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High-Precision Measurements  Rigorous & Exhaustive Uncertainties↔

2

๏Brute Force


‣ Separate runs for each variation


‣ Construct & perform all salient variations individually


‣ Expensive 


‣ CPU  Cost


‣ Environmental impact


‣ (Duplication of) man-hours, each time


‣ Risk of mistakes/inconsistencies, each time


‣ Risk that lessons learned aren’t perpetuated, each time


๏Sophisticated reweighting methods developed for Parton Showers


‣ Based on reinterpreting the veto algorithm’s accept and reject probabilities 


‣ [Vincia 1102.2126; Sherpa 1605.04692; Herwig 1605.08256; Pythia 1605.08352]

๏ (Note: reweighting of course also done for PDFs and in Fixed-Order Calculations.)

↔

Peter Skands Uncertainties in Monte Carlo Event Generators

https://arxiv.org/abs/1605.08256
https://arxiv.org/abs/1605.08352


Perturbative Uncertainties
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๏First guess: renormalisation-scale variations, 


‣   , with constant  or , …

๏ + e.g., do for ISR and FSR separately  7-point variations* 


‣ Induces explicit “nuisance” terms beyond controlled orders 


๏I think most people I know actually consider this unsatisfactory and unreliable


‣ Problem is, little guidance on what else to do …  


๏Big Problem 1: Multiscale Problems (e.g., a couple of bosons + a couple of jets)


‣ Not well captured by any variation  around any single scale 


‣ More of an issue for fixed-order calculations than for showers (which are intrinsically multiscale)


๏Big Problem 2: Terms that are not proportional to the lower orders


‣ Renormalization-scale variations   


‣ But in general there will also be genuinely new terms at each order, 

μ2
R → kμ μ2

R kμ ∈ [0.5, 2] [0.25, 4]
→

kμ

⟹ dσ → (1 + Δαs) dσ

dσ → dσ ± Δdσ

Peter Skands Uncertainties in Monte Carlo Event Generators

μIS
R

R

μFSR
R

*See backup slides 



Vincia & Pythia 8: Finite-Term Variations

4

๏Parton Showers rely on Factorisations in Soft/Collinear Limits


‣ Approximations based on universal (process-independent) singular structures of gauge 
theories.


‣ Driven by  poles from propagators, with spin-dependent numerators


‣ Renormalization-scale variations only produce terms proportional to these “kernels”


๏But genuine matrix elements also have “non-singular terms”


‣ Our solution


‣ Can also be very helpful to estimate need for higher matching/merging

1/Q2

Peter Skands Uncertainties in Monte Carlo Event Generators

|Mn+1 |2 → ∑
radiators

asing |Mn |2

Non-singular variations

asing → asing+ Δanon−sing

[Vincia 1102.2126; Pythia 1605.08352]

๏

https://arxiv.org/abs/1605.08352


Non-Singular Variations
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‣ Add arbitrary nonsingular 
term to shower kernels, 
and vary to estimate 
sensitivity to missing ME 
terms 


‣ (Reasonable size estimated 
by comparisons between 
different actual MEs)


‣ The shower singularities 
dominate for soft and 
collinear radiation


‣ The process-specific non-
singular terms dominate 
for hard radiation

Peter Skands Uncertainties in Monte Carlo Event Generators

Note: by definition, any fit of such a nuisance parameter would be process-specific0 0.1 0.2 0.3 0.4 0.5
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Figure 3: Illustration of the default nonsingular variations for FSR splitting kernels, corresponding to cNS =
±2 (shown in red with \\\ hashing), compared with the default renormalisation-scale variations by a factor
of 2 with the NLO compensation term switched on (shown in blue with /// hashing). Left: matrix-element
corrections OFF. Right: matrix-element corrections ON. Note that the range of the ratio plot is greater than in
fig. 1 Distribution of 1-Thrust for e+e� ! hadrons at the Z pole, excluding b-tagged events; ISR switched off;
data from the L3 experiment [26].

m
2
b = 2pb · pg [29], with pb the 4-momentum of the massive quark and pg that of the emitted gluon.

(For spacelike virtual massive quarks, the mass correction has the opposite sign [8].) Thus,

P
0(t, z) =

↵s

2⇡
C

 
P (z) + cNS Q

2
/m

2
dip

t

!
, (38)

where C is the colour factor. The variation can therefore be obtained by introducing a spurious term
proportional to Q

2
/m

2
dip in the splitting kernel used to compute the accept probability, hence

R
0
acc =

P
0
acc

Pacc
= 1 +

cNS Q
2
/m

2
dip

P (z)
, (39)

from which we also immediately confirm that the relative variation explicitly vanishes when Q
2
! 0

or P (z) ! 1.
To motivate a reasonable range of variations, we take the nonsingular terms that different physical

matrix elements exhibit as a first indicator, and supplement that by considering the terms that are
induced by PYTHIA’s matrix-element corrections (MECs) for Z boson decays [30]. In particular,
the study in [28] found order-unity differences (in dimensionless units) between different physical
processes and three different antenna-shower formalisms: Lund dipoles a la ARIADNE [31,32], GGG
antennae a la VINCIA [7, 33, 34], and Sector antennae a la Kosower [28, 35]. Therefore, here we also
take variations of order unity as the baseline for our recommendations.

In fig. 3, we illustrate the splitting-kernel variation taking cNS = ±2 as a first guess at a reasonable
range of variation. As can be observed by comparing the left- and right-hand panes of the figure,
where PYTHIA’s MECs are switched off and on respectively, this variation, labeled P (z) and shown
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the

10

0 0.1 0.2 0.3 0.4 0.5

/d
(1

-T
)

σ
 d

σ
1/

4−10

3−10

2−10

1−10

1

10

210

310
1-Thrust (udsc)

Pythia 8.215
Data from Phys.Rept. 399 (2004) 71

L3 
MECs OFF: muR
MECs OFF: P(z)

V 
I N

 C
 I 

A 
R 

O
 O

 T

hadrons→ee 91.2 GeV

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5

/d
(1

-T
)

σ
 d

σ
1/

4−10

3−10

2−10

1−10

1

10

210

310
1-Thrust (udsc)

Pythia 8.215
Data from Phys.Rept. 399 (2004) 71

L3 
MECs ON: muR
MECs ON: P(z)

V 
I N

 C
 I 

A 
R 

O
 O

 T

hadrons→ee 91.2 GeV

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.5

1

1.5

Figure 3: Illustration of the default nonsingular variations for FSR splitting kernels, corresponding to cNS =
±2 (shown in red with \\\ hashing), compared with the default renormalisation-scale variations by a factor
of 2 with the NLO compensation term switched on (shown in blue with /// hashing). Left: matrix-element
corrections OFF. Right: matrix-element corrections ON. Note that the range of the ratio plot is greater than in
fig. 1 Distribution of 1-Thrust for e+e� ! hadrons at the Z pole, excluding b-tagged events; ISR switched off;
data from the L3 experiment [26].

m
2
b = 2pb · pg [29], with pb the 4-momentum of the massive quark and pg that of the emitted gluon.

