DPS in Event Generators

DPS = Special Case* of

Multi-Parton Interactions

*Except for dedicated dShower [Cabouat, Gaunt, Ostrolenk 2019] Not covered here

Each proton = **beam** of partons \implies For each type of **parton-parton** scattering process, expect: $\frac{\sigma_{\text{parton-parton}}}{\sigma_{\text{hadron-hadron}}} \sim \langle n \rangle_{\text{parton-parton}} \text{ per hadron-hadron interaction}$

QCD 2→2 scattering dominated by *t*-channel gluon exchange $\propto \frac{\alpha_s^2}{\hat{p}^4}$ $\Rightarrow \langle n \rangle$ exceeds 1 for $\hat{p}_{\perp} \sim \mathcal{O}(\text{several GeV}) \Rightarrow \text{MPI}$ (+ hard tails with $\langle n \rangle \ll 1 \Rightarrow DPS$, TPS, ...)

Further key building blocks -> next slides

IR regularisation (Unitarity/Screening/Saturation) **Impact-parameter** (*b*) dependence

Multi-parton PDFs Interleaved Evolution

Conservation laws Colour **reconnections**

• IR regularisation & b dependence

IR-divergent $\sigma_{\rm parton-parton} \propto 1/p_T^{2n}$ Regulated by Hard cutoff *p*_{*T*min} or Smooth $p_{\perp}^{2n}/(p_{\perp}^2+p_{\perp 0}^2)^n$ Interpret as (\sqrt{s} -dependent) **colour-screening distance** ~ poor man's "saturation"

Ensures $\lim_{p_{\perp} \to 0} \langle n \rangle_{\text{MPI}} = \text{finite}$

[Sjöstrand & van Zijl 1987]

Smear hadron PDFs across effective transverse mass distribution

 \Rightarrow Triggering on hard processes biases selection to small impact parameters, with larger-thanaverage matter overlaps \implies higher $\langle n(b) \rangle_{\text{MPI}}$ \implies "Pedestal Effect" (UE > MB)

($\Leftrightarrow \sigma_{\rm eff} < \sigma_{ND}$ for 2nd and subsequent scatterings)

O Multi-parton evolution (in PYTHIA)

- **1987** [Sjöstrand & van Zijl, Phys.Rev.D 36 (1987) 2019]
- MPI cast as Sudakov-style evolution in p_{T} analogous to the one for showers
- 2005 [Sjöstrand & Skands, Eur.Phys.J.C 39 (2005) 129] Interleave MPI & ISR evolutions in one common sequence of pT
- → ISR & MPI "compete" for the remaining available x in the proton.
- **2011** [Corke & Sjöstrand, JHEP 03 (2011) 032] Also include **FSR** in interleaving
- **2021** [Brooks, **PS**, Verheyen, <u>SciPost Phys. 12 (2022) 3</u>] Also include **Resonance Decays** in interleaving (VINCIA)

Figure from Sjöstrand & Skands, 2005

4

Output Colour Reconnections (CR)

MPI (or cut pomerons) \Rightarrow lots of coloured partons scattered into final state Who gets confined with whom?

Each has a colour ambiguity ~ $1/N_C^2 \sim 10\%$ **QCD screening: random triplet** has 1/9 chance to be in **singlet** state with **random antitriplet**: $3 \otimes \overline{3} = 8 \oplus 1$, $3 \otimes 3 = 6 \oplus \overline{3}$, etc.

Many charges → Colour Reconnections* (CR) more likely than not

Expect Prob(no CR) $\propto \left(1 - \frac{1}{N_C^2}\right)^2$

Ambiguities - Several models in PYTHIA Most advanced: QCD CR using approximate to SU(3) products [Christiansen & Skands, 2015]

Some observable consequences of CR

V/c)

Plot from mcplots.cern.ch [2401.10621]

 QCD CR with "String Junctions" [Sjöstrand & Skands 2002]
 → new source of low-p_T baryons [Christiansen & Skands 2015] [Altmann & Skands 2024]

oring the ratio of doubly heavy to singly heav

Other multiply-heavy hadrons

Outstanding Issues & Outlook

- Evolution Equations & Efficiency
 - PYTHIA's FSR & MPI evolved in ~ physical p_T
 - \Rightarrow Heavy quarks Q can be created at $p_{Tevol} < m_O$
 - Unphysical (& slow) -> reformulate FSR & MPI evolution
- Contrast Different Physics Models?
 - Alternative MPI+CR implementations?
 - Coalescence?
 - Thermal (HI-inspired) Models?
- Suppression due to spatial separation of MPI?
 (arguments both for and against)

What does data say? → Eagerly awaiting measurements!

+ if large enhancements confirmed -> reevaluate physics potential for BSM sensitivity?

10

Extra Slides

atio

