Modified string tensions in the context of hadronization

Javira Altmann - Monash University

- Introduction to the Lund String Model
- Beyond Lund strings
 - \succ Time dependent string tensions
 - \succ Excitations

Confinement in high energy collisions

In high-energy collisions, such as proton-proton collisions at the LHC, need a dynamical process to ensure partons (quarks and gluons) become **confined** within hadrons

i.e. non-perturbative parton \rightarrow hadron map

Model requirements

> Confinement > Dynamical mapping to on-shell hadrons

Example of $pp \rightarrow t\bar{t}$ event From PYTHIA 8.3 guide arXiv:2201.11601

Require colour neutralisation:

partons to create **colour neutral** objects. Simplest example is a colour-anticolour $q\bar{q}$ pair Lattice QCD "Cornell potential" $V(r) = -\frac{\alpha}{2} + \kappa r$ with $\kappa \sim 1$ GeV/fm shows us the potential energy of a static colour singlet $q\bar{q}$ at separation distance r 2 GeV 3 1 GeV (R)/K¹2 Short Distances ~ "Coulomb" "Free" Partons -2 1.5 0.5

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more

Confinement

Require colour neutralization:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects. Simplest example is a colour-anticolour $q\bar{q}$ pair

Lund string model

model the **colour confinement field** as a **string**

with a characteristic **constant tension** κ_0

 \succ Strings form between partons that form overall **colour-singlet** states

e.g. colour-anticolour singlet combination to make a "dipole" string

J. Altmann 🌄 Monash University

Require colour neutralization:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects. Simplest example is a colour-anticolour $q\bar{q}$ pair

Lund string model

model the **colour confinement field** as a **string**

with a characteristic **constant tension** κ_0

 \succ Strings form between partons that form overall **colour-singlet** states

> e.g. colour-anticolour singlet combination to make a "dipole" string

High energy collisions \rightarrow partons move apart at high energies

Confinement

Require colour neutralization:

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more partons to create **colour neutral** objects. Simplest example is a colour-anticolour $q\bar{q}$ pair

Partons \rightarrow Hadrons

Hadronization:

Partons move apart and stretch the string \rightarrow string breaks

→ creates quark-antiquark pairs with some momentum

Two things we need to describe the momentum of the produced hadrons

- \rightarrow transverse component (quark p_{\perp} and mass/flavour)
- \rightarrow longitudinal component (fraction of the endpoint momenta)

Flavour and p_{\parallel} selection

Hadronization:

Partons move apart and stretch the string \rightarrow string breaks

→ creates quark-antiquark pairs with some momentum

Two things we need to describe the momentum of the produced hadrons

- \rightarrow transverse component (quark p_{\perp} and mass/flavour)
- \rightarrow longitudinal component (fraction of the endpoint momenta)

Schwinger mechanism QED

Non-perturbative creation of e^+e^- pairs in a strong electric field

Probability from tunnelling factor

$$\mathscr{P} \propto \exp\left(\frac{-m^2 - p_{\perp}^2}{\kappa/\pi}\right)$$

Gaussian suppression of high $m_{\perp} =$

J. Altmann 🤯 Monash University

Flavour and p_{\perp} selection

Hadronization:

Partons move apart and stretch the string \rightarrow string breaks

→ creates quark-antiquark pairs with some momentum

Two things we need to describe the momentum of the produced hadrons

- \rightarrow transverse component (quark p_{\perp} and mass/flavour)
- \rightarrow longitudinal component (fraction of the endpoint momenta)

Schwinger mechanism	constant flavour probability
→ Gaussian p_{\perp} spectrum → Heavy flavour suppres	Prob(u:d:s) \approx 1
	Prob(q:qq) $pprox$ 1

J. Altmann 🧞 Monash University

Lund Symmetric Fragmentation Function

Hadronization:

