NNLO Matrix-Element Corrections in VINCIA

NNLO Parton Shower
0 1 2 3 Legs 0 1 2 3 Legs
n wn
Q. Q.
S 1 S 0, (N
] —1

oy .

Definition: aj"” = perturbative coefficient* for X + j jets, at order (as)j“ﬂ 030)

- = The full perturbative coefficient = LO shower kernel (correct single-unresolved limits)

v

Problem: off-the shelf (N)LL showers do not match full NNLO
singularity structure. (LO shower kernels only = iterated NLO structure.)

~ Peter Z Skands (Monash University — Melbourne Australia) RadCor, May 2023



Solutions

A. Use off-the-shelf showers = deal with NNLO subtleties separately.

0 1 5 3 Legs NNLO+PS: first approaches, for some processes
@ UN2LOPS [Hsche et al. 1405.3607]
o3 - . . . .
inclusive NNLO + unitary merging
-- o o NNLOPS/MiNNLOps
[Hamilton et al. 1212.4504]/[|\/|onni et al. 1908.06987]

regulated NLO PowHEG 1j + NNLO

v @ (GENEVA [Alioli et al. 1211.7049]
NNLO matched resummation + truncated shower

UNZ2LOPS: Sudakov from explicit unitarisation (— event-weight tlips = low efficiencies?)
MiNNLOps/GENEVA: need analytic NNLL-NNLO Sudakov; done for several processes.

Note: resummation and shower pr variables must be the same to LL. (Effects of mismatches
beyond controlled orders? Complex processes / “semi-unresolved” kinematics?)

B. Make a new shower which does match full NNLO singularity structure.

(Want that anyway, eg for high-accuracy showers in their own right.)



First Problem: Phase-Space Coverage

Iterated single branchings do not cover all of double-branching PS

E.g., strong p,-ordering cuts out part of the second-order phase space
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Example point: m, = 91 GeV, p;; = 5 GeV, p;, = 8 GeV

Unordered but has p,, < m,: "Double Unresolved”

(Note: due to recoil effects, swapping the order of the two branchings does not simply give p11 = In[4p /m

8 GeV, pt2 = 5 GeV but for this example point just produces a different unordered set of scales.) (Averaged over other phase-space variables, uniform RAMBO scan)


https://arxiv.org/abs/1102.2126

Solution: Turn Vice to Virtue

Ordered clusterings < iterated single branchings

Unordered clusterings < new direct double branchings

Q Divide double-emission phase space into
strongly-ordered and unordered region:
[Li, Skands 1611.00013]

db,, = dd)iz + d<|>J<r2
SN N~

u.o. S.0.
Sector Definitions
" " < _ 2 N2
Ordered dq)+2 = @( 11 +2)dq)_|_2

’ y > __ 32 2
Unordered dq)+2 — (1 — @( 1 _|_2) )dq)_|_2
0 1 2 n Vo Va

Unique scales provided by deterministic clustering algorithm

(In our case, the same as our sector-shower ordering variable)



New: Direct (unordered) Double-Branching (2 — 4) Generator

Developed in: Li & PZS, A Framework for Second-Order Showers, PLB 771 (2017) 59

Sudakov integral tfor direct double
branchings above scale QO < Qy: Generic double-

branching kernel
QX Unordered Sector  (overestimate)

dgfj 102 ©(Q2 — 0% (02, 0
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VWe use: [Li&Ps (2017): Giele, Kosower, PS (2011)]
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Trick: swap integration order = outer integral along O,
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=» First generate physical scale Qg, then generate 0 < Q; < Oy + two z and ¢ choices



= Can do shower with NNLO Matrix-Element Corrections

Iterated + Direct double branchings allows to fill all of phase space
—> Can now consider NNLO MECs

Proot ot concept for hadronic Z decays in VINCIA:  [Campbell, Hche, Li, Preuss, PZS, 2108.07133)

ldea: "POWHEG at NNLO” (focus here on eTe™ — 2j) “Two-loop MEC"