(For spacelike virtual massive quarks, the mass correction has the opposite sign [8].) Thus,

P
0(t, z) =

↵s

2⇡
C

 
P (z) + cNS Q

2
/m

2
dip

t

!
, (38)

where C is the colour factor. The variation can therefore be obtained by introducing a spurious term
proportional to Q

2
/m

2
dip in the splitting kernel used to compute the accept probability, hence

R
0
acc =

P
0
acc

Pacc
= 1 +

cNS Q
2
/m

2
dip

P (z)
, (39)

from which we also immediately confirm that the relative variation explicitly vanishes when Q
2
! 0

or P (z) ! 1.
To motivate a reasonable range of variations, we take the nonsingular terms that different physical

matrix elements exhibit as a first indicator, and supplement that by considering the terms that are
induced by PYTHIA’s matrix-element corrections (MECs) for Z boson decays [30]. In particular,
the study in [28] found order-unity differences (in dimensionless units) between different physical
processes and three different antenna-shower formalisms: Lund dipoles a la ARIADNE [31,32], GGG
antennae a la VINCIA [7, 33, 34], and Sector antennae a la Kosower [28, 35]. Therefore, here we also
take variations of order unity as the baseline for our recommendations.

In fig. 3, we illustrate the splitting-kernel variation taking cNS = ±2 as a first guess at a reasonable
range of variation. As can be observed by comparing the left- and right-hand panes of the figure,
where PYTHIA’s MECs are switched off and on respectively, this variation, labeled P (z) and shown
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No ME Corrections

With (LO) ME Corrections

Blue: μPS

Red: P(z) ± nuisance

Blue: μPS

Red: P(z) ± nuisance

[Vincia 1102.2126; 
Pythia 1605.08352]


๏

https://arxiv.org/abs/1605.08352


2. Hadronization Uncertainties

6

๏Hadronization: More parameters, many subtleties (ideally a coffee discussion…)


‣ Risk of purely data-driven methods (eg eigentunes) to overfit precise data at expense of 
tails / asymptotics / less statistically dominant (but perhaps theoretically important) data


‣ Risk of inconsistencies (breakdown of universality and/or inconsistent levels of accuracy and 
“tricks”) between tuning context (eg LEP) and application context (eg LHC)


‣ Tensions between different measurements


‣ Interplay between perturbative (eg NJets) and nonperturbative (eg NHadrons) observables 


‣ And between perturbative ( , merging, …) and nonperturbative (eg HAD and MPI, …) pars

๏ Parameter correlations; for a helping hand, see eg AutoTunes [Bellm & Gellersen, 1908.10811]


‣ Tuning, at precision level, is a challenging and very complex field.


๏Recent elaborate studies with Pythia 8:


‣ Not addressing all of the above. Some steps/suggestions towards more systematic 
approaches, though by no means the final word:


‣ [Jueid et al., 1812.07424; 2202.11546; 2303.11363]

αS

Peter Skands Uncertainties in Monte Carlo Event Generators

https://arxiv.org/abs/1908.10811
https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363


๏Problem:


‣ Given a colour-singlet system that (randomly) broke up into a specific set of hadrons:


‣ What is the relative probability that same system would have resulted, if the fragmentation 
parameters had been somewhat different? 


‣ Would this particular final state become more likely ( )? Or less likely ( )


‣ Crucially: maintaining unitarity  inclusive cross section remains unchanged!


๏Aug 25: Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan

๏ [Reweighting MC Predictions & Automated Fragmentation Variations in Pythia 8, 2308.13459]  

๏ Method is general; demonstrated on variations of the 7 main parameters governing longitudinal 

and transverse fragmentation functions in PYTHIA 8

๏ https://gitlab.com/uchep/mlhad-weights-validation

w′￼ > 1 w′￼ < 1

⟹

7Peter Skands Uncertainties in Monte Carlo Event Generators

New: Automated Hadronization Uncertainties

https://arxiv.org/abs/2308.13459
https://gitlab.com/uchep/mlhad-weights-validation
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๏Transverse Fragmentation Function (Gaussian) 
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8, these follow a product of Gaussian distributions for px, py [17]:

P (�px,�py,�pT ) =
1

2⇡�2
pT

exp

✓
�
(�px)2 + (�py)2

2�2
pT

◆
, (2)

where the width parameter �pT is such that E[(�px)2] = E[(�py)2] = �2
pT and thus

E[(pkick
T )2] = 2�2

pT , where pkick
T is the transverse momentum kick, related to the hadron

transverse momentum via conservation of momentum.3 Gaussian distributions can be
sampled with complete efficiency, e.g., using the Box–Muller transform [18].

Our key interest is to calculate uncertainties arising from different choices of the pa-
rameters a, a0s, a0D, b, rc, rb, and �pT as they enter into eqs. (1) and (2). In the following,
we first review the accept-reject algorithm so as to later introduce a modified version of it,
best suited for the uncertainty estimation on the parameters of eq. (1). We also explain
how to perform uncertainty estimation for �pT by taking advantage of the direct sampling
from eq. (2).

It should be noted that the hadronization algorithm described above is used while the
mass of the remaining string is sufficiently large, such that suitable phase space exists to
produce a hadron and a remaining string. When the remaining string reaches a sufficiently
low mass, a specialized splitting is performed where two hadrons are produced without
a remaining string, rather than a hadron and the remaining string [19]. However, this
splitting is not always successful; if the remaining string has an m? smaller than the
summed m? of the two hadrons, then the entire hadronization of the string is rejected,
and started over. In principle, we do not account for this possible final rejection in our
modified accept-reject algorithm, since any effect from this should only be noticeable when
variations of the parameters from their default values are large, in which case, the support
of the underlying distribution will also not be sufficient.

2.1 Standard Accept-Reject Algorithm

The accept-reject algorithm can be used to sample a probability distribution when the
maximum value of the probability distribution, or a reliable overestimate thereof, is known.
The algorithm for sampling the probability distribution P (z, ci) begins by defining an
acceptance probability Paccept(z, ci) for a trial value of z,

Paccept(z, ci) ⌘
P (z, ci)

bP
 1 . (3)

Both the acceptance probability Paccept(z, ci) and the probability distribution P (z, ci) de-
pend on a set of parameter values ci, that we will later vary. The constant bP is cho-
sen so that the relation in eq. (3) is satisfied; it can be either the analytic maximum or
a numerically estimated overestimate. A trial value for z is accepted only if Paccept is
larger than a random uniform variate. If the trial value of z is rejected, with probability
Preject = 1� Paccept, a new trial z is then selected. The algorithm continues until a given
z value is accepted. That is, in the standard accept-reject algorithm, the value of z is
selected with probability p given by the product of the final accept probability times a
factor accounting for all of the rejected trials:

p(z) = Paccept(z)
1X

n=0

An , where A =

Z 1

0
dz0

�
1� Paccept(z

0)
�
, (4)

3Within Pythia 8, �pT is set with the parameter name StringPT:sigma.