Partons move apart and stretch the string \rightarrow string breaks

→ creates quark-antiquark pairs with some momentum

Two things we need to describe the momentum of the produced hadrons

- \rightarrow transverse component (quark p_{\perp} and mass/flavour)
- \rightarrow **longitudinal component** (fraction of the endpoint momenta)

$$f(z) \propto \frac{1}{z} (1-z)^{a} \exp\left(\frac{-b(m_{h}^{2}+p_{\perp h}^{2})}{z}\right)$$

Free tuneable parameters *a* and *b*

Fragment off hadrons from either string end \rightarrow easier to obey hadronic mass constraints Probability distribution for the **fraction of quark momenta**, *z*, the hadron will take

Lund string model assumptions

Assumptions made by the Lund string model

> String fragmentation in dense string environment is treated the same as vacuum string fragmentation

 \rightarrow closepacking/ropes

> Treatment of diquarks as forming directly from Schwinger-type breaks

→ popcorn

Beyond just colour-anticolour singlet states, what about red-green-blue singlets

 \rightarrow junctions

 \rightarrow beyond a constant string tension

- > time dependent string tensions
- > excitations on the string

> Constant string tension from motivated from the Cornell potential i.e. potential between static colour charges

Require colour neutralization:

partons to create **colour neutral** objects. Simplest example is a colour-anticolour $q\bar{q}$ pair Lattice QCD "Cornell potential" $V(r) = -\frac{\alpha}{2} + \kappa r$ with $\kappa \sim 1$ GeV/fm shows us the potential energy of a static colour singlet $q\bar{q}$ at separation distance r 2 GeV 3 1 GeV (R)/K¹2 Short Distances ~ "Coulomb" "Free" Partons -2 1.5 0.5

 \succ The point of confinement is that partons are **coloured** \rightarrow a physical model needs two or more

Lund string model assumptions

Assumptions made by the Lund string model

> String fragmentation in dense string environment is treated the same as vacuum string fragmentation

 \rightarrow closepacking/ropes

> Treatment of diquarks as forming directly from Schwinger-type breaks

→ popcorn

Beyond just colour-anticolour singlet states, what about red-green-blue singlets

 \rightarrow junctions

 \rightarrow beyond a constant string tension

- > time dependent string tensions
- > excitations on the string

> Constant string tension from motivated from the Cornell potential i.e. potential between static colour charges

How do we vary the string tension?

- > effect on Schwinger mechanism
- > fragmentation procedure
- \succ coordinates along a string

Lund string model assumptions

Assumptions made by the Lund string model

> String fragmentation in dense string environment is treated the same as vacuum string fragmentation

 \rightarrow closepacking/ropes

> Treatment of diquarks as forming directly from Schwinger-type breaks

→ popcorn

Beyond just colour-anticolour singlet states, what about red-green-blue singlets

 \rightarrow junctions

 \rightarrow beyond a constant string tension

- > time dependent string tensions
- > excitations on the string

> Constant string tension from motivated from the Cornell potential i.e. potential between static colour charges

How do we vary the string tension?

- > effect on Schwinger mechanism
- > fragmentation procedure
- \succ coordinates along a string

Schwinger mechanism:

→ Gaussian suppression of masses

Parameterise flavour probabilities in Pythia as ratios e.g. $P_{s:u/d}$, $P_{qq:q}$, etc. Here κ_0 is the constant string tension

$$P_{s:u/d} = \frac{P(m_s^2)}{P(m_{u/d}^2)} = \frac{\exp\left(\frac{-\pi m_s^2}{\kappa_0}\right)}{\exp\left(\frac{-\pi m_{u/d}^2}{\kappa_0}\right)} = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\right)$$

Schwinger mechanism:

→ Gaussian suppression of masses

Pa

rameterise flavour probabilities in Pythia as ratios e.g.
$$P_{s:u/d}$$
, $P_{qq:q'}$ etc.
Introduce some effective tension, $\kappa_{eff}(\tau, \sigma, ...)$
which can be a function of coordinates on the string,
for the surrounding environment, etc.