/

\ i > VINCIANNLO <O>\1\/II151%6+PSZ/O|¢2 B(®2)| knnLo(P2) || Sz2(to, O)

local K-factor shower operator

Need:

@ Born-Local NNLO (O(a”)) K-factors: kyny o(®@5)

d NLO (@(asz)) MECs in the first 2 — 3 shower emission: wﬁfg(d)g

© LO (O(«;)) MECs for next (iterated) 2 — 3 shower emission: wP'o*(®,)

@ Direct 2 — 4 branchings for unordered sector, with LO (O(c;)) MECs: wig *(®,)

Slide adapted from C. Preuss



https://arxiv.org/abs/2108.07133

© Weight each Born-level event by local K-factor

V(P2)  IFFO(®2)  WW(d2)  Ip(dr)  Is(d2)
B(®)  B(P2)  B(dy)  B(dz)  B(d2)

/ do_ 4 R(Py,d1)  SNLO(d, d.1)  RV(dPy,diq) T(dp, duq)
N _

knnLoO(P2) = 14

- B(®7) B($,) B(®$,) B($,)
"RR(P>, P S(Pr, D)
| do., ($2, P2) ($2, P2)
- B(9)) B($,)
Fixed-Order Coefficients: Subtraction Terms (nhot tied to shower formalism):
0 ] 2 ngs 0 1 2 ngs
0 0 0 SNLO S
g‘ : g‘ : |NLO T
2 2 ls, |7

Note: requires “Born-local” NNLO subtraction terms. Currently only for simplest cases.

Some ideas what to do in meantime — strongly interested in local subtraction schemes




A & O lterated 2 — 3 Shower with Second-Order MECs

Key aspect >
up to matched order, include process-specific NLO corrections into shower evolution:
VINCIA NNLO
@) correct first branching to exclusive (< t’) NLO rate:
. lterated:
233 — €Xp +1 A2 3\ P41 )Wo (3 2, P41 raere
N353 (o, t) = d 1 Ao 3(®41)wp L5 (92, P1) (Ordered)
t to
€©) correct second branching to LO ME: Nt, > 1
>3 \
t/ 3 et
A39, (1, t) = exp { / dP’, | Az ya (D) ws Sy (s, ;1)}
. —_—

Slide adapted from C. Preuss ‘



O Direct 2 — 4 Shower with Second-Order MECs

Key aspect >
up to matched order, include process-specific NLO corrections into shower evolution:
VINCIA NNLO
@) correct first branching to exclusive (< t’) NLO rate:
. lterated:
ALLS (to, 1)) = eXP{ / dd_; Az'—>3(¢+1)W§E§)(¢2,¢+1)} (Ordered)
t to
€©) correct second branching to LO ME: /
[ >1
%

t/ bs t
3!—)4(1‘- t) = exp { / dcb A3H4(¢ 1) (¢3, ;1)}
. —

@ add direct 2 — 4 branching and correct it to LO ME: Direct:
o Lo (Unordered)
A58 4(t0, t) = exp do7, Ao a(Pr2) w5, (P2, P y2) f,
t D 2
>4

-
-
-
-
-
-
L d
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— entirely based on MECs and sectorisation
—- by construction, expansion of extended shower matches NNLO singularity structure

But shower kernels do not define NNLO subtraction terms* (!)

*This would be required in an “MCc@NNLO" scheme, but difficult to realise in antenna showers. Slide adapted from C. Preuss ‘




Sectorization keeps it simple

Kosower PRD 57 (1998) 5410; PRD 71 (2005) 045016;
S A F I. also used in Larkoski & Peskin PRD 81 (2010) 054010; PRD84 (2011) 034034
ector ntenna Formalism + Showers: Lopez-Villarejo & PS JHEP 11 (2011) 150; Brooks, Preuss & PS JHEP 07 (2020) 032

nside each: only most singular kernel contributes.

