}(m_{L})} = \frac{1}{m_{L}(m_{L})} = \frac{1}{m_{L}(10^{-13} \text{ s})} = \frac{1}{m_{L}(10^{-15} \text{ GeV})}$ $\frac{1}{m_{L}(10^{-15} \text{ GeV})} = \frac{1}{m_{L}(10^{-15} \text{ GeV})}$	Under	rstandingnosact of	f spetchator	quark in
Different BRs and lifetimes: c, u $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(5 \text{ GeV})$ D_{i} \mathcal{B}_{SL} (%) τ (10 ⁻¹³ s) Γ_{SL} (10 ⁻¹⁵ G D^{0} $6.46 \pm 0.09 \pm 0.11$ 4.10 ± 0.01 104 ± 2 D^{+} $16.13 \pm 0.10 \pm 0.29$ 10.33 ± 0.05 103 ± 2 D_{s}^{+} $6.30 \pm 0.13 \pm 0.10$ 5.04 ± 0.04 82 ± 2		$\frac{0.17, 0.18, 0.19,}{0.100000000000000000000000000000000$		•
Different BRs and lifetimes: c, u $\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(5 \text{ GeV})$ D_{i} \mathcal{B}_{SL} (%) τ (10 ⁻¹³ s) Γ_{SL} (10 ⁻¹⁵ G D^{0} $6.46 \pm 0.09 \pm 0.11$ 4.10 ± 0.01 104 ± 2 D^{+} $16.13 \pm 0.10 \pm 0.29$ 10.33 ± 0.05 103 ± 2 D_{s}^{+} $6.30 \pm 0.13 \pm 0.10$ 5.04 ± 0.04 82 ± 2	Sennie	Γ_{a}		
$\overline{m}_{L}(\overline{m}_{L})$ $\overline{m}_{L}(5 \text{ GeV})$ D_{i} \mathcal{B}_{SL} (%) τ (10 ⁻¹³ s) Γ_{SL} (10 ⁻¹⁵ G D^{0} $6.46 \pm 0.09 \pm 0.11$ 4.10 ± 0.01 104 ± 2 D^{+} $16.13 \pm 0.10 \pm 0.29$ 10.33 ± 0.05 103 ± 2 D_{s}^{+} $6.30 \pm 0.13 \pm 0.10$ 5.04 ± 0.04 82 ± 2	Difford	ant BRs and lifet	timoc	$\frown c, u$
D_i \mathcal{B}_{SL} (%) τ (10 ⁻¹³ s) Γ_{SL} (10 ⁻¹⁵ G D^0 $6.46 \pm 0.09 \pm 0.11$ 4.10 ± 0.01 104 ± 2 D^+ $16.13 \pm 0.10 \pm 0.29$ 10.33 ± 0.05 103 ± 2 D_s^+ $6.30 \pm 0.13 \pm 0.10$ 5.04 ± 0.04 82 ± 2		\overline{n} (\overline{m})	$\overline{\overline{m}}$ (5 GeV
D_i \mathcal{B}_{SL} (%) τ (10 ⁻¹³ s) Γ_{SL} (10 ⁻¹⁵ G D^0 $6.46 \pm 0.09 \pm 0.11$ 4.10 ± 0.01 104 ± 2 D^+ $16.13 \pm 0.10 \pm 0.29$ 10.33 ± 0.05 103 ± 2 D_s^+ $6.30 \pm 0.13 \pm 0.10$ 5.04 ± 0.04 82 ± 2				5 00 11
D^0 $6.46 \pm 0.09 \pm 0.11$ 4.10 ± 0.01 104 ± 2 D^+ $16.13 \pm 0.10 \pm 0.29$ 10.33 ± 0.05 103 ± 2 D_s^+ $6.30 \pm 0.13 \pm 0.10$ 5.04 ± 0.04 82 ± 2	D_i	\mathcal{B}_{SL} (%)	$\tau (10^{-13}{ m s})$	$\Gamma_{SL} (10^{-15} \mathrm{G}$
D^+ 16.13 $\pm 0.10 \pm 0.29$ 10.33 ± 0.05 103 ± 2 D_s^+ 6.30 $\pm 0.13 \pm 0.10$ 5.04 ± 0.04 82 ± 2	D^0	$6.46 \pm 0.09 \pm 0.11$	4.10 ± 0.01	104 ± 2
D_s^+ 6.30 ± 0.13 ± 0.10 5.04 ± 0.04 82 ± 2				102 + 2
	D^+	$16.13 \pm 0.10 \pm 0.29$	10.33 ± 0.05	103 ± 2
$\boldsymbol{\nu}$	D^+ D^+_{ϵ}	$16.13 \pm 0.10 \pm 0.29$ $6.30 \pm 0.13 \pm 0.10$	10.33 ± 0.05 5 04 + 0 04	103 ± 2 82 + 2