4

Reweighting Methodology:

For each pT (Box-Muller transform):

Uncertainties in Monte Carlo Event Generators

Examples with Pythia 8

SciPost Physics Submission

as desired.
A few considerations are worth mentioning. As in the case of parton-shower variations,

the modified rejection ratio in eq. (7) is inversely proportional to the difference P̂ �P and
can become large if P̂ ' P , leading to large weights. It is thus advantageous for P̂ to not
approximate the maximum value of P (z, ci) too closely, but to be larger by an O(1) factor.
In practice, multiplying P̂ by a factor of ten typically leads to stable results.4 The final
event weight w0 can also become large in cases when the baseline and alternative probability
distributions have limited overlap, i.e., the baseline distribution does not provide proper
support for the alternative distribution. A good indicator of the fidelity of the reweighting
is the weight sum

P
iw

0
i (or, equivalently, the mean weight) or the effective number of

events (
P

iw
0
i)
2/

P
iw

02
i . If the mean event weight is not near unity, or if the effective

number of events is significantly lower than the actual number of simulated events, care
should be taken when interpreting the weighted results.

2.3 Variation Details

Currently, we have implemented variations for the a, b, rc, and rb parameters of the Lund
string fragmentation function f(z) given by eq. (1), and the hadron transverse momentum
�pT of eq. (2). The variation weight for one selection of �pT does not require the use of the
accept-reject algorithm but can be calculated directly using the Box–Muller transform:

w0 =
�2

�02 exp

✓
�

✓
�2

�02 � 1

◆◆
, (11)

where  = (n2
1 + n2

2)/2 and ni are normally distributed random variates.
The two event weights arising from variations in eqs. (1) and (2) can be combined into

a single event weight by multiplication, due to the fact that we are sampling in a sequential
manner from P (�px,�py) and P (z|�px,�py), i.e., P (�px,�py) does not depend upon
z. However, variations of the parameters of f(z) must be considered as a group. While a
variation of the a parameter for a fixed b parameter can be calculated and vice versa, the
product of weights from these two calculations is not equivalent to varying both a and b
simultaneously. This is because, e.g., the maximum weight fmax(a1, b1) is different from
the maximum weights fmax(a1, b0) and fmax(a0, b1). This applies to all of the parameters
that enter into eq. (1): a, b, rc, and rb.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event
weights w0 to produce the desired distributions using the original sample of events, rather
than generating a new sample for each alternative parameter value. Therefore, we validate
the method by generating samples of 106 events using Pythia 8 configured with a set
of baseline parameter values. During this generation, we also calculate, using the modi-
fied accept-reject algorithm, a per-event weight w0 corresponding to an alternative set of
parameter values. We then compare the w0-weighted distributions to those obtained by
generating new samples using Pythia 8 configured with the alternative parameter values
as the baseline and without using the modified accept-reject algorithm.

4This factor may be adjusted within Pythia 8 by modifying the corresponding overSample parameter
for each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR spec-
ifies the over-sample factor for QCD final-state radiation enabled by the fsr:* set of variation keywords.
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✓
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◆◆
, (11)
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1 + n2
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Figure 4: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter �pT is (top) explicitly set to different
values, or (bottom) when the parameter �pT is varied using different methods.
In the top panel, the lower row shows the ratios of the distributions generated
with various values of �pT to that generated with �pT = 0.350. In the bottom
panel, the distributions labeled e were generated with the value of the parameter
�pT explicitly set to (left) 0.283 and (right) 0.360. The distributions labeled w0

are all taken from the same sample generated with �pT = �base
pT = 0.350, but

with different sets of alternative event weights, calculated using the accept-reject
algorithm applied according to the alternative values of �pT . The bottom row
shows the ratios of the latter distributions to the former.
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samples. Finally, in section 4, we summarize our findings and draw conclusions.

2 Method

An event produced by an event generator, like Pythia 8, begins from a small number
of partons that evolve through various stages. At each stage the color quantum numbers
are tracked in the large color Nc limit, such that each new color is assigned a new color
index. In this limit, only planar color flows are retained, and colored partons can be
assigned a unique pair of integers to represent color and anticolor. After the perturbatively-
motivated evolution of the parton shower, one of the last stages in the event development
is hadronization. Prior to this step, the collection of quarks, antiquarks, and gluons can
be partitioned into color-singlet objects (strings) based on their color quantum numbers.
The Lund string model of hadronization [5,13,14] is then applied to reduce strings into the
observed hadrons. The string represents a flux tube of the non-perturbative strong force
between a quark and an antiquark that successively breaks into hadrons, represented by
stable oscillating string states characterized by their four-momentum ph and flavor. The
full probability of a given fragmentation can be split into a flavor selection, a transverse
momentum sampling, and a longitudinal momentum sampling, which are all combined to
ensure a physical emission. A detailed discussion of the Lund fragmentation function as
implemented in Pythia 8 can be found in ref. [15]. Here, we summarize those elements
needed for the uncertainty estimation of the hadronization.

The Lund fragmentation function, or scaling function, determines the probability for
a hadron to be emitted with longitudinal lightcone momentum fraction z related to the
z-component of the hadron momentum ph,z, hadron energy Eh, and total string energy
Estring via the relation z = (ph,z + Eh)/Estring, valid in the rest-frame of the string for
hadron emitted in the +z direction. The fragmentation function has the following form:

f(z) /
1

z1+rQbm2
Q

(1� z)a exp

✓
�
bm2

?
z

◆
, (1)

where Q is the quark flavor, mQ is the quark mass, m2
? ⌘ m2 + p2T is the square of the

transverse mass, m is the hadron mass, pT is the transverse momentum of the hadron,
and rQ, a, and b are constant parameters fixed by fits to experimental data.1 The Bowler
modification z�rQbm2

Q in eq. (1) is only included for heavy quarks, i.e., rQ = 0 unless
Q 2 {c, b} [16]. Pythia 8 also allows for modifications to the a-parameter to be used in
splittings involving strange quarks s or diquarks D, parameterized by the form a0i = a+�ai,
where �ai represents an adjustable parameter2 within Pythia 8 with i 2 {s,D} (the form
of f(z) is also modified from (1), accounting for the fact that the emitted quarks can be of
a different flavor than the endpoints of the original string). The maximum of f(z), denoted
fmax, can be determined analytically for a given set of input parameter values, denoted ci.
Sampling z from f(z) is done by selecting a pseudo-random number x until one satisfies
x < f(z)/fmax  1, a method known as the accept-reject algorithm, further described in
section 2.1.

The transverse momentum pT of each emitted hadron is sampled via the two compo-
nents, �px = phadron

x � pstring
x and �py = phadron

y � pstring
y . In the default model of Pythia

1The default parameter names and values as implemented in Pythia 8 are StringZ:aLund = 0.68,
StringZ:bLund = 0.98, StringZ:rFactC = 0, and StringZ:rFactB = 0.855 for a, b, rc, and rb, respec-
tively.

2The default parameter names and values as implemented in Pythia 8 are StringZ:aExtraSQuark =

0 and StringZ:aExtraDiquark = 0.97, for s and D respectively.
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where the dependence on the chosen parameter values ci has been suppressed for brevity.
Summing the geometric series in A gives,

p(z) =
Paccept(z)

1�A
=

Paccept(z)Z 1

0
dz0 Paccept(z

0)

= P (z) , (5)

showing that the algorithm yields the desired distribution. The exact value of bP , provided
that Paccept  1, only affects the efficiency of the algorithm; the further bP is from the
actual maximum of P (z, ci), the less efficient the sampling.