$$P_{s:u/d} = \frac{P(m_s^2)}{P(m_{u/d}^2)} = \frac{\exp\left(\frac{-\pi m_{u/d}^2}{\kappa_0}\right)}{\exp\left(\frac{-\pi m_{u/d}^2}{\kappa_0}\right)} = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\right)$$

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\frac{\kappa_0}{\kappa_{eff}}\right)$$

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\frac{\kappa_0}{\kappa_{eff}}\right)$$

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\frac{\kappa_0}{\kappa_{eff}}\right)$$

trameterise flavour probabilities in Pythia as ratios e.g.
$$P_{s:u/d}$$
, $P_{qq;q'}$ etc.
Introduce some effective tension, $\kappa_{eff}(\tau, \sigma, ...)$
which can be a function of coordinates on the string,
for the surrounding environment, etc.

$$P_{s:u/d} = \frac{P(m_s^2)}{P(m_{u/d}^2)} = \frac{\exp\left(\frac{-\pi m_{u/d}^2}{\kappa_0}\right)}{\exp\left(\frac{-\pi m_{u/d}^2}{\kappa_0}\right)} = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\right)$$

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\frac{\kappa_0}{\kappa_{eff}}\right)$$

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\frac{\kappa_0}{\kappa_{eff}}\right)$$

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\frac{\kappa_0}{\kappa_{eff}}\right)$$

Schwinger mechanism:

→ Gaussian suppression of masses

Parameterise flavour probabilities in Pythia as ratio

Introduce some effective tension, $\kappa_{eff}(\tau, \sigma, ...)$ which can be a function of coordinates on the string, or the surrounding environment, etc.

$$P_{s:u/d} = \frac{P(m_s^2)}{P(m_{u/d}^2)} = \frac{\exp\left(\frac{-\pi m_s^2}{\kappa_0}\right)}{\exp\left(\frac{-\pi m_{u/d}^2}{\kappa_0}\right)} = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_0}\right)$$

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right)$$

 p_{\perp} spectrum

$$\sigma(\kappa_{eff})^2 = \frac{\kappa_{eff}}{\pi} = \frac{\kappa_0}{\pi} \frac{\kappa_{eff}}{\kappa_0} = \sigma^2 \frac{\kappa_{eff}}{\kappa_0}$$

os e.g.
$$P_{s:u/d}$$
, $P_{qq:q}$, etc.

Diquark probabilities

 $P_{qq:q}(\kappa_{eff}) = \tilde{\alpha}$

$$-\pi (m_s^2 - m_{u/d}^2) \kappa_0$$

K_{eff}

 κ_0

 $P_{s:u/d}(\kappa_{eff}) = P_{s:u/d}^{\kappa_0/\kappa_{eff}}$

Larger tension reduces mass suppression!!!

 $\left(\frac{P_{qq:q}}{P_{qq:q}} \right)$

Schwinger mechanism:

→ Gaussian suppression of masses

Parameterise flavour probabilities in Pythia as ratio

ехр

exp

Introduce some effective ter which can be a function of co or the surrounding environme

 $P_{s:u/d} = \frac{P(m_s^2)}{P(m_u^2)}$

How do we vary the string tension? \succ effect on Schwinger mechanism $\overline{\mathbf{V}}$ > fragmentation procedure \succ coordinates along a string

$$P_{s:u/d}(\kappa_{eff}) = \exp\left(\frac{-\pi (m_s^2 - m_{u/d}^2)}{\kappa_{eff}}\right) = \exp\left(\frac{\kappa_{eff}}{\kappa_{eff}}\right)$$

$$\sigma(\kappa_{eff})^2 = \frac{\kappa_{eff}}{\pi} = \frac{\kappa_0}{\pi} \frac{\kappa_{eff}}{\kappa_0} = \sigma^2 \frac{\kappa_e}{\kappa_0}$$

os e.g.
$$P_{s:u/d}$$
, $P_{qq:q}$, etc.