Same $\Gamma_{SL} \xrightarrow{f}{s}$ spectator² impact is G^{\pm} in symmetric in semileptonig decays?

$m_c[{ m GeV}]$	1.3
$lpha_{S}(m_{c}^{2})[10^{-3}]$	44
S I	

$$\begin{array}{c}
 D^+, D^0 \\
 3701 \pm 0.0338 \\
 445 \pm 9 \pm 114 \\
 4
 \end{array}$$

 ℓ^\pm

14

 D_s^+

α_{s} from lattice

Review of Flavour Lattice Averaging Group (FLAG 2024)

Overview of α_{c} **determinations:**

a); OnDeter the affer the side of stealed and the Berth the Reasonable resolution for big box Cannot go higher than this $\mu a \ll 1, L = N_s a > 1 \text{ fm} \Rightarrow \mu = 1 - 3 \text{ GeV}$ • Comparison with lattice perturbation theory $(\mu = 1/a) \xrightarrow{\sim} \alpha^{\text{MS}} \alpha^{\text{MS}} (\mu^{1/a}) (\mu^{1/a}) (a)$ = 1/aLimited by accuracy of lattice perturbation theory

• Lattice OCD in "femto boxes" and special schemes $\alpha_s^{SF}(\mu = 1 L)$ lculations Katel and the step scaling to the stand of the store of the store of the step scaling step scaling the step scaling and the step scaling step scale and the step

15

Theory Summary — Peter Skands

PDFs from lattice

The natural ab-initio method to study QCD non-perturbatively is on the **lattice**. But ...

PDFs \equiv expectation values of bilocal operators evaluated along **light-like** lines.

Cannot evaluate this on a Euclidean setup
→ Traditional lattice studies were limited to first few (three) Mellin moments of a local ME.

Breakthrough (Ji 2013): put quarks some distance apart. Then boost them to heck → almost lightlike separation (in proton frame).

→ Use perturbative matching from finite to infinite momentum (and deal with divergencies)

Zafeiropoulos

Take-home: Lattice can by now provide ab-initio PDF determinations without theoretical obstructions

Inclusive $b \rightarrow s \mu^+ \mu^-$

• Exclusive $b \rightarrow s\mu\mu$ subject to potentially large and uncontrolled power corrections

• Up to power corrections the inclusive rate is free of hadronic uncertainties:

$$\Gamma[B \to X_s \ell \ell] = \Gamma[b \to X_s \ell \ell] + O\left(\frac{\Lambda_{QCD}^2}{m_b^2}, \cdots\right)$$

but not for the ratio:

 $\mathscr{R}(q_0^2) =$

- $q^2 > 14.4 \text{ GeV}^2$
- prediction for \mathscr{R} :

 $\mathscr{B}[>15]_{\text{SM+Belle}} = (4.10 \pm 0.81) \times 10^{-7}$

Lunghi

• The OPE breaks down at large $q^2 = m_{\mu\mu}^2$

$$= \frac{\int_{q_0^2}^{m_b^2} dq^2 \frac{\mathrm{d}\Gamma(\bar{B} \to X_s \ell^+ \ell^-)}{dq^2}}{\int_{q_0^2}^{m_b^2} dq^2 \frac{\mathrm{d}\Gamma(\bar{B}^0 \to X_u \ell \nu)}{dq^2}}$$

• LHCb has already measured enough high- q^2 modes to reconstruct the BR: $\mathscr{B}[>15]_{||HCb|} = (2.65 \pm 0.17) \times 10^{-7}$

• LHCb should produce a proper combination of these modes taking into account correlations and for

• Using differential Belle semileptonic data the high- q^2 and the theory

- Inclusive modes are currently in agreement with data
- Future LHCb + Belle II data can confirm the exclusive anomalies at 5σ if central values do not change:

Hadronic Transitions & Form Factors

Mishra: $B \rightarrow K$ FFs from LCSR

Measured BR($B \rightarrow K \mu \mu$) lower than predictions. Tensions between different theory predictions.