2.2 Modified Accept-Reject Algorithm

Next, we present a modification of the accept-reject algorithm that assigns appropriate
weights to the existing event, depending on how the parameter values ci are varied. We
refer to the original set of parameter values ci as the baseline and the new set c0i as the
alternative. If the event generated with the baseline parameters has weight w (typically
in Pythia 8, w = 1), the modified accept-reject algorithm calculates the weight w0 that
corresponds to the alternative values of the parameters. If w0 > w, the event is more
probable given the alternative parameter values; if w0 < w, it is less probable.

For the calculation of the weight w0, one needs to keep track of all the trial z values
in the standard accept-reject algorithm. For each z that was rejected, w is multiplied
by R0

reject(z), while for the accepted value of z, the multiplication is by R0
accept(z). Here,

R0
accept(z) is the ratio of alternative and baseline acceptance probabilities,

R0
accept(z) =

P 0
accept(z)

Paccept(z)
=

P 0(z)

P (z)
, with P 0

accept(z, c
0
i) =

P 0(z, c0i)
bP

, (6)

while R0
reject(z) is the ratio of the alternative and the baseline rejection probabilities,

R0
reject(z) =

P 0
reject(z)

Preject(z)
=

1� P 0
accept(z)

1� Paccept(z)
=

bP � P 0(z)
bP � P (z)

. (7)

The value of bP can always be chosen such that both P 0
accept  1 and Paccept  1, albeit at

some loss of efficiency when the equality does not hold for the latter. Explicitly, we can
write the per-event hadronization weight as

w0 = w
Y

i2accepted

R0
i,accept(z)

Y

j2rejected

R0
j,reject(z), (8)

where w is the baseline event weight, the first product is over accepted trials of z, and the
second product is over the rejected trials of z.

We can readily show that the weight w0 corresponds to the correct probability p0(z) for
selecting the final trial-z value using the alternative parameter values c0i:

p0(z) = Paccept(z)R
0
accept(z)

1X

n=0

A0n , where A0 =

Z 1

0
dz0

�
1� Paccept(z

0)
�
R0

reject(z
0) . (9)

Summing the geometric series in A0 gives

p0(z) =
P 0

accept(z)

1�A0 =
P 0

accept(z)Z 1

0
dz0 P 0

accept(z
0)

= P 0(z) , (10)
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Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.
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latter distributions to the former.
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Charged Multiplicity

Brute-Force Variations
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https://arxiv.org/abs/2308.13459


Example: The Strong Force Meets the Dark Sector

10

๏QCD uncertainties on Dark-Matter Annihilation Spectra


‣ Compare different generators? Problem: all tuned to ~ same data 


‣ Instead, did parametric refittings of LEP data within PYTHIA’s modelling

๏ , bLund,  : also useful for collider studies of hadronization uncertainties


+ universality tests: identifying and addressing tensions, overfitting & universality/consistency


๏

⟨z⟩ σpT

Peter Skands Uncertainties in Monte Carlo Event Generators

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

Parameter without 5% with 5%

StringPT:Sigma 0.3151 +0.0010
�0.00010 0.3227+0.0028

�0.0028

StringZ:aLund 1.028+0.031
�0.031 0.976+0.054

�0.052

StringZ:avgZLund 0.5534+0.0010
�0.0010 0.5496+0.0026

�0.0026

�2/ndf 5169/963 778/963

Table 2. Results of tunes using the new parametrization of the Lund fragmentation function
in terms of the a and hz⇢i parameters. The second (third) column shows the result before (after)
including a flat 5% uncertainty to the theory prediction.

Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Aleph 0.827+0.066

�0.062 0.5447+0.0044
�0.0044 0.3105+0.0045

�0.0045 284.7/382
Delphi 0.67+0.11

�0.09 0.5290+0.0062
�0.0063 0.3110+0.0062

�0.0061 82/113
L3 1.186+0.093

�0.10 0.5708+0.0054
�0.0055 0.3303+0.0072

�0.0072 98/155
Opal 0.55 +0.11

�0.095 0.511+0.011
�0.012 0.318+0.013

�0.013 82.4/184
Sld 0.95+0.12

�0.11 0.5271+0.0097
�0.010 0.327+0.017

�0.017 34.4/116
COMBINED 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 3. Results of the tunes performed separately to all the considered measurements from a
given experiment. The COMBINED result corresponds to the T2 tune given in Table 2.

Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.
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Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Charged multiplicity 1.061+0.089

�0.096 0.518+0.011
�0.012 0.410+0.017

�0.016 43.4/104
Scaled momentum 0.598+0.053

�0.049 0.5295+0.0070
�0.0072 0.324+0.012

�0.012 70.7/180
� 0.61+0.32

�0.23 0.517+0.035
�0.039 0.344+0.067

�0.062 52.4/70
⇡0 1.22+0.18

�0.16 0.566+0.014
�0.014 0.340+0.020

�0.020 31/117
⇡± 0.757+0.082

�0.073 0.5029 0.0098
�0.0099 0.336+0.011

�0.011 72.5/205
T 1.34+0.27

�0.20 0.498+0.018
�0.019 0.241+0.022

�0.023 124/194
C-parameter 1.65+0.35

�0.42 0.621+0.053
0.038 0.390+0.067

�0.043 23.4/71
�, ⇡0,± (T1) 0.821 0.065

�0.060 0.5291+0.0057
�0.0057 0.3304+0.0060

�0.0060 321/514
All (T2) 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 4. Results of tunes performed separately to measurements of charged multiplicity, charged
scaled momentum, � spectra, ⇡0 spectra, ⇡± spectra, Thrust distribution and C-parameter. Results
of tunes combining measurements of �,⇡± and ⇡0 (T1) or all measurements (T2) are also reported.

Figure 13. Results of tunes performed separately to measurements of � spectra (red), ⇡± spec-
tra (magenta), ⇡± spectra (green), Thrust distribution (yellow), C-parameter (blue) and charged
particles scaled momentum (black). Measurements from Aleph (A), Delphi (D), Opal (O), L3
(L) and Sld (S) are used. The contours corresponding to a one, two and three standard deviations
are also shown.

5.2 Uncertainties

After discussing in details the results of the tuning and independent fits, we move to the
question of QCD uncertainties. Those can be separated into the perturbative uncertain-
ties, related to the parton showers evolution, and the non-perturbative ones, related to the
determination of the parameters of the fragmentation model. Uncertainties on the non-
perturbative part, are specific to the chosen model and the data used to constrain them,
leaving more ambiguities in the uncertainty estimate.

Uncertainties on parton showering in Pythia8 are estimated using the automatic setup
developed in [37] which aims for a comprehensive uncertainty bands by variation the cen-
tral renormalization scale by a factor of 2 in the two directions with a full NLO scale
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Different experiments Different observables

DM

DM
Jets

Parameter without 5% with 5%

StringPT:Sigma 0.3151 +0.0010
�0.00010 0.3227+0.0028

�0.0028

StringZ:aLund 1.028+0.031
�0.031 0.976+0.054

�0.052

StringZ:avgZLund 0.5534+0.0010
�0.0010 0.5496+0.0026

�0.0026

�2/ndf 5169/963 778/963

Table 2. Results of tunes using the new parametrization of the Lund fragmentation function
in terms of the a and hz⇢i parameters. The second (third) column shows the result before (after)
including a flat 5% uncertainty to the theory prediction.

Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Aleph 0.827+0.066

�0.062 0.5447+0.0044
�0.0044 0.3105+0.0045

�0.0045 284.7/382
Delphi 0.67+0.11

�0.09 0.5290+0.0062
�0.0063 0.3110+0.0062

�0.0061 82/113
L3 1.186+0.093

�0.10 0.5708+0.0054
�0.0055 0.3303+0.0072

�0.0072 98/155
Opal 0.55 +0.11

�0.095 0.511+0.011
�0.012 0.318+0.013

�0.013 82.4/184
Sld 0.95+0.12

�0.11 0.5271+0.0097
�0.010 0.327+0.017

�0.017 34.4/116
COMBINED 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 3. Results of the tunes performed separately to all the considered measurements from a
given experiment. The COMBINED result corresponds to the T2 tune given in Table 2.

Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.
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Simple sanity limit / overfit protection / tension resolution: 
add blanket 5% baseline TH uncertainty 

(+ exclude superseded measurements)

Other possible 
universality tests  

(eg in pp):

Different CM energies …

Different fiducial windows …

Different hard processes …

Quarks vs Gluons … 

https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363


Example: The Strong Force Meets the Dark Sector

11

๏Same done for antiprotons, positrons, antineutrinos 

‣ Tables with uncertainties available on request. Also the spanning tune parameters of course.

Peter Skands Uncertainties in Monte Carlo Event Generators

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

Main Contact: adil.jueid@gmail.com
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Figure 14. Results of tunes performed separately to each of the observables. The weighted
average of the tunes to the individual measurements is shown with a black line. A green shaded
area indicated the 68% CL interval on the parameters.

are however still found to provide small uncertainties which cannot be interpreted as con-
servative. The uncertainty on the parameters of the Lund fragmentation function are very
small (below the one percent level) and inconsistent with the uncertainties of the data used
in the tune6. In Table 7 we also show the uncertainties from QCD on the photon spectra in
the peak region for �� ! gg for m� = 25 GeV where the nominal values of the parameters
correspond to the result of T2 tune and the corresponding eigentunes are shown in Table
5.

Therefore, we use an alternative method to estimate the uncertainty on the Lund
fragmentation function’s parameters. We, first, make a fit each measurement. Thus, for N

measurements, we get N best-fit points for each parameter. We then take the 68% CL errors

6We also checked their impact on the gamma-ray spectra in different final states and for different DM
masses including the ones corresponding to the pMSSM best fit points and have found that the bands
obtained from the eigentunes are negligibly small.
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Weighted Average: good 
consistency across observables

10-point variations ➤ Fairly 
convincing uncertainty bands?

x� (dN/dx�)T2 ± �had. ± �shower

0.00125 7.59+0.05%
�0.0%

+8.1%
�4.8%

0.002 13.79+0.18%
�0.26%

+8.3%
�4.9%

0.003 22.29+0.13%
�0.0%

+8.2%
�4.9%

0.005 31.95 +0.2%
�0.04%

+8.1%
�4.8%

0.008 40.74+0.12%
�0.05%

+7.7%
�4.6%

0.0125 45.83+0.08%
�0.09

+7.1%
�4.3%

0.02 45.01+0.13%
�0.02

+6.5%
�4.0%

0.03 39.43+0.13%
�0.0%

+5.2%
�3.3%

0.05 30.73 +0.0%
�0.15%

+3.1%
�2.1%

0.08 21.36 +0.0%
�0.06%

+0.4%
�0.5%

0.125 12.98+0.13%
�0.23%

+1.6%
�3.0%

Table 7. Scaled momentum of photons in the process �� ! gg for m� = 25 GeV where only
the peak region of the spectra is shown. In this table, we show the predictions from the weighted
tune denoted by T2 (the central values of the parameters and their eigentunes are shown in Tables
2 and 5). The 68% CL on hadronisation parameters are shown as first errors for each bin while
uncertainties due to shower variations are the second errors.
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Figure 15. Photon energy distribution for dark matter annihilation into W+W� with m� = 90.6
GeV (left) and into tt̄ with m� = 177.6 GeV (right). In the two cases, the result corresponding to
the new tune is shown in black line. Both the uncertainties from parton showering (gray bands)
and from hadronisation (blue bands) are shown. Predictions from Herwig7 are shown as a gray
solid line.

(gray bands) and hadronisation (blue bands) uncertainties. We can see that the predictions
from Pythia and Herwig agree very well except for E� 6 2 GeV where differences can
reach about 21% for E� ⇠ 0.4 GeV. Furthermore, one can see that uncertainties can be
important for both channels. Particularly, in the peak region which corresponds to energies
where the photon excess is observed in the galactic center region. Indeed combining them
in quadrature assuming the different type of uncertainties are uncorrelated, they can go
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https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363
mailto:adil.jueid@gmail.com
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Reminder: Colour Reconnections
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๏High-energy pp collisions with QCD bremsstrahlung 
+ multi-parton interactions


‣ Final states with very many coloured partons


‣ With significant overlaps in phase space


‣Who gets confined with whom?


‣ If each has a colour ambiguity ~ 10%, 
CR becomes more likely than not

Peter Skands Uncertainties in Monte Carlo Event Generators

MPIMPI

d�̂0Prob(no CR) ∝ (1 −
1

N2
C )

nMPI

Note: the term “CR” is often used broadly,     
to cover everything from colour ambiguities 

beyond leading NC (which are known to exist), 
to more speculative soft-gluon/confinement 

dynamics. Detailed physics not yet fully known.

MPIMPI

d�̂0

Example 


(from new Pythia 8.3 manual):


   (all-jets)pp → tt̄



mcplots.cern.ch — New and Updated coming soon!

13

๏Modern clean interface developed through 2023 (+ many improvements under the hood) 


‣ Mainly driven by Natalia Korneeva (CMS), now an adjoint at Monash U (with support from LPCC)

Peter Skands Uncertainties in Monte Carlo Event Generators

Being finalised 
now, with 

publication on 
the way.

Join Test4Theory on 
LHC@home


(Runs when computer is idle)


More than 100 
Rivet analyses

(simple to add 

new ones)

Tools to compare different 
generators / tunes, or different 

versions of same generator

http://mcplots.cern.ch
https://lhcathome.web.cern.ch
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Note on Different alpha(S) Choices
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Default PYTHIA uses a large value of αs(MZ) to 
agree with NLO 3-jet rate at LEP

Slower pace of 1-loop 
running allows to have 

similar ΛQCD as PDG

With CMW scheme, 
the QCD IR pole 

shifts upwards
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Ratio to PDG MS



Correlated or Uncorrelated?
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⛔

⛔

What I would do: 7-point variation  (resources permitting → use the automated bands?)
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Increasing both ISR and FSR

➠ More HT in the events. 

➠ More OOC loss (from FSR) but also more HT and more  
hard ISR jet seeds → partial cancellation in Njets? 

Increasing only FSR

➠ More OOC loss (FSR jet broadening), acting on similar 

number of seed partons (no increase in ISR). 

➠ Similar HT

Increasing FSR, Decreasing ISR -> Exclude?

➠ Double counting? Fewer ISR partons, and more 

smearing of those that remain. (Easy to rule out?)

➠ Also from theoretical/mathematical point of view, 

the artificially induced discrepancy is now 
proportional to ln(16) = 2.8 instead of ln(4) = 1.4.