—> Each sector branching kernel must contain the
full soft-collinear singular structure of its sector

Lorentz-invariant def of “most singular” gluon:
Based on ARIADNE p?; = —=

with s; = 2(p; - p;)

Si]k
Suitable for antenna approach. Vanishes linearly when

either s5;; > 0 or s — 0, quadratically when both — 0.

(One sector per gluon that can become soft; each sector
also contains z, < 1/2 collinear part).

Same singularity structure as convention showers,
but with just a single history (not factorial growth)

—> with a single unique scale

(+ generalisation to g — ¢gq)

Divide n-gluon @, into n non-overlapping sectors. Example: single-branching sectors in H — g¢g,

Sector populated by IK—>le
1.04 S
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> *
| LN
l__li 0.6 In collinear limits,
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! z=(1-y)= %
> 0.2

(0N e r————— R J

Yii = Sij/Sik = 1—X
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0.8— k radiated by (j,i) 1 _ 08}

i 0.6¢

. ” . ;
0.2

0.0 :
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= Sij/Sik = Vi = Si/Sik = 1-Xk



https://arxiv.org/abs/1109.3608
https://arxiv.org/abs/2003.00702

MECs are extremely simple in sector showers

In global antenna subtraction & in conventional dipole/antenna showers:

Total gluon-collinear DGLAP kernel is partial-fractioned among neighbouring “sub-antenna
functions” — factorially growing number of contributing terms in each phase-space point

Global Antenna 52% if jo soft Sector Antenna st—s'kk if j; soft
Ij2jk U]

| . 1 1422 - : 1 1422 P :
A%gn%qgg(’qh/ga kg) — Sjj 1—Zz it iq | Jg ASg»—)qgg(’q7./g7 g) — s 1—Zz if iq || Jg
1 1423 P 1 2(1—z(1 e
Sik 1_22 if jg || ke < Sik ( Z(Zl( Z)Z)) if jg || kg «——
= partial-fractioned g — gg DGLAP kernel — = the full g —> gg DGLAP kernel —
= Sector kernels can be replaced by direct ratios of tree-level MEs:
‘ +1( l .]9 ) ‘

& Global shower: A (G k) > AgP = complicated

IK—ijk IK—ijk 2
Zhehistories Ah ‘ Mn( y 'Ih9 Kh? . ) ‘ Fischer & Prestel EPJC77(2017)9
. J/AR(C N o |
O Sector shower: Alslgt_)l]k(z,], k) - —2H ’ — = simple
IM.(...ILK, .. .) | Lopez-Villarejo & PZS JHEP 11 (2011) 150

/

Note: can just use ME also in denominator, not shower kernel, since we matched at previous order “already”


https://arxiv.org/abs/1109.3608
https://arxiv.org/abs/1706.06218

Validation: Real and Double-Real Corrections
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Slide adapted from C. Preuss




The Real-Virtual Correction Factor

NLO _ [, ,LO Vv
W23 = Vo3 (1 i W2|_>3) vm@

studied analytically in detail for Z — gq in [Hartgring, Laenen, PS JHEP 10 (2013) 127

\Y v ‘
o2es  pps=pi no CMW o w5,5  pps = pL with CMW
3 ~ : R e
_ 1-1 1K2 f
_2L \\a B 2l
AN i A~ 1\2.
S S
4l L S i
o0 o0
= =
-6 ~6 :
g 12 _g 111
-8 -6 —4 ) 0 -8 -6 —4 ) 0

log(yi;) log(yi;)

= now: generalisation & (semi-)automation in VINCIA in form of NLO MECs




Real-Virtual Corrections: NLO MECs

Rewrite NLO MEC as product of LO MEC and “Born”-local K-factor 1 + w" @
(“POWHEG in the exponent”): VINCIA

Wy oS (P2, D1) = Wy Qs (P2, Pi1) X (1 + wy 5(P2, D41))

Local correction given by three terms:

RV(®y, dy1)  INEO(dy, b 4)

