Examples of "Best Practices"

Optimising the Computational Footprint in Precision Particle Physics

Example of: Integrating sustainability goals in HEP computing-related research grant applications.

Problem: grant funding extremely competitive, with low success rates. Main driver = maximal scientific ambition, not minimal resource usage.

Peter Skands (Monash University) & Christian Preuss (ETH) 2nd Sustainable HEP — Sep 2022

Some Background

Home = Australia (Melbourne)

Until recently, air travel seemed the sole climate impact of our professional activities that we could do something about.

CPU requirements grow factorially with process complexity.

During 2019, we were deciding what to focus on in an upcoming grant proposal.

That summer, Australia experienced relentless, devastating bush fires (the "black summer"); prompted us to look for any connection between the actual research we do, and climate impact.

PYTHIA = widely used HEP simulation (MC event generator) State of the art for high-p_T physics studies = "multi-leg merging" For the experts: @ LO (MLM, CKKW-L, UMEPS) or NLO (NL³, UNLOPS, FxFx). Paradigm: pay the price, to do the calculations. (No alternative?)

Computing/Algorithms -> Focus on Optimisation

Optimisation = doing the same thing quicker, with less resources

Unrealistic to get research grant to do **only** that? But realistic to include as **one** goal among several?

Change of Paradigm (at least for us): Efficient algorithms = goal in itself

Not just as point of pride, or to enable "big" studies, but to reduce impact.

Had idea to reduce factorial growth of merging algorithms to polynomial or better

- Old proof of concept <u>arXiv:1109.3608</u> promising but mathematically challenging. Decided to frame the grant proposal around that.
- + pursue new developments pushing the state-of-the-art in that context.

Computing Cost ~ Number of operations

Learning Curve

(Apologies for the hyperbole; these are grant summaries; note also there is always some randomness in grant successes/failures)

DP21: What did not work (they did not buy it; grant not awarded)

Putting footprint & optimisation **first**:

In a future of increasingly ambitious targets for limiting global energy consumption, scientific disciplines that rely heavily on large-scale computing will need to identify new ways of maximising the scientific output that can be achieved with the lowest possible resource usage, without compromising on scientific goals. This project aims to vastly reduce the computational footprint of some of the most advanced and resource-intensive calculations in particle physics, while retaining and even improving their accuracy. Such so-called merged matrix-element / parton-shower calculations represent the global state of the art and are used extensively in the field, but current approaches are limited by very high computational resource requirements.

DP22: What did work (> post doc position at Monash opening soon!)

Putting scientific ambition first (but retaining computational footprint as explicit aspect):

This project aims to deliver a breakthrough technique in theoretical-computational particle physics, with significant potential for high-precision applications. The project targets some of the most advanced and resource-intensive calculations in particle physics, which are widely used but currently limited by extremely high computational resource requirements. This project expects to develop a novel approach that will vastly reduce the computational complexity while at the same time improving their accuracy relative to the current global state of the art. Expected outcomes include the new methodology itself as well as a full-fledged and open-access simulation code based on it, which should be highly efficient.

Some Further Arguments

Projected computing needs of the LHC experiments have been flagged as requiring aggressive R&D developments to meet requirements

Year

Preliminary Results: Tree-Level Merging

Sectorized CKKW-L Merging in Pythia 8.306 (for Vincia Showers Only)

Brooks & Preuss, "Efficient multi-jet merging with the VINCIA sector shower", arXiv:2008.09468

Total Allocated/Deallocated Memory per 1k Events [GiB]

Extensions now pursued:

Sectorized matching at NNLO (proof of concept in <u>arXiv:2108.07133</u>)

+ Sectorized multi-leg merging at NLO, iterated matrix-element corrections, ...