Increasing only ISR

➠ More HT and Njets; similar core jet shapes
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๏Scale variations induce ‘artificial’ terms beyond truncated order in QFT ~ 
Allow the calculation to float by (1+O(αs)). 


๏Mainstream view: 


‣ Regard scale dependence as unphysical / leftover artefact of our mathematical procedure 
to perform the calculations. 


‣ Dependence on it has to vanish in the ‘ultimate solution’ to QFT 


‣ → Terms beyond calculated orders must sum up to at least kill μ dependence 


‣ Such variations are thus regarded as a useful indication of the size of uncalculated terms. 
(Strictly speaking, only a lower bound!)


Typical choice (in fixed-order calculations): k ~ [0.5,1,2]

Peter Skands Uncertainties in Monte Carlo Event Generators

Note: In PYTHIA you specify k2  

TimeShower:renormMultFac


SpaceShower:renormMultFac

↵s(k21µ
2)

↵s(k22µ
2)

⇠ 1� b0 ln(k
2
1/k

2
2)↵s(µ

2)
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b0 ⇠ 0.65± 0.07
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Flavour-dependent slope of order 1

Expansion around μ only 
sensible if this stays ≲ 1

Proportionality to αs(μ) ⟹ can get a (misleadingly?) small band if you choose 
central μ scale very large.


E.g., some calculations use μ ~ HT ~ largest scale in event ?!


Worth keeping in mind when considering (uncertainty on) central μ choice
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๏What do parton showers do?


‣ In principle, LO shower kernels proportional to αs 

๏ Naively: do the analogous factor-2 variations of μPS.


‣ There are at least 3 reasons this could be too conservative

๏

Peter Skands Uncertainties in Monte Carlo Event Generators

1. For soft gluon emissions, we know what the NLO term is 


→ even if you do not use explicit NLO kernels, you are effectively NLO (in the soft gluon 
limit) if you are coherent and use μPS = (kCMW pT), with 2-loop running and kCMW ~ 0.65 
(somewhat nf-dependent). [Though there are many ways to skin that cat; see next slides.]


Ignoring this, a brute-force scale variation destroys the NLO-level agreement.


2. Although hard to quantify, showers typically achieve better-than-LL accuracy by 
accounting for further physical effects like (E,p) conservation


3. We see empirically that (well-tuned) showers tend to stay inside the envelope 
spanned by factor-2 variations in comparison to data 
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๏Poor man’s recipe: Use         instead?


‣ Sure … but still somewhat arbitrary 


๏Instead: add compensation term to preserve soft-gluon limit at O(αs2)


‣ Still allowing full factor-2 outside that limit.


๏Pythia includes such a compensation term, at least in context of automated 
uncertainty bands (next slides). 


‣ Since aggressive definitions can lead to overcompensation / extremely optimistic 
predictions → very small uncertainty bands, we chose a rather conservative definition for 
PYTHIA → larger bands.

Peter Skands Uncertainties in Monte Carlo Event Generators

p
2
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with P (z) the DGLAP radiation kernel, then we may define a renormalisation-scale variation, µ =
p? ! µ

0 = kp?, with an NLO-compensating term (see, e.g., [23])

P
0(t, z) =

↵s(kp?)

2⇡

⇣
1 +

↵s

2⇡
�0 ln k

⌘
P (z)

t
, (32)

with �0 = (11NC �2nF )/3, NC = 3, and nF the number of active flavours at the scale µ = p?. Note
that, if there are any quark-mass thresholds in-between p? and kp?, then ↵s(p?) and ↵s(kp?) will
not be evaluated with the same nF . Matching conditions are applied in PYTHIA to make the running
continuous across thresholds, so this effect should be small for reasonable values of k. Nonetheless
one could in principle add an additional term ↵s/(2⇡) ln(mq/(kp?))/3 to compensate for the differ-
ent �0 coefficients used in the region between the threshold and kp?; however since the variation is
numerically larger without that term, and since the ambiguities associated with thresholds are anyway
among the uncertainties one could wish to explore, for the time being we consider it more conservative
to not include any such terms.

Note also that the scale and scheme of the ↵s factor in the compensation term, inside the parenthesis
in eq. (32), is not specified, as this amounts to an effect of yet higher order, beyond NLO. To make the
compensation as conservative as possible (and to avoid the risk of over-compensating), we choose the
scale of the compensation term to be the largest local scale in the problem, namely the invariant mass
of the emitting colour dipole mdip, thus making the correction term as numerically small (and hence
as conservative) as possible; specifically µmax = max(mdip, kp?). Furthermore, since the analyses
of [24, 25] only pertain to the soft limit, our estimate of the compensation would be too optimistic
if applied undiminished over all of phase space. To be more conservative, we therefore multiply the
compensation term by an explicit factor (1� ⇣), defined so as to vanish linearly outside the soft limit,

⇣ =

8
<

:

z for splittings with a 1/z singularity
1� z for splittings with a 1/(1� z) singularity

min(z, 1� z) for splittings with a 1/(z(1� z)) singularity
. (33)

Combined, these arguments lead us to the following modified accept probability for a robust shower
renormalisation-scale variation compatible with the known second-order leading-singular structure:

P
0(t, z) =

↵s(kp?)

2⇡

✓
1 + (1� ⇣)

↵s(µmax)

2⇡
�0 ln k

◆
P (z)

t
, (34)

hence
R

0
acc(t, z) =

P
0
acc(t, z)

Pacc(t, z)
=

↵s(kp?)

↵s(p?)

✓
1 + (1� ⇣)

↵s(µmax)

2⇡
�0 ln k

◆
. (35)

We emphasize that the compensation term in the expressions above is only included for gluon
emissions, not for g ! qq̄ splittings. The latter are subjected to the full (uncompensated) variation,
↵s(kp?)/↵s(p?).

Finally, we impose an absolute limit on the allowed amount of ↵s variation, by default

|�↵s|  0.2 . (36)

This does not significantly restrict the range of variation for perturbative branchings (even when ↵s ⇠

0.5, a full 40% amount of variation is still allowed), but it does prevent branchings very near the cutoff
from generating large changes to the event weights. Removing this bound would not significantly
affect the perturbative physics uncertainties, but would cause much larger weight fluctuations (between
events with and without some very soft branching near the end of the evolution), mandating much
longer run times for the same statistical precision.

At the technical level, the user decides whether to perform scale variations of ISR and FSR inde-
pendently, or whether to vary the respective ↵s factors in a correlated manner. It is even possible to
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with P (z) the DGLAP radiation kernel, then we may define a renormalisation-scale variation, µ =
p? ! µ

0 = kp?, with an NLO-compensating term (see, e.g., [23])

P
0(t, z) =

↵s(kp?)

2⇡

⇣
1 +

↵s

2⇡
�0 ln k

⌘
P (z)

t
, (32)

with �0 = (11NC �2nF )/3, NC = 3, and nF the number of active flavours at the scale µ = p?. Note
that, if there are any quark-mass thresholds in-between p? and kp?, then ↵s(p?) and ↵s(kp?) will
not be evaluated with the same nF . Matching conditions are applied in PYTHIA to make the running
continuous across thresholds, so this effect should be small for reasonable values of k. Nonetheless
one could in principle add an additional term ↵s/(2⇡) ln(mq/(kp?))/3 to compensate for the differ-
ent �0 coefficients used in the region between the threshold and kp?; however since the variation is
numerically larger without that term, and since the ambiguities associated with thresholds are anyway
among the uncertainties one could wish to explore, for the time being we consider it more conservative
to not include any such terms.