Wory3(®2,®11) = (

R(®2, P 41) R(®2, P y1)
t B —
RR(®,, .1, D’ SNLO(p, P, 1, ®/
NLO Born-+1; + [ (@2, 91, 94) (G2, 91, )
; | R(®2, 041) R(®2,®41)
NLO Born V(®2) | [MHO (@) | ’ do’ _R(¢2’¢:L1) SNLO(¢2’¢;1)_
B(d2)  B(®2) T B(%2) B(®z)

2 2 to

ag K-

+ | — log 2PS —I-/ dd);l A2H3(¢:L1)W2L£>3(¢27¢:L1)
27 Uy ;

@ First and term from NLO shower evolution, second from NNLO matching

@ Calculation can be (semi-)automated, given a suitable NLO subtraction scheme

Slide adapted from C. Preuss



New: NNLO+PS for H — bb

Slide adapted from C. Preuss

VINCIA NNLO
2
g1 NNLO accuracy in H — 2j implies NLO correction in first
3 .. A ..
emission and LO correction in second emission.
0 a:(,,o)
3
Thrust (Parton level) 050 D-Parameter (Parton level)
—— H — bb NNLO+PS (VINCIA) | —— H — bb NNLO+PS (VINCIA)
0.5 1 t —— H — bbg NLO (EERAD3) —— H — bbjj LO (EERAD3)
0.25 1

0.20 1

0.10 1
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0.00
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“VINNLOPS” : Generalisations and Limitations

The VINNLOPS method (aka NNLO MECs) is in principle general

First fully-ditferential NNLO matching; built on shower with NNLO-accurate pole structure
AN

No dependence on any auxiliary scales or external analytic input other than the fixed-order amplitudes

Addition of colour singlets trivial; automation on the level of “process classes”.

E.g., it ete= = 2j implemented, also ete~ = 2j + X with any set of colour singlets X.

Additional straightforward. In practice, some pitfalls:

Born-local NNLO weight not available in general.

Quark-gluon double-branching antenna functions develop spurious singularities, but:
No exact knowledge of double-branching kernels required.
Sector-antenna functions can effectively be replaced by matrix-element ratios.

Subtractions via “colour-ordered projectors” under development.

For hadronic initial states, the technique remains structurally the same.

nterplay of NLO parton evolution and NLO shower evolution needs clarification.

-urther questions on phase-space coverage (“power showers” needed to fill tull PS?)




Extra Slides



Current status
[Brooks, Preuss, PS, 2003.00702] [PS, Verheyen, 2002.04939]

Full-fledged sector shower for ISR and FSR, including multipole-coherent QED shower
Efficient sector-based CKKW-L style LO merging & POWHEG Hooks

[Brooks, Preuss, 2008.09468] [Hoche, Mrenna, Payne, Preuss, PS, 2106.10987]

Soon ...

VINCIANNLO implementation of SM colour-singlet decays (V/IH — qg, H — gg)
Automation of iterated tree-level MECs. Using intertfaces to MadGraph & Comix.

Final-Final double-branchers (2 — 4 antenna branchers; QG parents still need work).

Next few years (post doc opening soon at Monash)

lterated NLO MECs for final-state radiators. Using MCFM interface [Campbell, Hoche, Preuss 2107.04472)

Incoming Partons (double-branchings, interplay with PDFs, initial-state phase space, ...)

Required from fixed-order community (anticipated on ~ short time scale)

Born-local NNLO k-factors for "arbitrary” processes; in reasonable CPU time?



https://arxiv.org/abs/2003.00702
https://arxiv.org/abs/2002.04939
https://arxiv.org/abs/2008.09468
https://arxiv.org/abs/2106.10987

Final Remarks: Perspectives for Matching at N3LO

TOMTE (similar in spirit to UNZLOPS)
ned cross section for X + jet ~ UN2LOPS

Starts from NNLO+PS matc

Allow jet to become unreso

Some challenges:

ved, regulated by shower Suda

nclude N3LO jet-vetoed zero-jet cross section

[Prestel, 2106.03206] & [Bertone, Prestel, 2202.01082]

KOV

Remove unwanted NNLO terms and subtract projected 1-jet bin from O-jet bin

_arge amount of book-keeping =» complex code & computational bottlenecks?
Many counter-events, counter-counter-events, etc =» many weight sign flips.

