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Tension and the Lund String Model

PE T E R  SK A N D S !2

๏Cornell potential 
•Potential V(r) between static (lattice) and/or steady-state (hadron 
spectroscopy) colour-anticolour charges: 

•Lund model built on the asymptotic large-r linear behaviour  

๏But intrinsically only a statement about the late-time / long-
distance / steady-state situation. Deviations at early times?  

•Coulomb effects in the grey area between shower and hadronization? 
Low-r slope > κ favours “early” production of quark-antiquark pairs? 
•+ Pre-steady-state effects from a (rapidly) expanding string?

Coulomb part

V (r) = � a

r
+ r
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String part 
Dominates for r & 0.2 fm
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Pre-Equilibrium Effects?
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๏In a recent paper (JHEP 04(2018)145), Berges, Floerchinger, 
and Venugopalan developed a framework for  

•“computing the entanglement between spatial regions for Gaussian 
states in quantum field theory”  

๏which they  
•“… applied to explore an expanding light cone geometry in the 
[…] Schwinger model for QED in 1+1 space-time dimensions. “ 
•➤ Entanglement entropy is extensive in rapidity at early times  
•➤ “a thermal density matrix for excitations around a coherent field 
with a time dependent temperature”: 

๏What does this mean in Lund Model context?

T / 1/⌧
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Implications for Lund Model?
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๏I asked an honours student (N. Hunt-Smith) to take our 4th year 
quantum information course to see if we could parse the 
entanglement arguments 

•He learned a lot but we still didn’t have a dictionary 

๏We imagine it means the steady state captured by the lattice gets 
to have thermal excitations characterised by   

•But what does that mean? 

๏Additional (virtual) quark-antiquark pairs with thermal 
distribution, which decay away with time?  

•Allow some of these to become real ➤ new mechanism for string breaks? 
•First step poor man’s model: to explore effects of a higher effective 
energy scale and/or steeper potential well being relevant at early times. 

T / 1/⌧
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Tau-Dependent String Tension
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๏As a minimal modification to the existing string model, we 
studied the consequences of allowing an effective string tension 

•where                              and                                               with τ0 a 
regularisation parameter that keeps the effective string tension finite and 
physically reflects that the string model itself is anyway not appropriate 
for very early (perturbative) times.  

๏Some Questions: 
•To model Coulomb effect, study Δκ ~ d/dr ( -1/r ) = 1/r2  ?  

๏ (and does 1/r2 really map to Δκ ~ 1/τ2 ?) 
•To model thermal effect, does T ~ 1/τ really map to Δκ ~ 1/τ ? 
•(Nuts & bolts not strongly tied to any particular form)

e↵(⌧) = 0 +�therm(⌧)

<latexit sha1_base64="Kh5SYRXNhbg9tajfJiRiviyG0+g="></latexit>

0 ⇠ 1GeV/fm

<latexit sha1_base64="nynqxQqpLVYTfntAtUYbM1XFQTo=">AAACCXicdVDLSsNAFJ34rPVVdelmsAgupE60at1IwYUuK9gHNCFMppN26EwSZiZCCd268VfcuFDErX/gzr9xmkZQ0QMXDufcy733+DFnSiP0Yc3Mzs0vLBaWissrq2vrpY3NlooSSWiTRDySHR8ryllIm5ppTjuxpFj4nLb94cXEb99SqVgU3uhRTF2B+yELGMHaSF4JOkMcx9hD0FFMQNvZdwTWAynSS9o6CMTYK5VR5RjZZycIogrKkJGafWRDO1fKIEfDK707vYgkgoaacKxU10axdlMsNSOcjotOomiMyRD3adfQEAuq3DT7ZAx3jdKDQSRNhRpm6veJFAulRsI3nZMz1W9vIv7ldRMd1NyUhXGiaUimi4KEQx3BSSywxyQlmo8MwUQycyskAywx0Sa8ognh61P4P2kdVuxqpXpdLdfP8zgKYBvsgD1gg1NQB1egAZqAgDvwAJ7As3VvPVov1uu0dcbKZ7bAD1hvn2f/mYc=</latexit>