Note also that the scale and scheme of the ↵s factor in the compensation term, inside the parenthesis
in eq. (32), is not specified, as this amounts to an effect of yet higher order, beyond NLO. To make the
compensation as conservative as possible (and to avoid the risk of over-compensating), we choose the
scale of the compensation term to be the largest local scale in the problem, namely the invariant mass
of the emitting colour dipole mdip, thus making the correction term as numerically small (and hence
as conservative) as possible; specifically µmax = max(mdip, kp?). Furthermore, since the analyses
of [24, 25] only pertain to the soft limit, our estimate of the compensation would be too optimistic
if applied undiminished over all of phase space. To be more conservative, we therefore multiply the
compensation term by an explicit factor (1� ⇣), defined so as to vanish linearly outside the soft limit,

⇣ =

8
<

:

z for splittings with a 1/z singularity
1� z for splittings with a 1/(1� z) singularity

min(z, 1� z) for splittings with a 1/(z(1� z)) singularity
. (33)

Combined, these arguments lead us to the following modified accept probability for a robust shower
renormalisation-scale variation compatible with the known second-order leading-singular structure:

P
0(t, z) =

↵s(kp?)

2⇡

✓
1 + (1� ⇣)

↵s(µmax)

2⇡
�0 ln k

◆
P (z)

t
, (34)

hence
R

0
acc(t, z) =

P
0
acc(t, z)

Pacc(t, z)
=

↵s(kp?)

↵s(p?)

✓
1 + (1� ⇣)

↵s(µmax)

2⇡
�0 ln k

◆
. (35)

We emphasize that the compensation term in the expressions above is only included for gluon
emissions, not for g ! qq̄ splittings. The latter are subjected to the full (uncompensated) variation,
↵s(kp?)/↵s(p?).

Finally, we impose an absolute limit on the allowed amount of ↵s variation, by default

|�↵s|  0.2 . (36)

This does not significantly restrict the range of variation for perturbative branchings (even when ↵s ⇠

0.5, a full 40% amount of variation is still allowed), but it does prevent branchings very near the cutoff
from generating large changes to the event weights. Removing this bound would not significantly
affect the perturbative physics uncertainties, but would cause much larger weight fluctuations (between
events with and without some very soft branching near the end of the evolution), mandating much
longer run times for the same statistical precision.

At the technical level, the user decides whether to perform scale variations of ISR and FSR inde-
pendently, or whether to vary the respective ↵s factors in a correlated manner. It is even possible to
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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Figure 1: Illustration of the default renormalisation-scale variations for FSR, by a factor of 2 in each direction.
The central (default, unweighted) shower calculation is shown in blue, with /// hashing indicating the range
spanned by the variation weights. The dashed (red) and solid (yellow) lines represent the results of standalone
runs with µR = 0.5p? and µR = 2p? respectively. Left: without the NLO scale-compensation term. Right:
with the NLO scale-compensation term (the default setting). Distribution of 1-Thrust for e+e� ! hadrons at
the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].

include both types of variations (independent and correlated), and compare the results obtained at the
end of the run. From a practical point of view, the FSR ↵s choice mainly influences the amount of
broadening of the jets, while the ISR ↵s choice influences resummed aspects such as the combined re-
coil given to a hard system (e.g., a Z, W , or H boson, or a tt̄, dijet, or �+jet system) by ISR radiation
and also how many extra jets are created from ISR. The latter of course also depends on whether and
how corrections from higher-order matrix elements are being accounted for.

An illustration and validation of the automated renormalisation-scale variations is given in fig. 1,
for the case of FSR and the distribution of 1-Thrust in e

+
e
�
! hadrons events at the Z pole, compared

to a measurement by the L3 experiment [26]. (QED ISR is switched off and b-tagged events are
excluded in this comparison.) First, we perform three separate dedicated runs, using µR = 2p?
(solid yellow lines with square symbols), µR = p? (the default choice, solid blue lines with dot
symbols), and µR = 0.5p? (dashed red lines with open + symbols). For the central run, we also
included the automated weight variations presented here, for the same factor-2 µR variations. The
range spanned by the reweighted central distribution is shown by the blue /// hashed areas. On
the left-hand side of fig. 1, the NLO scale-compensation term is switched off, and we see that the
results of the independent runs are faithfully reproduced by the reweighted central-run distributions.
(The small difference in the first bin is due to the absolute limit of |�↵s|  0.2 which we impose
in the reweighting framework.) On the right-hand side of fig. 1, the same distributions are shown,
but now with the NLO scale-compensation term switched on. The difference between the standalone
runs (where no compensation is applied) and the reweighted distributions illustrates the effect of the
compensation term.