Can safely neglect non-fact. soft-gluon contributions to c loop

+ Re-analysis of hadronic ME -> tension persists

d'Ambrosio: $K \rightarrow \pi \ell^+ \ell^-$ Dominated by long distances **LC** \Rightarrow Sum of 1-meson poles \Rightarrow VMD-like ansatz for γ^* $\langle J(q)J(-q)\rangle = \sum \frac{a_n^2}{q^2 - m_n^2} \widetilde{q_2 \to \infty} \log q^2$

-

Gubernari: improving FF parametrisations

Conventional approach: BGL

⇒ divergent series in presence of branch cuts

Problem for $B \to K, B \to D^{(*)}, \Lambda_h \to \Lambda$

(Also: truncation error meaningless)

Analytic structure suggests an alternative parm:

(+ extension to rescattering)

FFs for B_c & HF hadrons from recombinations?

Nandi: FFs for $B_c \rightarrow$ charmonium

Tests of Lepton Flavour Universality analogous to those in $B \rightarrow D^{(*)}$ (R_D, R_{D*}) can be done with $B_c \to \eta_c, B_c \to J/\psi$, and $B_c \to P(=\chi_c^0, \chi_c^1, h_c)$ For $B_c \rightarrow J/\psi$, there are FFs from lattice Heavy Quark Spin Symmetry $\Rightarrow B_c \rightarrow \eta_c$ Estimate symmetry-breaking correction ~ 30%

 $\Rightarrow R(\eta_c) = 0.290 \pm 0.017$

Also compute $B_c \rightarrow P$ - and S-wave FFs in both NRQCD ($q^2 \rightarrow 0$) & pQCD (high q^2)

In: B_c-> J/ ψ FFs, decay consts, and measured charmonium radiative decay rates \Rightarrow LFU R(...)

Li:

- **Observation**: more low-z D* in data than in baseline MCs
- Could originate from **recombination** of c with quark from UE?
- Similar to coalescence?

- Assumptions for "UE sea" \rightarrow good fits to data
- **Also:** more HF baryons at low p_T than at LEP

Diquark-style recombinations?

(Note: similar phenomena modelled in event generators: **QCD** Colour Reconnections)

→ can also make predictions for tetra-quarks

Pion Holography?

Holography = formal equivalence beween two theories, said to be each other's **holographic duals**:

- A strongly-coupled scale-invariant (conformal) gauge theory in flat 4D space-time
- A weakly-coupled 5D gravity (string) theory in a curved space (AdS)
- ⇒ can do calculations in the weakly coupled theory and relate them to the stronglycoupled one!

Problems:

- QCD \neq scale invariant
- Longitudinal dofs neglected in "light-front quantisation" \Rightarrow massless pion

Sandapen: restoring conformal-symmetry breaking longitudinal potential $U_{\parallel} \rightarrow \text{correct } m_{\pi}$

Three Different forms of $U_{\parallel} \Rightarrow$ same $m_{\pi'} f_{\pi'} r_{\pi'}$, low-Q2 form factors, and $\Gamma_{\gamma\gamma}$ = 7.0, 7.2, and 7.4 eV

PDG: $7.82 \pm 0.22 \text{ eV}$

Form "C" with $\Gamma_{\gamma\gamma} = 7.4 \text{ eV}$ also exhibits quantitative agreement with holographic prediction in limit of weak coupling

Work in progress:

holographic pion distribution amplitude & pion PDFs

Kolbé: Simulating jets in medium

Nonzero v_2 at high p_T not well understood

Largest TH uncertainty: hadronic vacuum polarisation (HVP)

- 1. Data driven (from R-ratio)
 - $e^+e^- \rightarrow had + optical theorem$
 - But note some tensions among data sets!
- 2. Lattice QCD (10¹⁰-dim integral)
 - Community agreement on intermediate (simpler) benchmark: **window observable** (restrict correlator to 0.4-1fm)
 - Finer lattice spacings (page 10)

3. Frankenfit

- Lattice for 0-2.8fm window
- **Data driven** for $2.8-\infty$ fm tail (5% of total result, avoids ρ peak, good agreement).

