@ NNLO Matching in Vincia

Peter Skands — U of Oxford & Monash U.
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Introduction & Overview

Fixed-Order pQCD State of the Art: NNLO (— N3LO)

Resummation extends range of applicability: multi-scale problems

MCs: Showers, MPI, Hadronization = Explicit collider studies

Hadronization corrections, UE, IR sensitivity, tuning, measurement calibrations, detector response, ...

1. Can use off-the-shelf (LL) showers, e.g. with MiNNLOps
Based on POWHEG-Box @ Analytical Resummation @ NNLO normalisation

Best you can do with LL showers but approximate; depends on some auxiliary scales & choices

2. This talk: VinciaNNLO

Based on nested shower-style phase-space generation with 2nd-order MECs
True NNLO matching (shower matches NNLO point by point) = Expect small matching systematics

So far only worked out for colour-singlet decays

Also developing extensions of the shower LL = NLL = NNLL (with L. Scyboz, B. El Menoufi)



Why go beyond Fixed-Order perturbation theory?
Simple example of a multi-scale observable:

Fraction of events that pass a jet veto (for arbitrary hard process Q, ,.4 > 1 GeV)

(i.e., no additional jets resolved above O

veto )

LO NLO NNLO

~

[ — a(L>+L+F) + 2L+ L3+ L2+ L+F) +

L « In(QZL,,/ Q% )

1
(Logs arise from integrals over propagators —2>




The Case for Combining Fixed-Order Calculations with Resummations

— NNLO
- - - Beyond NNLO

<+ Target accuracy at NNLO

Parametric size of each
perturbative coefficient

Generic observable scale O
(for Ogom = 100 GeV, e.g., Drell-Yan pr)

Resummation extends domain of validity of perturbative calculations



Perturbation Theory as a Markov Chain

Stochastic differential evolution in “hardness” scale

do for generic observable 0", expressed as a Markov chain:

Differential Born-level "k"factor

do : ‘
— = |dd, | MEO 17 (1+ Fyio+ -..) S(@,0)
dO , ‘
Born-Level Shower
Fixed-Order Matching Coefficients ‘> next slide

(In general, the Fixed-Order matching coefficients M and F are local = functions of @)




A Simple FSR Shower

With only (iterated) n — n + 1 kernels

Evaluate O on @,

Shower operator 'Sudakov Factor’

5.1(0,0) = A(®,05) 5(0@)-0) (S
Sudakov expansions -
- i P " Branching Kernel Branchings
virtuals - “reals”
Sudakov Factor ~

|M 1|2 “Somethin
+[a0, 8(0,0,0) - su@00 (R

~r 12
| M, |
MARKOV CHAIN
UNITARITY
O o Ml
Sudakov Factor A(®D,, Q) = exp _J d(I)+1 iH_ 2
02 |Mn|

Branching Kernel
Soft-Collinear Approximations or tree-level MEs (MECs)

NB: partition of phase space and branching probabilities onto different terms not shown here




Branching Kernels (for single branchings)

Most bremsstrahlung is driven by divergent
propagators — simple universal structure,
independent of process details

Amplitudes factorise in singular limits

Collinear limits = DGLAP splitting kernels:

Mpar(vanb, .. 2 W g2 P(z)

) Me(. . asb,. )
2pa gy MLl

Soft limits (E;/Q—0) =» dipole factors (same as classical):

Mpir (oo gk 2730 2 PiPE) o ik P

These limits are not independent; they overlap in phase space.
How to treat the two consistently has given rise to many individual approaches:
Angular ordering, angular vetos, dipoles, global antennae, sector antennae, ...




Examples of Branching Kernels (for single branchings)

Factorisation of 2 2
(squared) amplitudes in
IR singular limits

(leading colour)

Full ME Born ME

Full ME (modulo nonsingular terms)

Antenna ; Dipble (CS/Partitioned)

2Sq51 1 ng? ng

. + T\ 5 + . K 43.4(Zg) K 15.4\2)
g S - 98°8q a8 Sgq +
s 84 eikonal term collinear terms Sqg Seq
One term for each parton
Requires angular ordering One term for each colour- Two terms for each colour-
to get soft limits right connected pair of partons connected pair of partons

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon
parents, global vs sector, colour factors, initial-state partons, mass terms) not shown.