Diquark probabilities

$$P_{qq:q}(\kappa_{eff}) = \tilde{\alpha} \left(\begin{array}{c} P \\ - \end{array} \right)$$

$$-\pi (m_s^2 - m_{u/d}^2) \kappa_0$$

 κ_0

$$P_{s:u/d}(\kappa_{eff}) = P_{s:u/d}^{\kappa_0/\kappa_{eff}}$$

Larger tension reduces mass suppression!!!

K_{eff}

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Standard fragmentation procedure

- 1) Select flavour and p_{\perp}
- 2) Select *z*-fraction according to fragmentation function $f(z, m_{\perp h}^2)$

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Standard fragmentation procedure

- 1) Select flavour and p_{\perp}
- 2) Select *z*-fraction according to fragmentation function $f(z, m_{\perp h}^2)$

Fragmentation with a varying tension

Need string break coordinates to calculate $\kappa_{eff}(\tau, \sigma, ...)$

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Standard fragmentation procedure

- 1) Select flavour and p_{\perp}
- 2) Select *z*-fraction according to fragmentation function $f(z, m_{\perp h}^2)$

- Need string break coordinates to calculate $\kappa_{eff}(\tau, \sigma, ...)$
- → need *z*-fraction to determine coordinates, selected with $f(z, m_{\perp h}^2)$

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Standard fragmentation procedure

- 1) Select flavour and p_{\perp}
- 2) Select *z*-fraction according to fragmentation function $f(z, m_{\perp h}^2)$

Fragmentation with a varying tension

- Need string break coordinates to calculate $\kappa_{eff}(\tau, \sigma, ...)$
- → need *z*-fraction to determine coordinates, selected with $f(z, m_{\perp h}^2)$
- → need m_{\perp} to sample $f(z, m_{\perp}^2)$, BUT κ_{eff} is needed to calculate m_{\perp}

Stuck in a loop !!!

Modified fragmentation procedure

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Solution: overestimate m₁ distribution and accept/reject string breaks to correct overestimation

Overestimate
$$\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$$
 $\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$ $\mathscr{P}_{s}(\kappa_{eff}) = \frac{P_{s:u/d}(\kappa_{eff})}{2 + P_{s:u/d}(\kappa_{eff})}$

Modified fragmentation procedure

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Overestimate
$$\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$$
 $\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$ $\mathscr{P}_{s}(\kappa_{eff}) = \frac{P_{s:u/d}(\kappa_{eff})}{2 + P_{s:u/d}(\kappa_{eff})}$

- **Solution: overestimate** *m*₁ **distribution** and **accept/reject** string breaks to correct overestimation

- 1) Sample string break flavour with overestimate
- 2) Select *z*-fraction according to $f(z, m_1)$

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Overestimate
$$\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$$
 $\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$ $\mathscr{P}_{s}(\kappa_{eff}) = \frac{P_{s:u/d}(\kappa_{eff})}{2 + P_{s:u/d}(\kappa_{eff})}$

- Solution: overestimate m₁ distribution and accept/reject string breaks to correct overestimation

- 1) Sample string break flavour with overestimate
- 2) Select *z*-fraction according to $f(z, m_{\perp})$
- 3) Calculate **coordinates** and therefore $\kappa_{eff}(\tau,...)$

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Solution: overestimate m₁ distribution and accept/reject string breaks to correct overestimation

Overestimate
$$\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$$
 $\mathscr{P}_{s}(\kappa_{eff}) = P_{acc}(\kappa_{eff}) \, \mathscr{P}_{s}(\kappa_{max})$ $\mathscr{P}_{s}(\kappa_{eff}) = \frac{P_{s:u/d}(\kappa_{eff})}{2 + P_{s:u/d}(\kappa_{eff})}$