�therm(⌧) / 1/(⌧ + ⌧0)

<latexit sha1_base64="mjNCfjTfO43HIxrXkNGUlAHruog="></latexit>



Calculating Tau
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๏To use our modified κ(τ), need to know the τ value of each vertex 
•In UserHooks, we have access to the Γ = κ2x+x- = κ2 τ2 hyperbolic 
coordinate (via StringEnd) 

•Solve for τ but now using a non-linear 
relationship (with <τ>=1.2 GeV-1) 

•with Δκmax and k as free parameters 
governing the shape of κ(τ). 
•(Solution is rather unattractive though.)

produced hadron. Since the strangeness production ratio and p? spectrum width depend
on therm, they will also be di↵erent for each hadron. We therefore need a way of changing
these parameters on a case-by-case basis, rather than imposing a blanket value for all hadrons.

The changes to the Lund model have been implemented in the form of a UserHook.
A UserHook is a piece of functionality within PYTHIA that allows a user to intervene at
various stages of a particle event and perform certain operations. By using a UserHook,
we don’t necessarily have to alter the source code of PYTHIA, and we can step in part-
way through the hadroniation process and make our changes on an individual basis. The
UserHook that will be utilised is called Modified Hadronization, and it contains multiple use-
ful methods. The first method is called doChangeFragPar, which allows the user to change
any relevant parameters before the string fragmentation is performed. We could therefore
change StringFlav:ProbStoUD and StringPT:sigma to be whatever we want. However,
the implementation of doChangeFragPar means that in order to change these parameters,
the relevant settings need to be reinitialised with the modified values. If we wanted to use
this method in this way, then we would need to reinitialise for every single string in every
event, which is very ine�cient since we eventually want to build up statistics of many events.
This leaves us with the doVetoFragmentation method, which gives us information about
the current hadron about to be produced and allows us to choose whether we want to accept
or reject it. If we reject it, then PYTHIA will continue generating trial hadrons for us, until
we eventually decide not to veto.

Both UserHooks have access to the � of the vertex within the StringEnd class, from
which we can calculate ⌧ using eq.(38):
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Once we know ⌧ we can then calculate the modified string tension therm. It should be
pointed out that � is calculated within PYTHIA by using z in eq.(41), the energy-momentum
fraction. z is in turn calculated from the standard Lund fragmentation formula, eq.(31). This
demonstrates the importance of f(z) remaining unchanged under a thermal string tension.
If it was not, more significant changes to the process by which strings are fragmented in
PYTHIA would be required.
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⌧ =
1

2

 p
�

0
� k < ⌧ > ��maxk < ⌧ >

0

!
+

1

2

s
�

2
0

� 2�max

p
�k < ⌧ >

2
0

+
�2

max
k2 < ⌧ >2

2
0

+
2�maxk2 < ⌧ >2

0

(55)

As long as we have some way of calculating ⌧ from �, it doesn’t matter how complex the
relationship between them is, we have all the necessary information.
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3.3 Hadron Distribution Functions

Based on the string fragmentation model, distributions can be determined for the probability
that a hadron is produced with a certain fraction of the total energy and momentum. This
is an essential step in developing a model of hadronisation that is actually useful in simulat-
ing real particle events. Once we have these dsitributions, we can iteratively calculate the
probability of a hadron being produced at each step of the fragmentation process. It will be
easier to do this if we work in hyperbolic space-time coordinates, defined as [19, p.149]:

y =
1

2
log

x+

x�
, (21)

� = 2x+x�. (22)

Here, x± = t ± x corresponds to light cone space-time. y is then the rapidity, or the
hyperbolic angle. Rapidity ranges from negative infinity along the left side of the positive
light cone to positive infinity along the right side of the positive light cone, and is equal to
zero along the time axis x = 0. An important property of rapidity is that it is additive under
multiple Lorentz boosts, unlike velocity which asymptotes as a particle approaches the speed
of light. Meanwhile, � is related to the squared proper time of the vertex, ⌧ 2 = x+x� = t2�x2.
� is therefore directly proportional to the energy-momentum of an eventual particle. This is
because a change in the time at which a vertex/string break occurs will change the available
area for a hadron in the light-cone diagram. The change in area corresponds to a change in
invariant mass of the hadron according to eq.(14), which is in turn related to the energy-
momentum. Visually, hyperbolic coordinates can be depicted like [25]:

Figure 8: Visual representation of hyperbolic coordinates.