—> Huge computing resources for relatively slow convergence?

N3LO MECs? (hypothetical extension of VINCIANNLO MECs)

Method in principle generalises.

Add direct-triple (2 — 5) branchings to cover all of phase space: in principle simple.

Challenging: need local NNLO subtractions tor Born + 1.



https://arxiv.org/abs/2106.03206
https://arxiv.org/abs/2202.01082

The Solution that worked at LO: Smooth Ordering

Wanted starting point for (LO) matrix-element corrections over all of
phase space (good approx = small corrections)

Allow newly created antennae to evolve over their full phase spaces, with
suppressed (beyond-LL) probability: smooth ordering

Giele, Kosower, PZS: PRD84 (2011) 054003

— 1for pin K PLn-
— 1/2 for Piln ~Pln-1
— 0 for Pln > Pl .n—1

2
o Pln—1
I 2 2
Pln_1TD1,

mp —
instead of strong ordering
(analogous to POWHEG hfact)

ln( J_l)
’ - 1 1 ( 1/p?  ordered
D1 D, \ 1/p7, unordered

Leading Logs unchanged

Figures from Fischer, Prestel, Rﬁtzmann, PZS:

EPJC76 (2016) 11, 589 w1 a2 e TR 02 T
(b) Smooth Ordering —InAoc | TE " [_] ~ (51“ [E]“ﬂ [E] = [Q_2J>

Note: this conclusion appears to differ from that of Bellm et al., Eur.Phys.J. C76 (2016) no.1
My interpretation is that, in the context of a partonic angular ordering, they neglect the additional rapidity range from the extra origami folds




Smooth ordering: An excellent approximation
(at tree level)

o 1 =
(&] =
© C
% Vincia 1.025 + MadGraph 4.426 [ Vincia 1.025 + MadGraph 4.426 Vincia 1.025 + MadGraph 4.426
z10"E Matched to Z— 3 e Matched to Z—3 Matched to Z—3
c Strong Ordering - Strong Ordering Strong Ordering
S I
Strong - TR
L
— Wps ,
- - mgy-ord .
10° ARI '
i ¥ |
— : I -
10-4""|----|--:-| '
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’ 2
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S I
Smooth N EEEECTR :
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Even after three sequential shower emissions, the smooth shower approximation is

still a very close approximation to the matrix element over all of phase space




(Why it works?)

The antenna factorisations are on shell

n on-shell partons = n+1 on-shell partons

In the first 2—3 branching, final-leg virtualities assumed ~ 0

Strong Ordering:

these virtualities /

small compared to these virtualities <:

Any 2—4 Feynman diagrams we draw will involve intermediate

propagators with virtualities of order the last pt2 scales

Cannot be neglected in unordered part of phase space

1 Pip(n — n + 1) 1
Interpretation: off-shell effect > P —
o e = T

Good agreement with ME = good starting point for 2—4




The problem with Smooth Ordering

Smooth ordering: nice tree-level expansions (small ME corrections) =
good 2—4 starting point

But we worried the Suda
2— 3 virtual corrections?

cov factors were “wrong” = not good starting point for

Not good exponentiation?

For unordered branchings

(e.g., double-unresolved)

effective 2—4 Sudakov tactor

effectively = LL Sudakov tor

intermediate (unphysical) 3-
parton point




2— 4 Trial Generation

R 2 23 NI
(167-[2)2 atl’ial o (167'[2)2 tnal (Qg)lepamal (Q4)
s\ 128
B (a/_) 2 N2 (15)
(0% + 020>

Solution for constant trial Q.

trial _ ( )&2 % m4
AT (05, 0D =C I, o In szQ(Z)Q2

= 0 = m”exp (— \/lnz(Q%/mz) + 2fR/CAU%)

In particular, the trial function for sector A (B) 1s
independent of momentum pg (p3) which makes it
easy to translate the 2 — 4 phase spaces defined in
eq. (6) to shower variables. Technically, we gen-
erate these phase spaces by oversampling, vetoing
configurations which do not fall in the appropriate
sector.