A corresponding validation for the initial-state shower renormalisation-scale variations is given in
fig. 2, where we have chosen the transverse momentum of the lepton pair in Drell-Yan events as the
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⇥2
<latexit sha1_base64="4YMJZW2lxOadMAmxUni4ZnavYxY=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4Gnqy6i3oxWMEs0BmCD2dnqRJz0J3jxBCfsOLB0W8+jPe/Bt7kggq+qDg8V4VVfX8RHClMf6wcmvrG5tb+e3Czu7e/kHx8Kij4lRS1qaxiGXPJ4oJHrG25lqwXiIZCX3Buv7kOvO790wqHkd3epowLySjiAecEm0k1/UD5GoeMoXKg2IJ27jq1Cp1hO0KrlecjDQwrtUvkWPjBUqwQmtQfHeHMU1DFmkqiFJ9ByfamxGpORVsXnBTxRJCJ2TE+oZGxKzxZoub5+jMKEMUxNJUpNFC/T4xI6FS09A3nSHRY/Xby8S/vH6qgwtvxqMk1Syiy0VBKpCOURYAGnLJqBZTQwiV3NyK6JhIQrWJqWBC+PoU/U86Zdsx/LZaal6t4sjDCZzCOTjQgCbcQAvaQCGBB3iCZyu1Hq0X63XZmrNWM8fwA9bbJ2qQkUc=</latexit><latexit sha1_base64="4YMJZW2lxOadMAmxUni4ZnavYxY=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4Gnqy6i3oxWMEs0BmCD2dnqRJz0J3jxBCfsOLB0W8+jPe/Bt7kggq+qDg8V4VVfX8RHClMf6wcmvrG5tb+e3Czu7e/kHx8Kij4lRS1qaxiGXPJ4oJHrG25lqwXiIZCX3Buv7kOvO790wqHkd3epowLySjiAecEm0k1/UD5GoeMoXKg2IJ27jq1Cp1hO0KrlecjDQwrtUvkWPjBUqwQmtQfHeHMU1DFmkqiFJ9ByfamxGpORVsXnBTxRJCJ2TE+oZGxKzxZoub5+jMKEMUxNJUpNFC/T4xI6FS09A3nSHRY/Xby8S/vH6qgwtvxqMk1Syiy0VBKpCOURYAGnLJqBZTQwiV3NyK6JhIQrWJqWBC+PoU/U86Zdsx/LZaal6t4sjDCZzCOTjQgCbcQAvaQCGBB3iCZyu1Hq0X63XZmrNWM8fwA9bbJ2qQkUc=</latexit><latexit sha1_base64="4YMJZW2lxOadMAmxUni4ZnavYxY=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4Gnqy6i3oxWMEs0BmCD2dnqRJz0J3jxBCfsOLB0W8+jPe/Bt7kggq+qDg8V4VVfX8RHClMf6wcmvrG5tb+e3Czu7e/kHx8Kij4lRS1qaxiGXPJ4oJHrG25lqwXiIZCX3Buv7kOvO790wqHkd3epowLySjiAecEm0k1/UD5GoeMoXKg2IJ27jq1Cp1hO0KrlecjDQwrtUvkWPjBUqwQmtQfHeHMU1DFmkqiFJ9ByfamxGpORVsXnBTxRJCJ2TE+oZGxKzxZoub5+jMKEMUxNJUpNFC/T4xI6FS09A3nSHRY/Xby8S/vH6qgwtvxqMk1Syiy0VBKpCOURYAGnLJqBZTQwiV3NyK6JhIQrWJqWBC+PoU/U86Zdsx/LZaal6t4sjDCZzCOTjQgCbcQAvaQCGBB3iCZyu1Hq0X63XZmrNWM8fwA9bbJ2qQkUc=</latexit><latexit sha1_base64="4YMJZW2lxOadMAmxUni4ZnavYxY=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4Gnqy6i3oxWMEs0BmCD2dnqRJz0J3jxBCfsOLB0W8+jPe/Bt7kggq+qDg8V4VVfX8RHClMf6wcmvrG5tb+e3Czu7e/kHx8Kij4lRS1qaxiGXPJ4oJHrG25lqwXiIZCX3Buv7kOvO790wqHkd3epowLySjiAecEm0k1/UD5GoeMoXKg2IJ27jq1Cp1hO0KrlecjDQwrtUvkWPjBUqwQmtQfHeHMU1DFmkqiFJ9ByfamxGpORVsXnBTxRJCJ2TE+oZGxKzxZoub5+jMKEMUxNJUpNFC/T4xI6FS09A3nSHRY/Xby8S/vH6qgwtvxqMk1Syiy0VBKpCOURYAGnLJqBZTQwiV3NyK6JhIQrWJqWBC+PoU/U86Zdsx/LZaal6t4sjDCZzCOTjQgCbcQAvaQCGBB3iCZyu1Hq0X63XZmrNWM8fwA9bbJ2qQkUc=</latexit>

(with no compensation terms)⇥
p
2

<latexit sha1_base64="vZLMh2nNbSMWYQu9bswGlSGMrHg=">AAAB/HicdVDJSgNBFHwTtxi30Ry9NAbBU5gJgh6DXjxGMAtkQujp9CRNeha73wjDEH/FiwdFvPoh3vwbO4sQt4IHRdV71KP8RAqNjvNhFVZW19Y3ipulre2d3T17/6Cl41Qx3mSxjFXHp5pLEfEmCpS8kyhOQ1/ytj++nPrtO660iKMbzBLeC+kwEoFgFI3Ut8ueHxAPRcg18fStwrw26dsVt+rMQJxf5MuqwAKNvv3uDWKWhjxCJqnWXddJsJdThYJJPil5qeYJZWM65F1DI2rSevns+Qk5NsqABLEyEyGZqcsXOQ21zkLfbIYUR/qnNxX/8ropBue9XERJijxi86AglQRjMm2CDITiDGVmCGVKmF8JG1FFGZq+Sssl/E9atapr+PVppX6xqKMIh3AEJ+DCGdThChrQBAYZPMATPFv31qP1Yr3OVwvW4qYM32C9fQJqVZSc</latexit><latexit sha1_base64="vZLMh2nNbSMWYQu9bswGlSGMrHg=">AAAB/HicdVDJSgNBFHwTtxi30Ry9NAbBU5gJgh6DXjxGMAtkQujp9CRNeha73wjDEH/FiwdFvPoh3vwbO4sQt4IHRdV71KP8RAqNjvNhFVZW19Y3ipulre2d3T17/6Cl41Qx3mSxjFXHp5pLEfEmCpS8kyhOQ1/ytj++nPrtO660iKMbzBLeC+kwEoFgFI3Ut8ueHxAPRcg18fStwrw26dsVt+rMQJxf5MuqwAKNvv3uDWKWhjxCJqnWXddJsJdThYJJPil5qeYJZWM65F1DI2rSevns+Qk5NsqABLEyEyGZqcsXOQ21zkLfbIYUR/qnNxX/8ropBue9XERJijxi86AglQRjMm2CDITiDGVmCGVKmF8JG1FFGZq+Sssl/E9atapr+PVppX6xqKMIh3AEJ+DCGdThChrQBAYZPMATPFv31qP1Yr3OVwvW4qYM32C9fQJqVZSc</latexit><latexit sha1_base64="vZLMh2nNbSMWYQu9bswGlSGMrHg=">AAAB/HicdVDJSgNBFHwTtxi30Ry9NAbBU5gJgh6DXjxGMAtkQujp9CRNeha73wjDEH/FiwdFvPoh3vwbO4sQt4IHRdV71KP8RAqNjvNhFVZW19Y3ipulre2d3T17/6Cl41Qx3mSxjFXHp5pLEfEmCpS8kyhOQ1/ytj++nPrtO660iKMbzBLeC+kwEoFgFI3Ut8ueHxAPRcg18fStwrw26dsVt+rMQJxf5MuqwAKNvv3uDWKWhjxCJqnWXddJsJdThYJJPil5qeYJZWM65F1DI2rSevns+Qk5NsqABLEyEyGZqcsXOQ21zkLfbIYUR/qnNxX/8ropBue9XERJijxi86AglQRjMm2CDITiDGVmCGVKmF8JG1FFGZq+Sssl/E9atapr+PVppX6xqKMIh3AEJ+DCGdThChrQBAYZPMATPFv31qP1Yr3OVwvW4qYM32C9fQJqVZSc</latexit><latexit sha1_base64="vZLMh2nNbSMWYQu9bswGlSGMrHg=">AAAB/HicdVDJSgNBFHwTtxi30Ry9NAbBU5gJgh6DXjxGMAtkQujp9CRNeha73wjDEH/FiwdFvPoh3vwbO4sQt4IHRdV71KP8RAqNjvNhFVZW19Y3ipulre2d3T17/6Cl41Qx3mSxjFXHp5pLEfEmCpS8kyhOQ1/ytj++nPrtO660iKMbzBLeC+kwEoFgFI3Ut8ueHxAPRcg18fStwrw26dsVt+rMQJxf5MuqwAKNvv3uDWKWhjxCJqnWXddJsJdThYJJPil5qeYJZWM65F1DI2rSevns+Qk5NsqABLEyEyGZqcsXOQ21zkLfbIYUR/qnNxX/8ropBue9XERJijxi86AglQRjMm2CDITiDGVmCGVKmF8JG1FFGZq+Sssl/E9atapr+PVppX6xqKMIh3AEJ+DCGdThChrQBAYZPMATPFv31qP1Yr3OVwvW4qYM32C9fQJqVZSc</latexit>
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