VinciaNNLO @

Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator
Harnesses the power of showers as efficient phase-space generators for QCD

Pre-weighted with the (leading) QCD singular structures = soft/collinear poles

Born )

Born +1

Continue shower
afterwards

UOIIN|OAS J8MOYS

Born +2

Different from conventional Fixed-Order phase-space generatlon eg VEGAS)




VinciaNNLO @

Continue shower afterwards ...

No auxiliary / unphysical scales = expect small matching systematics

Proofs of concept for

Born NNLO+..) 7 =@ NNLO
— 44

UOIIN|OAS JIBMOYS

Born +1
NLO +... Hartgring, Laenen, PZS 2013
Li, PZS 2017
Born +2 LO + Campbell et al. 2023

Preuss, PZS 2024

© )
Need:

© Born-Local NNLO (@(a‘f)) K-factors: kNNLO(CI)O)
A NLO (@(asz)) MECs in the first 2 — 3 shower emission: kg_I;?(CI)l)
O Lo (@(a‘f)) MECs for next (iterated) 2 — 3 shower emission: k;;o4(d)2)

O Direct 2 — 4 branchings for unordered sector, with LO (@(asz)) MEC:s: k;£4(CI>2)

Vo



Based on SeCTO r A n"'enna S hower's Lopez-Villarejo & PS 1109.3608 Brooks, Preuss & PS 2003.00702

Sector antennae Kosower hep-ph/9710213 hep-ph/0311272 (+ Larkoski & Peskin 0908.2450. 1106.2182)

Divide the n-gluon phase space up into Example: Z — qgggg
n non-overlapping sectors
&2
. . . g Sectorization:
Inside each of which only the most singular 1 P hen s vaotont tr
" . " . . only contributing history is
(~"classical”) kernel is allowed to contribute. 2 emited by 1 and 3

No “sum over histories”

Lorentz-invariant sector definitions
based on “"ARIADNE pT": Gustafson & Pettersson, NPB 306 (1988) 746
2 SijSik :
Pij=—— with S;j = 2(p; -p]-) (+ generalisations for heavy-quark emitters) Brooks. Preuss & PS 2003.00702
T Sijk | |

=» Unique properties (which are useful for matching):

Clean scale definitions; shower operator is bijective & true Markov chain


https://arxiv.org/abs/hep-ph/9710213
https://arxiv.org/abs/hep-ph/0311272
https://arxiv.org/abs/0908.2450
https://arxiv.org/abs/1106.2182
https://arxiv.org/abs/1109.3608

NNLO Matching as a Markov chain @

Campbell, Héche, Li, Preuss, PZS, 2108.07133

Focus on hadronic Z decays (for now) ;Two-loop MEC"
(ONES = | a0 5@y 0@, (@, 0)
Ingredients: /

@ Born-Local NNLO (O(a?)) K-factors: kKNNLO(d)

A NLO (O(a”)) MECs in the first 2 — 3 shower emission: ké\l_ljg)((l)l)

© LO (O(a))) MECs for next (iterated) 2 — 3 shower emission: k;9,(®,)

O Direct 2 — 4 branchings for "unordered sector”, with LO (@((xf)) MECs: k2L84(CI>2)

$(®,,0)=8,,(2,,0) +S,,(,0)

Slide adapted from C. Preuss ﬂ


https://arxiv.org/abs/2108.07133

Why do we need direct 2—4 Branchings?

Iterated MECs not possible with off-the-shelf showers

E.g., strong p,-ordering cuts out part of the second-order phase space

mi12M23
Lund plane: In(p,) A p=—""—
Log(pr) vs Rapidity M Ant

Not strongly ordered
Inaccessible to 2nd emission
(and recoils don't commute)

No leading poles
But can contain subleading ones

In(p11)

Yy = ln(mlg/m23)

Peter Skands



Example: Z = gggqg

. . . . . . Pi P12
Double-differential distribution in — & —
myz P11
Sum(shower histories) Giele, Kosower, PS, 2011]
4 — (Averaged over other phase-space variables, uniform RAMBO scan)
(LO,LC) |2 - L L A e e ——
|MZ—>4 | NQ'S 6 Z%qgga <R4> ANT=DEF | |40
.2 5[ VINCIA1.025 KIN=yu |
Example phase-space point: sl ORD = pf (strong) ]
Qo =mZ =91 GeV 4 E
pT1 =5 GeV 2 §
PTZ = 8 GeV

Unordered but has p |, < O :
"Double Unresolved”

o
c
[\Y
o
@
Q
[}
kel
J
e}

(Note: due to recoil effects, swapping the order of
the two branchings does not simply give pr1 = 8 GeV,
pr2 = 5 GeV but for this example just produces a
different unordered set of scales.)