Acceptratio:  p2—4 _ &s 44
trial &2 2_>4

where fR - —47-(2 In R/(ln(z)CIZ) ~ (Same lzeta as in GKS)

Solution for tirst-order running - A2 (kﬁmz)l/mééeyrt)w o
Qs (also used as overestimate T2 | 4A2 |
for 2-loop running): where
Ink2m?/4A% [ Ink2m?/4A?]
- 1nk2Q(2)/4A2 P __beO Ink2Q2/4N2 |




Scale Definitions

Conventional (“global”) shower-branching (and subtraction) formalisms:
Each phase-space point receives contributions from several branching "histories” = clusterings

~ sum over (singular) kernels = full singularity structure

Number of Histories for n Branchings (Colour-ordered; starting from a single g7 pair]
n=1 n=2 n=3 n=4 n=5 n=6 n=7
CS Dipole 2 8 48 384 3840 46080 645120
Global Antenna 1 2 6 24 120 720 5040
Fewer paﬁ;ings, NLO NNLO NS3LO ... (relevant for iterated MECs & multi-leg merging)

but still factorial growth

When these are generated by a shower-style formalism (a la POWHEG):

Each term has its own value of the shower scale = scale of last branching
Complicates the definition of an unambiguous matching condition between the (multi-scale)
shower and the (single-scale) fixed-order calculation.
Tst attempt: define matching condition via fully exclusive jet cross sections Hartgring, Laenen, Ps, 1303.4974]
2nd attempt: define double-branching “sectors” with unique scales (i, ps, 1611.00013)
3rd attempt: sectorise everything (campbell, Hsche, Li, Preuss, Ps, 2108.07133)


https://arxiv.org/abs/1303.4974
https://arxiv.org/abs/2108.07133

Sector-Antenna Subtraction

Borrow some concepts from FKS to calculate “Born”-local real integral in NLO MECs:

@ Decompose (colour-ordered) real correction into shower sectors:

/

' $o’, RR(®2,P41,9, ;)  SNEO(d, 04,97 )
R(®2, ®41) R(®2, d41)

_ ant Sct _RR(CD:S’(D?;Et Sct
Z (Dljk ijk R(¢3) IKI—)Uk(I J7 k)

@ Integral over shower sector OS¢t in general not analvtically calculable
ijk

@ Need to add/subtract integral over “simple” sector with known integral:

/

t t
ant sct simple Sct ant Slmple sct .
/ do ijk [@Uk _eijk } IK|—>Uk(’7./>k)_|_/ do ijk @ AIKI—)ijk(’?./ak)
0 0

/

— Adds bottleneck, as difference of step functions not ideal for MC integration

Slide adapted from C. Preuss a



Colour-Ordered Projectors

Better: use smooth projectors [Frixione et al. 0709.2092]

Ciik o
RR(¢37 (Dil—l) — E Z ég RR((Dg, q)ijkt , Cijk — A/K,_H'ij(Cbg)
I - mn

@ But: antenna-subtraction term not positive-definite!