Tóth

Apologies: a few **speakers** not yet mentioned in these slides

Quark Flavour Physics

- S. Nandi ($B_c \rightarrow X_{c\bar{c}}$ FFs)
- E. Lunghi $(b \rightarrow s\mu^+\mu^-)$
- N. Gubernari ($B \rightarrow K FFs$)
- D. Mishra ($B \rightarrow K LCSR$)
- G. d'Ambrosio (LC $K \rightarrow \pi \ell^+ \ell^-$)

Non-perturbative QCD

- S. Li (Hadrons from recombination)
- S. Zafeiropoulos (Lattice PDFs)
- B. Tóth (Lattice $g_{\mu} 2$)
- M. Praszalowicz (Elastic pp)
- R. Sandapen (Pion Holography)

Heavy lons

- N. Zardishti (HI Overview)
- I. Kolbé (Jets in Medium)
- E. Speranza (Spins in HI)
- W. Schee (QCD ↔ Gravity?)

Methodology

- R. Poncelet ($\sigma_{\rm th}$)
- M. White (Q. Advantage in $t\bar{t}$)

EW/BSM $Q \gtrsim M_{\rm EW}$ Ŋ Fixed-Order \checkmark pQCD Physics Single-Scale Matching $Q \gg \Lambda$ Flavour Resummed pQCD Multi-Scale $Q_i \gg Q_j \gg \Lambda$ Hadronization Strings, QGP $Q \sim [\Lambda, 5\Lambda]$ Hadrons $Q \lesssim \Lambda$ $g_{\mu} - 2$

Hard Processes

- S. Jaskiewicz (m_t in HH)
- M. Kerner $(m_t \text{ in } H + j)$
- M. Marcoli (pp $\rightarrow \gamma \gamma$)
- D. d'Enterria (Rare *H* decays)

Splittings, Resummation, Factorization

- A. Pelloni (N3LO splittings)
- F. Hekhorn (aN3LO PDFs & Higgs)
- S. Ferrario Ravasio (Shower Logs)
- N. Schalch (Non-global Logs)
- T. Becher (Super-Leading Logs)
- M. Neubert (Factorization)
- A. Vladimirov (DY TMD)
- W. Zhan (DY intrinsic p_T)

BSM

- S. Vempati (Higgs FLV)
- E. Vryonidou (Higgs CPV)
- M. Baker (Heavy Vectors)
- S. Balan (Dark-Matter Fits)
- M. Fedele (Sterile ν in $b \rightarrow c\ell^+\ell^-$)

Strong Coupling

- J. Pires (α_s from Dijets)
- M. Benitez (α_s from M_H)
- Y. Che (α_s from B)
- J. Wu ($\alpha_{\rm s}$ from D)
- P. Petreczky (α_s from lattice)

Comments (04-Apr-2025 18:29:14) Machine checkout until Monday

Transfer Line tests completed

AFS: Single_10b_4_2_4

Theory Summary 2025

ENC.							1.1-
	BIS status and	SMP flags		B1	B2		
	Link Stat	us of Beam P	ermits	false	false		
	Glob	al Beam Pern	nit	false	false		
	S	etup Beam		true	true	51 3	
	Be	am Presence		false	false	5-15-	Sel.
	Moveable	Devices Allo	wed In	false	false	A THE A	Alla
	Si	table Beams		false	false		and a
	PM Status B1	ENABLED	PM Status B	32 E	NABLED		
							Con-
			5				
~							The start

59th Rencontres de Moriond: QCD & High Energy Interactions, La Thuile, April 2025