The green lines correspond to constant rapidity, while the blue lines correspond to con-
stant � (or, equivalently, constant squared proper time ⌧ 2).
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UserHooks implementation in Pythia
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๏Want to generate string breaks with modifiable strangeness 
ratios and pT broadening values. 

•Problem: no easy way to modify the trial probabilities; 
doChangeFragPar() appears to require constant reinitialisation (and 
changes are not re-set after use).  
•Solution for strangeness enhancement: no change of trial probabilities; 
implement instead as up/down suppression using 
doVetoFragmentation().  

๏Generate trial breakups as usual, using nominal Ps:ud 
•Always accept a strange quark 
•Accept u,d with probability 

๏ In limit κ≫κ0 : same probability to accept ud as was already generated for s 
๏ In limit κ~κ0 : probability to accept ud → 1 ➤ effective Ps:ud unchanged

Paccept,ud(⌧) = (Ps:ud)
1�0/(⌧)
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Transverse Momentum Broadening
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๏Want to generate higher effective pT broadening values 
•Again we have the problem that we could not see how to change the trial 
generation parameters without constant reinitialisation, and such 
changes do not appear to be re-set after use.  

๏Use the same strategy as for strangeness? (I.e. veto low-pT 
hadrons as equivalent to enhancing high-pT ones)? 

•StringEnd provides pxHad,pyHad. But bad idea. Using a narrow Gaussian 
to sample a wider one very quickly becomes extremely inefficient. 

๏Instead: use doChangeFragPar 
•Re-initialise with a larger StringPT:sigma value + implemented additional 
method to reset our modifications afterwards. 
•(Seems overkill / inefficient. To discuss?)



Some Results
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varies compared to the average p? of pions under a thermal string tension. Various di↵erent
strange mesons were chosen for this analysis, along with both charged and neutral pions
and rho mesons as a point of comparison. Positively and negatively charged particles were
grouped together and labelled with just a positive sign. On this basis, the following plot was
generated:

Figure 20: Average p? ratio to pions as a function of �max for di↵erent meson types.

All the particles with strange content (K0, K+, K⇤0, K⇤+, ⌘, ⌘0, �) can be seen to have
an increased average p? relative to the pions, compared to their zero-temperature values.
This di↵erence grows as �max increases. In particular, the � meson consists of two strange
quarks, and has the largest p? enhancement of any of the particles considered here, more
than 25% at its peak. The kaon average p? is moderately enhanced, since they all contain
one strange quark. The ⌘ and ⌘0 mesons both have a slightly enhanced p?, since they only
have a strange quark some of the time. The p? of the ⇢ meson (no strangeness) increases
only slightly, if at all, which demonstrates a stark di↵erence between the p? of hadrons with
and without strange content.

A point of concern might be the di↵erence between the average p? for charged and un-
charged kaons, which is present with the enhanced string tension turned o↵ at �max = 0
and is consistent across all values of �max. On the face of it, there is no reason why there
should be this di↵erence, since a charged kaon di↵ers by an uncharged kaon only by picking
up an up quark rather than a down quark. Since our model of hadronisation treats up and

41

Note: this is without retuning to same <Nch>, <pT>, or <strangeness>. Work to be done.

Difference between 
K0 and K+ already 
present at Δκmax=0. 

Caused by leading 
hadrons having 
lower <pT> and 
Z→quarks 
branching fractions 
give asymmetry in 
type of leading 
hadrons



Comments
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๏Regardless of technical implementation 
•Changes to the effective tension (τ dependence, thermal excitations, or 
fluctuating string tension - Bialas 99) ➤ mechanism to correlate 
strangeness and <pT> without collective effects. 

๏ May affect interpretation of data for collective models too? 
•In perturbative stage, we are generating ss pairs (and others) which do 
not have a Gaussian pT spectrum. Then we stop the shower and 
everything after that is Schwinger. Reasonable (?) that there should be 
some sort of intermediate/interpolating behaviour? 