@ To render this well-defined, need to work on colour-ordered level

RR=C ) RR(®) /52 > RRO) &

Cop

@ Different colour factors enter with different sign, but no sign changes within one term

Cix BRI (3, d2nt
E Comn R(¢3)

AlK — ijk

= Numerically better behaved, uses standard antenna-subtraction terms

Slide adapted from C. Preuss



New: Sectorized CKKW-L Merging in Pythia 8.306

10° .
| =—=  VINCIA MESS

| e—e PYTHIA MEPS| i ; 1
107} | e R S :

P P — W~ +]e!ts Exclusive Contributions to pp — Z + 10 jets

| =—a  VINCIA MESS
| e—e PYTHIA MEPS

E 2.3 GHz Inte?l Core 15

' 16 GB 2133 MHz LPDDR3! ; | -
g 10Tp R SMAMEI e RS S CE AL EE SEE LR RN ;
- i : : ; ; ]
& i .
S ; ; |
E 10" 2 -Opﬁm—i—zcﬁons ----------------- -------------------- i .................... ]
= - Jwork in progress : g g i
5 | r ; ; -
~
O 10 L b

p—
3
N

Total Allocated /Deallocated Memory per 1k Events [GiB]

p—
3
W

Niets Number of Jets Njet

Brooks & Preuss, “Efficient multi-jet merging with the VINCIA sector shower”, 2008.09468

Ready for serious applications (Note: Vincia also has dedicated POWHEG hooks)
Work ongoing to optimise baseline algorithm.

Work at Fermilab: NNLO matching, 2 — 4 sector antennae, MCFM interface, ...
Vincia tutorial: http://skands.physics.monash.edu/slides/tiles/Pythia83-VinciaTute.pdt



http://skands.physics.monash.edu/slides/files/Pythia83-VinciaTute.pdf
https://arxiv.org/abs/2008.09468

POWHEG as MECs

_ LO Born IM|2 Born One-loop MEC
POWHEG master formula (for 2 Born jets): / / X

/ Shower off Born

82(t07 O)

(O)Roue / 102/B(02) Ko (2)

local K-factor shower operator

Main trick: matrix-element correction (MEC) in first shower emission

Slide adapted from C. Preuss

82(t07 O)

to
= Ao(to, tc) O(P2) + / d®y1 Axs3(Poa)

te

WQM._%C Az(t, tc) O(¢2)

\ Born + 1 Tree-level MEC




POWHEG as MECs

_ LO Born IM|2 Born One-loop MEC
POWHEG master formula (for 2 Born jets): / / X

/ Shower off Born

82(t07 O)

(O)Roue / 102/B(02) Ko (2)

local K-factor shower operator

Main trick: matrix-element correction (MEC) in first shower emission

where

to
S2(to, O)|= Az(to,tc)0(¢2)+/ d®y1 Axs3(Poa)
te
MEC|_ _ R(®2,%.1)
Wpms3 | = Ao (@:nB(@7) 2N

Global showers: denominator is generally a sum of terms

Sector showers: denominator is normally a single term (discussed more later)

Slide adapted from C. Preuss

WQM._%C Az(t, tc) O(¢2)

\ Born + 1 Tree-level MEC




POWHEG as MECs

_ LO Born IM|2 Born One-loop MEC
POWHEG master formula (for 2 Born jets): / / X

/ Shower off Born

(O)Roue / 10,82 kvro (02) | [S2(10. 0)

local K-factor shower operator

Main trick: matrix-element correction (MEC) in first shower emission

to

S2(to, O)|= A2(to, tc)O(P2) + / dP 1 Aory3(Py1) oty |An(t, te) O(P2)

4
tc ' \ Born + 1 Tree-level MEC

ol

iy
cC
D

MEC| __ R’(q)Qacb—l—l)

where [w — and
2—3 Az3(P41)B(P2)

v

t
As(t,t') = exp —/ dd 1 Aps3 (D1 )i (P2, D)
t/

Global showers: denominator is generally a sum of terms

Sector showers: denominator is normally a single term (discussed more later)

Slide adapted from C. Preuss



Vice to Virtue: Define Ordered and Unordered Phase-Space Sectors

Ordered clusterings < iterated single branchings

Define:
Unordered clusterings < new direct double branchings

« Observation: for direct double-branchings,
Qg defines the physical resolution scale