Peter Skands


https://arxiv.org/abs/1102.2126

© Weight each Born-level event by local K-factor

V(®2) | I§PO(P2) | WWV(d) | Ip(d2) | Ig(P2)

knnLo(®2) =1+

B(®,) B(®,) B(®2)  B(92)  B(9)
+ [ g0, (R(®2, ®11)  SNEO(dy,#41) | RV(P2,®41) _ T(¢2,¢+1)]
L B(9) B(®,) B(®,) B(®>)
o [ e, [RR(O2,002) S(¢2,¢+2)] | \
" B(®,) B(®,) T g2 Doroededsdecton e
points at Agp = 90 degrees
Fixed-Order Coefficients: Subtraction Terms:

2 Legs 0 1 2 legs

0 1
NN | o I ooty e o
-- g, - T shower formalism —
S but must be fully local
2 - 2 Is, It in Born kinematics ®,)

Note: requires “Born-local” NNLO subtraction terms

Loops

Not an immediate issue: trivial for decays; simple for colour-singlet production.

In general simple if shower kinematics preserve @y, variables; otherwise compute “sector jet rates”




The Shower Operator (its 2m-order expansion)

This is the part that differs most from standard fixed-order methods

Recall: the +1 and +2 phase spaces are generated via nested sequences of
shower-style branchings. Each of which produces an all-orders expansion!

We expand these to second order and correct them to NNLO

mzj|
P11

k(I)\INLO | M(OZ |2
00

All-orders - —_—
Sudakov
App(mz,pyy) factor Born +1 Born +2

lterated 2 — 3 Direct2 = 4

kNLO M(O), 2
PLy 3 | ngl *
Born +1 * Will need
A(PL1sP1o) Agy(Pr1>P12) Born +2 both of
ois these

=



Coefficients of the Perturbative Expansions

Tree-level  lterated 2 — 3 kernel

2 5 3 kernel @ direct 2 — 4 kernel

NNLO Legs Shower Legs
e 0

>

>
- - - 0 - PS] P52 3
- - ] B.AB1 PSTAﬂ PSZ.A21 PS3'A31
, - saw  psbe\ Pz
v First_order oy v e e N
Sudakov expansion

Loops
Loops

Second-order Tree-level 2 — 3 kernel

Sudakov expansion ® First-order Sudakov expansion(s)

Note: shower coefficients not independent — tied together by universality (=) and unitarity («')!
Also: shower “observable” = fully differential rates in each of the (nested) phase spaces



A & O Tterated 2 — 3 Branchings with NNLO Corrections

Key Aspect:
Up to matched order, include process-specific O(a?) corrections into shower evolution

@ Correct 15t branching to (fully differential) NLO 3-jet rate (Hartgring, Lacnen, Pz (2013)

my
= LO 2
2 | M755(Dy) | Born
ANLO(ZZ ) = exp —J d® KNLO@,, @ )
25 »P11 0]+1 - 00 P41
3( 2 ) . [0]+ |M%_O>2((I)0) |2 7—3 + Born +1
Allowing for NLO correction factor kg_L)?(CI)O, @) (will return to this)
@ CorreC‘t 2nd branChing to LO ME [Giele, Kosower, PZS (2011); Lopez-Villarejo, PZS (2011)] 3 1
orn
Pii | MEO,(@,) |7
LO _ Z—4 2
A3_)4(pl1,pl2) = exp —J d(D[1]+1 5 > Born +2
P12 |MZ—>3((D1) |

Entirely based on sectorization and (iterated) Matrix-Element Corrections

(Sectorization defines d®,;, ; and allows to use simple ME ratios instead of partial-fractionings)

Slide adapted from C. Preuss ﬂ



Caveat: Double-Unresolved Phase-Space Points

Iterated shower branchings are strictly ordered in shower pr
Not all 4-parton phase-space points can be reached this way!