- 1) Sample string break flavour with overestimate
- 2) Select *z*-fraction according to $f(z, m_1)$
- 3) Calculate **coordinates** and therefore $\kappa_{eff}(\tau,...)$
- 4) Accept/reject string break

$$P_{acc}(\kappa_{eff}) = \frac{\mathscr{P}_{s}(\kappa_{eff})}{\mathscr{P}_{s}(\kappa_{max})}$$

How can we put a **non-constant tension**, κ_{eff} , on the string? e.g. $\kappa(\tau)$ or $\kappa(y)$

Proof of concept:

Solution: overestimate *m*₁ **distribution** and **accept/reject** string breaks to correct overestimation

- 1) Sample string break flavour with overestimate
- 2) Select *z*-fraction according to $f(z, m_{\perp})$
- 3) Calculate **coordinates** and therefore $\kappa_{eff}(\tau,...)$
- 4) Accept/reject string break

$$P_{acc}(\kappa_{eff}) = \frac{\mathscr{P}_{s}(\kappa_{eff})}{\mathscr{P}_{s}(\kappa_{max})}$$

Modified flavour selection

Solution: overestimate m₁ distribution and accept/reject string breaks to correct overestimation

How do we vary the string tension? \succ effect on Schwinger mechanism $\overline{\mathbf{V}}$

varying tension

 $\mathcal{P}_{s}(\kappa_{max})$

eak flavour with overestimate **n** according to $f(z, m_1)$ linates and therefore $\kappa_{\rho ff}$ trina break

What about space-time coordinates for e.g. $\kappa(\tau)$?

 $\Gamma_{acc}(\kappa_{eff}) =$

factors of κ , e.g. $\Gamma = \kappa_0^2 \tau^2$

What if we have a $\kappa(\tau)$?

{t, x} coordinate calculation

factors of κ , e.g. $\Gamma = \kappa_0^2 \tau^2$

What if we have a $\kappa(\tau)$?

{t, x} coordinate calculation

X

factors of κ , e.g. $\Gamma = \kappa_0^2 \tau^2$

What if we have a $\kappa(\tau)$?

{t, x} coordinate calculation

 \boldsymbol{X}

factors of κ , e.g. $\Gamma = \kappa_0^2 \tau^2$

What if we have a $\kappa(\tau)$?

$$(1 - \sum_{i=1}^{n} z_{i+})p_{+} = -2\int_{0}^{x_{n+}/2} \frac{dp}{dt}dt$$

$$(\sum_{i=1}^{n} z_{i-})p_{-} = -2\int_{0}^{x_{n-}/2} \frac{dp}{dt}dt$$

{t, x} coordinate calculation

X

factors of κ , e.g. $\Gamma = \kappa_0^2 \tau^2$

What if we have a $\kappa(\tau)$?

$$(1 - \sum_{i=1}^{n} z_{i+})p_{+} = -2\int_{0}^{x_{n+}/2} \frac{dp}{dt} dt$$

$$(\sum_{i=1}^{n} z_{i-})p_{-} = -2\int_{0}^{x_{n-}/2} \frac{dp}{dt}dt$$

$$\frac{dE_q}{dt} = \frac{dp_q}{dt} = -\frac{1}{2}\frac{dV(t)}{dt} = -\frac{1}{2}\frac{d}{dt}\int_{-t}^t \kappa(t, x)dx$$

{t, x} coordinate calculation

Work in progress: generalisation to gluon kinks

Constant string tension — conversion between momentum and space-time pictures with factors of κ , e.g. $\Gamma = \kappa_0^2 \tau^2$

What if we have a $\kappa(\tau)$?

$$(1 - \sum_{i=1}^{n} z_{i+})p_{+} = -2\int_{0}^{x_{n+}} \int_{0}^{x_{n+}} dx_{n+}$$

$$(\sum_{i=1}^{n} z_{i-})p_{-} = -2\int_{0}^{x_{n-1/2}}$$

How do we vary the string tension? \succ effect on Schwinger mechanism \checkmark \succ fragmentation procedure \checkmark \succ coordinates along a string \checkmark