๏In general, when looking at departures from Gaussian, the mass 
and pT dependence no longer factorises.  

•What masses to use? Conventional constituent masses probably a good 
starting point, but much too large for pions? 



String-String Interactions
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๏Consider a pp collision with a single soft gluon exchange  
•➤ Two parallel straight strings. Idealised picture: 

๏If d ≪ rstring and/or in a Type I SC analogy:  
•Model as a single (coherent) string, with an initial tension κ8 = 2.25 κ3 (assuming 
Casimir scaling) ➤ Rope Model (no shoving) 

๏If d ≫ rstring and/or in a Type II SC analogy: 
•Model as separate strings, with interaction energy proportional to 1/d.   
•Shoving model (my understanding): starting from initial d, do explicit time steps for 
space-time evolution with repulsive* force (currently modelled as a number of 
gluons each carrying a small amount of pT) 

๏ *Repulsive: assumes CR modeling effectively accounts for attractive configurations, 
at least to a first approximation. We shall make the same ansatz.

3
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Coordinate vs Momentum Space
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๏In Pythia, MPI model is based on perturbative scattering matrix 
elements (with pT0 screening regulator of couplings and propagators) 

•Strictly speaking, in- and outgoing states are plane waves. 
•Well-defined momenta ➤ completely delocalised in space: 

๏What does d mean?  
•Can’t puff and have meal in the mouth … 
•Fortunately, the momentum is not infinitely resolved. In a calculation with a 
factorisation scale QF the momentum is only defined up to ΔQ = O(QF). 
•Shower cutoff QHAD ➤ outgoing shower states localised within O(1/QHAD). 
•

3

<latexit sha1_base64="qIVpHYw2Sf4OHHf4yLRiIRdHKEY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxowS4LblxWsA9sS8mkmTY0kxmSO0IZ+hduXCji1r9x59+YaWehrQcCh3PuJeceP5bCoOt+O4WNza3tneJuaW//4PCofHzSNlGiGW+xSEa661PDpVC8hQIl78aa09CXvONPbzO/88S1EZF6wFnMByEdKxEIRtFKj/2Q4sQP0uv5sFxxq+4CZJ14OalAjuaw/NUfRSwJuUImqTE9z41xkFKNgkk+L/UTw2PKpnTMe5YqGnIzSBeJ5+TCKiMSRNo+hWSh/t5IaWjMLPTtZJbQrHqZ+J/XSzCoD1Kh4gS5YsuPgkQSjEh2PhkJzRnKmSWUaWGzEjahmjK0JZVsCd7qyeukfVX1atXafa3SqOd1FOEMzuESPLiBBtxBE1rAQMEzvMKbY5wX5935WI4WnHznFP7A+fwBk6SQ1A==</latexit>

3̄

<latexit sha1_base64="GDM7nT//h87USnIckWpcym4iauY=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRasMuCG5cV7AOaUCbTSTt0Mgkzk0IJ+RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tipb2zu7e9X92sHh0fGJfXrWU3EqCe2SmMdyEGBFORO0q5nmdJBIiqOA034wuy/8/pxKxWLxpBcJ9SM8ESxkBGsjjWzbC7DMvAjraRBmt3k+sutOw1kCbRK3JHUo0RnZX944JmlEhSYcKzV0nUT7GZaaEU7zmpcqmmAywxM6NFTgiCo/WybP0ZVRxiiMpXlCo6X6eyPDkVKLKDCTRUS17hXif94w1WHLz5hIUk0FWR0KU450jIoa0JhJSjRfGIKJZCYrIlMsMdGmrJopwV3/8ibp3TTcZqP52Ky3W2UdVbiAS7gGF+6gDQ/QgS4QmMMzvMKblVkv1rv1sRqtWOXOOfyB9fkD35CTyg==</latexit>