In general, strong ordering cuts out part of the double-real phase space

~ double-unresolved regions; no leading logs here but can contain subleading ones

Vice to Virtue: (i pzs 2017

Divide double-emission phase space into strongly-ordered and
unordered regions (according to the shower ordering variable)

Unordered clusterings < new direct double branchings

Complementary phase-space regions: S

Born
d®p10 = O(P1 = p1)dPpoyy APy + OP Ly +p1o)dPpgp, [ ( Born +2*}
Generated by iterated, Generated by new direct

ordered branchings 2 — 4 branchings

3



Vice to Virtue: Define Ordered and Unordered Phase-Space Sectors

Ordered clusterings < iterated single branchings

Unordered clusterings < new direct double branchings

Observation: for direct double-branchings,
Qg defines the physical resolution scale

Corresponding Feynman diagram(s) have
highly off-shell intermediate propagator

. 6(Q2) F 02 .<

| ! ! » Intermediate “clustered” on-shell 3-parton
state at (C) is merely a convenient stepping
stone in phase space & integrate out

)
—_
(N)
—
-

£9



O (New: Direct 2 — 4 Double-Branching Generator)

Derived in: Li & PZS, A Framework for Second-Order Showers, PLB 771 (2017) 59

Sudakov trial integral for direct double branchings

with P1 S [pJ_O’ pJ_Z]: Scale of intermediate

, Unordered Sector:
2—-3 stepplng stone N
2 PL<py
Pio !

Pio
—In A(pJZ_O, PJ2_2) = J dﬁi [ dpJ_ ®(pJ_ pJ_)
0 pis L

Generic overestimate of double-
branching kernel in unordered region

Trick: swap integration order

= outer integral along p, instead of p:

Plo 5 P1 N Pfo ) 5
= J dpJ_J dpL_=J dpJ_F(pJ_)
sz 0 p 1 sz

00k

I I I .
0.4 0.6 0.8 1.0

pilpi,

=» First generate physical scale p,,, then generate 0 < p, < p,, + two z and ¢ choices

o



Validation: combining iterated 2 — 3 and direct 2 — 4 branchings

/pi.:s)

2
1.4

1/0 do/dlog(p

1/odo/dlog(p? /p3 5)

ete” — 45 @ /s = 240 GeV

Z qé S q Vincia default
— Vincia default + MECs
—— Vincia 2tod
107" to=s, te = (5 GeV)?, 2-loop oy
10-24
10-34
1074
10°° T T T T T T T

!

4 3 —2 -1 0
108;(1721 .4/]721 3)

ete” =45 Q /s = 240 GeV

Vincia default

IX

Z

cia default + MECs

10714 to = s, te = (5 GeV)?, 2-loop as
10724
10734

%
10744 z

z
107° T T T T T T T —

—4 -3 -2 -1 0 1 2 3 4
2 2
10%(1&,4/]&.3)

ete” — 45 @ /5 = 240 GeV

Vincia default

—— Vincia default + MECs
\‘ —— Vincia 2tod
to = s, te = (5 GeV)?, 2-loop as
. Zoom
ol
2
.
3
ad
>
§° 1074
=
S 3107
<
S 2% 10!
~
—
10734
107" 4
6x 1072
+
0.1 0.0 0.1
1071 - " - .
—04 —0.2 0.0 0.2 0.4

Z - qqq'q’

105(1’2\ ,4/1721 ,3)

efe” — 45 Q (/s = 240 GeV

Vincia default

—— Vincia default + MECs
ZOOI I . —— Vincia 2tod
to = s, te = (5 GeV)?, 2-loop ay
107"
=
o
,
~
3
BN
S
éﬂ‘ 10724
=
~
S}
=l
S
~
—
1034
1074 T T T T T
—0.4 —0.2 0.0 0.2 0.4
2 2
10g<1ﬂ,4/p¢,3)

Slide adapted from C. Preuss
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Summary: Shower Markov chain with NNLO Corrections

® Correct 15t (2 — 3) branching to (fully differential) NLO 3-jet rate iertgring, Laenen, P75 2013)

my

ANLO( ny ) exp JT dd | Z—>3( 1) | kNLO((D ® ) Ite;atei:
253 P11) = - [0]+1 753 UF 0 4] (Ordered)
P11 | M%EZ(QO) | my
2
>
® Correct 2nd (3 — 4) branching to LO ME (Gicle, kosower PS (2011); Lopez Villarejo, PZ5 2011] %p“\piz
LO P o | M79,(®,) ? e
— I -
A3—>4<pJ_1’pJ_2) = €Xp _J do [1]+1 |M(0) @ )|
i Z=3 Direct:
O Add direct 2 — 4 branching and correct it to LO ME (1 rzs 2017 m, (Unordered)
P | MEO,(@,) |
ALO <p p ) = exp {_J d(DUnord Z—>4 2 }
2-4\P11>P12 [2]+2
P12 |M%9>2((D0) | P12

Entirely based on MECs and Sectorization
By construction, expansion of extended shower matches NNLO singularity structure.