$= \frac{-4}{dt} = -\frac{-4}{2} = -\frac{-4}{2} \int_{-t}^{t} \kappa(t, x) dx$ dt

{t, x} coordinate calculation

Work in progress: generalisation to gluon kinks

(t, x)

 $z_{1-}p_{-}$

 $z_{1+}p_+$

 $z_{2+}p_{+}$

 $x_{+} x_{+}$

e.g. higher tensions at early times

J. Altmann 🤯 Monash University

e.g. higher tensions at early times

Expected consequences of an increased string tension

> earlier string breaks

Massless up quark endpoints on a $q\bar{q}$ string with 1000 GeV

e.g. higher tensions at early times

- **Expected consequences** of an increased string tension
- > earlier string breaks
- > higher strange / diquark probabilities

e.g. higher tensions at early times

- **Expected consequences** of an increased string tension
- > earlier string breaks
- > higher strange / diquark probabilities

Lund string model assumes classical string dynamics — using only first term of the Nambu-Goto action

Work from our Oxford collaborators:

Excitations on an expanding string by considering further terms in the action, i.e. **Nambu-Goldstone** degrees of freedom

$$S_{NG} = \int dt \int_{L_{-}(t)}^{L_{+}(t)} dx \left[-\kappa + \frac{1}{2} \partial_t X^i \partial_t X^i - \frac{1}{2} \partial_x X^i \partial_x X^i + \mathcal{O} \right]$$

 $x \in [L_{-}(t), L_{+}(t)]$ X^{i} are massless Nambu-Goldstone degrees of freedom Axions 12 12 Lattice data strongly suggests that the lightest massive mode that exists on 10 10 the worldsheet of a long static QCD string is the so-called ``worldsheet m_at ∞ $m_{a}t$ axion", a pseudoscalar particle of mass $m_a \approx 1.85\sqrt{\kappa}$ $S_q + S_a$ 10 -10 -5 -10 -5 15 -15 -15 5 (left) Neumann and (right) Dirichlet boundary conditions

$$S_{eff} = \int dt d\sigma \sqrt{-\det(h)} \left(-\kappa + \frac{1}{2} h^{\alpha\beta} \partial_{\alpha} a \partial_{\beta} a - \frac{1}{2} m_a^2 a^2 \right) +$$

Beyond Lund Strings

Lund string model assumes classical string dynamics — using only first term of the Nambu-Goto action

Work from our Oxford collaborators:

Excitations on an expanding string by considering further terms in the action, i.e. Nambu-Goldstone degrees of freedom

 \gg Study effects on string tensions for **lowest lying NGB/axion modes**

- > Study observables for e^+e^- collision data

Axions

Lattice data strongly suggests that the lightest massive mode that exists on the worldsheet of a long static QCD string is the so-called ``worldsheet axion", a pseudoscalar particle of mass $m_a \approx 1.85\sqrt{\kappa}$

$$S_{eff} = \int dt d\sigma \sqrt{-\det(h)} \left(-\kappa + \frac{1}{2} h^{\alpha\beta} \partial_{\alpha} a \partial_{\beta} a - \frac{1}{2} m_a^2 a^2 \right) +$$

Beyond Lund Strings

> Look at strange/diquark production rates, particle correlations, etc. for string excitations and τ -dependent string tensions

Future studies

Projects planned for my PhD

Sunshine

- Validation tests $-2 \rightarrow 3$ and power showers working, but interplay between $2 \rightarrow 4$ and $2 \rightarrow 3$ is yet to work

Closepacking tuning

- Theory side complete, awaiting tuning which has been delayed due to bug in fragmentation code in PYTHIA, but procedure is outlined and tested

Beyond Lund Strings

- Implementation of string excitations according to Nambu-Goldstone and axion modes

Future work / Aspirational projects

Colour reconnections

- New method to better describe colour algebra \rightarrow better model for junction formation

Modified string tensions

Extensions to gluon kinks on the string — for both taudependent tensions and string excitations

Strangeness

- Closepacking in jets (for e^+e^- studies)
- Ξ_c ratio under-predictions

Thank you for listening!