Corresponding amplitudes have highly
off-shell intermediate propagator

. 0(Q3) F Q2 .<

Intermediate “clustered” on-shell 3-parton
0 1 - n state at (C) is merely a convenient stepping

stone in phase space = integrate out




Colour MECs

Sector kernels can be replaced by ratios of tree-level MEs:
. ‘ 1( l .]9 ) ‘ i
& Global shower: A8® (4, j, k) » A&® s = complicated
IK—ijk IK—ijk z A ‘M ( 1. K )‘2
he&histories h Akt [Fischer & Prestel 1706.06218]
sct ‘ +1( 1 ]9 ) ‘ . i
Q Sector shower: A2 .. (i, ], k) — = simple [Lopez-Villarejo & PS 1109.3608]
—ijk 2
M. (...], K, ...)\

Can also incorporate (fixed-order) sub-leading colour effects by “colour MECs":
[Giele, Kosower, PS, 1102.2126]

o YapMaM;
col — Za |Ma|2

Example: Z — qq + 2g

A%14,3;,45,25) Aj(1q, 34,4 )
4\-9>~8> T8y <q 2 2 q;g;g;q
05 o 0(P1 134 < P 243) T Weol 0

A3(134, 34,4, 25) A (lq,34g,23q)
A%(1,3,4,2) + A%(1,4,3,2) — %2\2(1, 3,4,2)

2
PyvEC = Weol 0(P7L 243 < P 134)

Wecol =

A3(1,3,4,2) + A}(1,4,3,2)

Slide adapted from C. Preuss


https://arxiv.org/abs/1109.3608
https://arxiv.org/abs/1102.2126
https://arxiv.org/abs/1706.06218

Real and Double-Real MEC factors

Separation of double-real integral defines tree-level MECs:

Y e  BR(®2,055) [T RR($2,95) [ RR(Pp, o)
do o = do7, | do
, B(®2) , = B(92) ,

to
— / d(biz A2»—>4(¢+2)W2L£4(¢27 $,2)
t

direct/unordered n - n + 2
/

to t
LO L
+ / d® 1 Azy3(Pra)wi 3 (P2, D) dP’, ; Azeya (D) w3l Sy (P3, )
t’ m t lterated/ordered branching #2

Iterated tree-level MECs in ordered region:

WEO (0, & 1) R(®2, ®11) Thus, the full tree-level 4-
23\ ¥2, ¥ 4+1) — : :
A23(P41)B(P2) oarton matrix element is
, .
LO (4. & ) — RR(®3, 7 ) imposed
Azsa(P) 1 )R(P3)

Not only in the direct/

Tree-level MECs in unordered region: unordered phase-space
sector, but also in the

iterated/ordered sector

RR(P2, $.>)

LO
w. Oy, D) =

Slide adapted from C. Preuss ﬂ



Sector Shower, with MECs

The VINCIA Sector Antenna Shower Brooks, Preuss & Ps 2003.00702]

Full-fledged “sector” antenna shower implemented since Pythia 8.304

PartonShowers:Model = 2

Sector approach is merely an alternative way to fraction singularities, so formal
accuracy* Of the ShOWGI’ ShOUld be retained Thrust (udsc), e e, /s = 91.2 GeV

1/0do/dT

Run shower, with MECs 1

—— L3
—+— ViInNcIA (Sector)

Vincia (Global)
—+— PyTHIA 8.3

+

=
ol
w
IH_I ||||||I| [ ||||||I| [ ||||||I| [ ||||||I| [

T TTT

MC /Data
0000 HEpn

AJ0O R R N Wb

0.5 I|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
0.6 0.65 07 075 038 0.85 0.9 0.95

Note: same (global) tune parameters used for sector runs with Vincia T
[Hoche et al., 2106.10987]
NB: also fully compatible with POWHEG Box for NLO Matching (dedicated Vincia POWHEG UserHooks).

*We have not yet quantified the formal logarithmic accuracy of VINCIA. Slide adapted from C. Preuss ﬂ



https://arxiv.org/abs/2003.00702
https://arxiv.org/abs/2106.10987