But shower kernels do not define NNLO subtraction terms* (1)

*This would be required for an MC@NNLO scheme (but difficult to realise in antenna showers) Slide adapted from C. Preuss ﬂ



Real-Virtual Corrections: NLO MECs (0)

Hartgring, Laenen, PZS (2013)

NLO \4
k = +w,.,5) :
= Campbell, Hoche, Li, Preuss, PZS, 2108.07133

23
Local correction given by three terms:

v NLO Spin-averaged subtraction terms:
— . Done with pairs of phase-space
W2H3(q)0’ ¢+1) - RV(®O’ (D+1) + 1 (®0’ (D+1 ’ tl) points at Ap = 90 degrees

/

1 1
NLO Born+1j +| do’, | RR(®,, D, D’ ,) - SNOD,, D, ,, P’ —
J [0 +1 ( (Dg, Dy, DL y) (D, Dy H)))R((Do, )
t
NLO Born — V(CI)0)+INLO(<I)O)+J dcb;l(R(cbo, @’ ,) — SNO@,, c1>'+1)>
0 B(®,)
2 2 t
a KCMWHPS L , ,
Shower +<2—:[ log (T) + J d(D+1 A2|_)3((D+1) kzL,gg,(q)(), (I)+1)>
R t

Calculation can be (semi-)automated, given a suitable NLO subtraction scheme
(C. Preuss had a crucial realisation to separate this from the terms generated by the shower)

Slide adapted from C. Preuss


https://arxiv.org/abs/2108.07133

Size of the Real-Virtual Correction Factor (@)

B9 = (14w )

studied analytically in detail for Z — gg in Hartgring, Laenen, PS JHEP 10 (2013) 127

L+w) /,LPS = pJ_ IlO CMW

log(yi;)

=- now: generalisation & (semi-)automation in VINCIA in form of NLO MECs

Peter Slids adapted from C. Preuss




Preview: VinciaNNLO for H — bb

VINCIA NNLO

1-Thrust (parton level) —— H — bb NNLO+PS (VINCIA)
—— H — bbg NLO (EERAD3)

Adapted from C. Preuss “NNLO Reference” = EERAD3 NLO H — bbg

041 % Coloretti, Gehrmann-de Ridder, Preuss, JHEP 06 (2022) 009
O+P {«

051 Note:

NNLO accuracy in H — 2j implies NLO correction in first
emission and LO correction in second emission.

dr
Tar

<]

o

_L
1 -
Hbb

NNLO @
> |
0 1 2

legs

0.1 agl)

VINCIA NNLO

“0.0 0.1 0.2 0.3 0.4 0.5

For Thrust, NNLO H — bb

NLO forz < 1/3
. LO forz > 1/3

Peter Skands


https://arxiv.org/abs/2202.07333

Preview: VinciaNNLO for H — bb

VINCIA NNLO
1-Thrust (parton level) b o D t
oo -Thrust (parton leve — H = b NNLO+PS (ViNcia) parameter —— H — bb NNLO+PS (VINCIA)
: t —— H — bbg NLO (EERAD3) —— H — bbjj LO (EERAD3)

Adapted from C. Preuss

?

0.0

1 _dI
— r&
}{hl dr
<]
o

For Thrust, NNLO H — bb For D parameter, NNLO H — bb = LO
NLO forz < 1/3 Radiation from shower generates large
* LO forz > 1/3 corrections over entire range

&



0.5 7

1-Thrust (parton level)

Preview: VinciaNNLO for H — bb

VINCIA

NNLO
_ 0.30
— B NNLOITS (Vi) 0TS (v
t —— H — bbg NLO (EERAD3) —— H - bbjj LO (EERAD3)
Adapted from C. Preuss 0251 Adapted from C. Preuss
0.41
Bl 03
b\-&*
£
NNLO
0.2
0.11
VINGIA NNLO PlotAtade by C. Preuss
0.0 ; ; e .
0.0 0.1 0.2 03 & 0.4 05
T

, f 1.0
D

VINCIA NNLO+PS: shower as phase-space generator: efficient & no negative weights!
» Looks ~ 5 x faster than EERAD3* (for equivalent unweighted stats)

+ is matched to shower + can be hadronized

Proof of concepts now done for Z/H — gg; work remains for pp (& for NnLL accuracy)

* Already quite optimised: uses analytical MEs, “folds” phase space to cancel azimuthally antipodal points,
and uses antenna subtraction (= smaller # of NLO subtraction terms than Catani-Seymour or FKS).