Backup slides

Dense string systems

Strange to non-strange hadron ratios

Dense string systems

Closepacking

Enhance string tension for higher multiplets according to **Casimir scaling**

High multiplicity is correlated with more partons → more dense string environments

Strange Junctions

String tension could be different from the vacuum case compared to near a junction

Results in strangeness enhancement focused in baryon sector

Junction formation is correlated with density of string systems

Diquark production

Proton-to-pion ratio is overpredicted in pp collisions given diquark production rates tuned to e^+e^- data

Junctions needed to describe other baryon-to-meson ratios → examine baryon formation via diquark production

Schwinger — direct tunnelling from vacuum

Diquark production

Proton-to-pion ratio is overpredicted in pp collisions given diquark production rates tuned to e^+e^- data

Junctions needed to describe other baryon-to-meson ratios \rightarrow examine baryon formation via diquark production

Schwinger — direct tunnelling from vacuum

Popcorn mechanism for diquark production

Diquark formation via **successive colour** fluctuations – popcorn mechanism

J. Altmann 🌄 Monash University

Diquark production

Proton-to-pion ratio is overpredicted in pp collisions given diquark production rates tuned to e^+e^- data

Junctions needed to describe other baryon-to-meson ratios \rightarrow examine baryon formation via diquark production

Schwinger — direct tunnelling from vacuum

Popcorn mechanism for diquark production

Diquark formation via **successive colour** fluctuations – popcorn mechanism

What would happen if we put this red string next to another string? e.g. a **blue string**

Popcorn destructive interference

Proton-to-pion ratio is overpredicted in pp collisions given diquark production rates tuned to e^+e^- data

Junctions needed to describe other baryon-to-meson ratios \rightarrow examine baryon formation via diquark production

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

What would happen if we put this **red string** next to another string? e.g. a **blue string**

Popcorn destructive interference

Proton-to-pion ratio is overpredicted in pp collisions given diquark production rates tuned to e^+e^- data

Junctions needed to describe other baryon-to-meson ratios \rightarrow examine baryon formation via diquark production

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

What would happen if we put this **red string** next to another string? e.g. a **blue string**

Popcorn destructive interference

Proton-to-pion ratio is overpredicted in pp collisions given diquark production rates tuned to e^+e^- data

Junctions needed to describe other baryon-to-meson ratios \rightarrow examine baryon formation via diquark production

Popcorn mechanism for diquark production

Diquark formation via successive colour fluctuations — popcorn mechanism

blue $q\bar{q}$ fluctuation breaks nearby blue string, preventing diquark formation

Popcorn destructive interference

Results — ongoing

Cannot describe both baryon-to-meson ratios simultaneously

Taken from slide by Lorenzo Bernadinis: PhD student currently in Trieste undertaking tuning project with the model

Strange and heavy?

J. Altmann 🦝 Monash University

String tension modifications

Diquark production:

$$P_{qq:q} = \frac{\sum_{qq_s} P_{qq_s}}{\sum_q P_q} = \alpha \frac{P_{ud0}}{P_u}$$

$$P_{qq:q}(\kappa_{eff}) = \tilde{\alpha} \left(\frac{P_{qq:q}}{\alpha}\right)^{\kappa_0/\kappa_{eff}}$$

p_{\perp} spectrum:

$$\exp\left(\frac{-\pi p_{\perp}^{2}}{\kappa_{0}}\right) = \exp\left(\frac{-p_{\perp}^{2}}{\sigma^{2}}\right) \quad \sigma^{2} =$$

$$\sigma'^{2} = \frac{\kappa_{eff}}{\pi} = \frac{\kappa_{0}}{\pi} \frac{\kappa_{eff}}{\kappa_{0}} = \sigma^{2} \frac{\kappa_{eff}}{\kappa_{0}}$$

Increased width of p_{\perp} spectrum \rightarrow higher probability of higher p_{\perp}

 π

Lund string model assumes classical string dynamics — using only first term of the Nambu-Goto action

Work from our Oxford collaborators:

Excitations on an expanding string by considering further terms in the action, i.e. **Nambu-Goldstone** degrees of freedom

$$S_{NG} = \int dt \int_{L_{-}(t)}^{L_{+}(t)} dx \left[-\kappa + \frac{1}{2} \partial_{t} X^{i} \partial_{t} X^{i} - \frac{1}{2} \partial_{x} X^{i} \partial_{x} X^{i} + \mathcal{O}\left(\frac{(\partial X)^{4}}{\kappa}\right) \right]$$

$$X(t, \sigma) = \left(t, \frac{L_{+}(t) + L_{-}(t)}{2} + \sigma \frac{L_{+}(t) - L_{-}(t)}{2}, \frac{X^{2}(t, \sigma)}{\sqrt{\kappa}}, \frac{X^{3}(t, \sigma)}{\sqrt{\kappa}} \right) \sigma \in [-1, X]$$

$$x \in [L_{-}(t), L_{+}(t)]$$

$$X^{i} \text{ are massless Nambu-Goldstone degrees of freedom}$$

are massiess named additione degrees of needon

Axions

Lattice data strongly suggests that the lightest massive mode that exists on the worldsheet of a long static QCD string is the so-called ``worldsheet axion", a pseudoscalar particle of mass $m_a \approx 1.85 \sqrt{\kappa}$

$$S_{eff} = \int dt d\sigma \sqrt{-\det(h)} \left(-\kappa + \frac{1}{2} h^{\alpha\beta} \partial_{\alpha} a \partial_{\beta} a - \frac{1}{2} m_a^2 a^2 \right) + S_q + S_a$$

Beyond Lund Strings

Modelling Colour

Leading Colour limit:

Starting point for Monte Carlo event generators $N_C \rightarrow \infty$

 \succ Each colour is unique \rightarrow only one way to make colour singlets

- > Only **dipole** strings
- > Used by PYTHIA in the default (Monash 2013) tune

In e^+e^- collisions :

> Corrections suppressed by $1/N_C^2 \sim 10\%$

> Not much overlap in phase space

But high-energy pp collisions involve very many coloured partons with significant phase space overlaps

e.g. a dipole string configuration which make use of the **colour-anticolour** singlet state

QCD Colour Reconnection (CR) model

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to **SU(3) algebra**

> Allows for reconnections to **minimise string lengths**

Colour - anticolour singlet state

QCD Colour Reconnections

Stochastically restores colour-space ambiguities according to **SU(3) algebra**

> Allows for reconnections to **minimise string lengths**

- What about the **red-green-blue** colour singlet state?

Junction fragmentation

Junction fragmentation

\rightarrow Go to JRF

→ Fragment two softest strings first

- → Reflect each leg on the other side of the junction ("fictitious leg") to form a dipole string
- \rightarrow Form junction diquark
- → Fragment last leg by fragmenting diquark — endpoint string

*q*₃

 \bar{q}_3

 q_{02}

J. Altmann 🤯 Monash University

Partons \rightarrow Hadrons

Baryon formation:

Diquark endpoints (e.g. beam remnants)

Diquark-antidiquark string breaks

$$- q q q \bar{q} \bar{q} - \bar{q} q \rightarrow$$

Heavy baryon ratios

Λ_h/B^0 overprediction \rightarrow study of $\Lambda_b \mathbf{vs} \Lambda_c$ production → other heavy flavour ratios such as Λ_b / Λ_c and B^0/D^0

 \rightarrow general study of what portion of each baryon comes from junctions

2

*Note Λ_c/D^0 8s lower than typically as probQQ1toQQ0join was referred to its default values and left untune 0. 12 Value should be slightly lower than default value and this ratio should increase