£



Summary

Exploits sectorization =» defines d®,,, |, unique scales, and
allows to use simple ME ratios (instead of sums over partial-fractionings)

I Shower-style phase-space generation @ 2nd-order MECs

VINCIA NNLO

Ingredients:

@ Born-Local NNLO (0(a?)) K-factors: kKNLO(d,y)

A NLO (0O()) MECs in the first 2 > 3 shower emission: k) -2(®))

® LO (@(a_s,z)) MECs for next (iterated) 2 — 3 shower emission: k3,L84(CI)2)

O Direct 2 — 4 branchings for "unordered sector”, with LO (0(?)) MECs: ky9,(®,)

Elaborate proofs of concept for Z — gg and H — ¢gg

Now working to make public in Pythia 8
Outlook: underlying shower =» NLL & NNLL; extend to pp, and matching =» N3LO

£
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MECs are extremely simple in sector showers

In global antenna subtraction & in conventional dipole/antenna showers:

Total gluon-collinear DGLAP kernel is partial-fractioned among neighbouring “sub-antenna
functions” — factorially growing number of contributing terms in each phase-space point

Global Antenna 2Sik if jg soft Sector Antenna Zsik if jg soft
Sij Sjk SijSjk

gl P 1 142° e sct . 1 1422 e s
Ang—>qgg(’q’./gv kg) — sj 1—z if Iq || Jg Aqgr—>qgg(’q7./g’ kg) - sj 1—z if lq H Jeg
1 1473 1 2(1—z(1—2))?

o 1z if jg || kg ‘ﬁ R ey if jg || kg j
= partial-fractioned g — gg DGLAP kernel = the full g — gg DGLAP kernel

= Sector kernels can be replaced by direct ratios of tree-level MEs:
| Mook, ) |
@ Global shower: Afléb (i j. k) — Igléb_)l]k dad )k - = complicated
zhehistories Ah | Ml’l( . ‘Ih’ Kh’ .. ) | Ei;j?;;%(l;lr;s;el

|Mn+1( l ]9 )l .
= simple

|IM,(...LK, .. ) | Lopez-Villarejo & PZS JHEP 11 (2011) 150

© Sector shower: ASC_)Jk(z j k) —
/

Note: can just use ME also in denominator, not shower kernel, since we matched at previous order “already”

P


https://arxiv.org/abs/1109.3608
https://arxiv.org/abs/1706.06218

Colour MECs

Sector kernels can be replaced by ratios of tree-level MEs:

glb | +1( l ], )l

& Global shower: Afléb (0 J, k) = = complicated

IK—)le 2 i
Zhehistories Ap| M. 'Ih’ K -1 1[?(;‘2](?(:281(t;a]restel
[ Myi(osis ks ) |
0 Sector shower: AISI?—> ]k(l ], k) ntl . > = simple [Lopez-Villarejo & PS 1109.3608]
\M,(...IK, ...)|

Can also incorporate (fixed-order) sub-leading colour effects by “colour MECs":

[Giele, Kosower, PS, 1102.2126]
*
o > s MaMj
col —
> Mal?

Example: Z — qg + 2¢g

Ao(lqa3g,4g725}) A0(1q73ga4ga26)
PMEC = Weol ———a—2L 0(P 134 < P 243) + Weol — = —220(p7 s43 < P 134)
Ag(13qa34g»26) Ag(1Q734ga234_7) ' 7

AY(1,3,4,2) + AY(1,4,3,2) — +- AY(L,3,4,2)
C

Weol =

A%(1,3,4,2) + A%(1,4,3,2)

Slide adapted from C. Preuss



https://arxiv.org/abs/1109.3608
https://arxiv.org/abs/1102.2126
https://arxiv.org/abs/1706.06218

Colour-Ordered Projectors

Better: use smooth projectors [Frixione et al. 0709.2092]

Cii
RR'(¢37 cb{i—l) = Z ﬁRR(CD& ¢?j£t , Cijk = AIKr—)iij((b3)
J m

@ But: antenna-subtraction term not positive-definite!

@ To render this well-defined, need to work on colour-ordered level

RR:CZRR(O‘)—A%ZRR('BH:...
o 5

o Different colour factors enter with different sign, but no sign changes within one term

Cj BRI (®3, oot

C ok
Z CEmn R(¢3)
m

— Ak ijk

= Numerically better behaved, uses standard antenna-subtraction terms

Slide adapted from C. Preuss