8

<latexit sha1_base64="ZncPCXApoqkEZSaD0fmHXwgUh2w=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUQKdllw47KCfWAbymQ6aYdOJmHmRiihf+HGhSJu/Rt3/o2TNgttPTBwOOde5twTJFIYdN1vZ2Nza3tnt7RX3j84PDqunJx2TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbT29zvPnFtRKwecJZwP6JjJULBKFrpcRBRnARh1pgPK1W35i5A1olXkCoUaA0rX4NRzNKIK2SSGtP33AT9jGoUTPJ5eZAanlA2pWPet1TRiBs/WySek0urjEgYa/sUkoX6eyOjkTGzKLCTeUKz6uXif14/xbDhZ0IlKXLFlh+FqSQYk/x8MhKaM5QzSyjTwmYlbEI1ZWhLKtsSvNWT10nnuubVa/X7erXZKOoowTlcwBV4cANNuIMWtIGBgmd4hTfHOC/Ou/OxHN1wip0z+APn8webPZDZ</latexit>

⇢

<latexit sha1_base64="vAwX6aWFIMLsIZsixtfYP85HYGQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI8FLx4r2A9oQtlsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8MJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWNUmmGe+wRCa6H1LDpVC8gwIl76ea0ziUvBdO7xZ+74lrIxL1iLOUBzEdKxEJRtFKPT8U47GfD6s1t+4uQTaJV5AaFGgPq1/+KGFZzBUySY0ZeG6KQU41Cib5vOJnhqeUTemYDyxVNOYmyJfnzsmVVUYkSrQthWSp/p7IaWzMLA5tZ0xxYta9hfifN8gwaga5UGmGXLHVoiiTBBOy+J2MhOYM5cwSyrSwtxI2oZoytAlVbAje+subpHtT9xr1xkOj1moWcZThAi7hGjy4hRbcQxs6wGAKz/AKb07qvDjvzseqteQUM+fwB87nD1Kjj4k=</latexit>

3

<latexit sha1_base64="qIVpHYw2Sf4OHHf4yLRiIRdHKEY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxowS4LblxWsA9sS8mkmTY0kxmSO0IZ+hduXCji1r9x59+YaWehrQcCh3PuJeceP5bCoOt+O4WNza3tneJuaW//4PCofHzSNlGiGW+xSEa661PDpVC8hQIl78aa09CXvONPbzO/88S1EZF6wFnMByEdKxEIRtFKj/2Q4sQP0uv5sFxxq+4CZJ14OalAjuaw/NUfRSwJuUImqTE9z41xkFKNgkk+L/UTw2PKpnTMe5YqGnIzSBeJ5+TCKiMSRNo+hWSh/t5IaWjMLPTtZJbQrHqZ+J/XSzCoD1Kh4gS5YsuPgkQSjEh2PhkJzRnKmSWUaWGzEjahmjK0JZVsCd7qyeukfVX1atXafa3SqOd1FOEMzuESPLiBBtxBE1rAQMEzvMKbY5wX5935WI4WnHznFP7A+fwBk6SQ1A==</latexit>

3̄

<latexit sha1_base64="GDM7nT//h87USnIckWpcym4iauY=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRasMuCG5cV7AOaUCbTSTt0Mgkzk0IJ+RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tipb2zu7e9X92sHh0fGJfXrWU3EqCe2SmMdyEGBFORO0q5nmdJBIiqOA034wuy/8/pxKxWLxpBcJ9SM8ESxkBGsjjWzbC7DMvAjraRBmt3k+sutOw1kCbRK3JHUo0RnZX944JmlEhSYcKzV0nUT7GZaaEU7zmpcqmmAywxM6NFTgiCo/WybP0ZVRxiiMpXlCo6X6eyPDkVKLKDCTRUS17hXif94w1WHLz5hIUk0FWR0KU450jIoa0JhJSjRfGIKJZCYrIlMsMdGmrJopwV3/8ibp3TTcZqP52Ky3W2UdVbiAS7gGF+6gDQ/QgS4QmMMzvMKblVkv1rv1sRqtWOXOOfyB9fkD35CTyg==</latexit>

d�1
⇠ O(⇤QCD)

<latexit sha1_base64="D32TWHT5Uq3VXtcqczbFpJ0k2bo=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0WooCWRgC4LdeFCsAX7gKaGyWTSDp1JwsxEKCE/4cZfceNCEbeCO//G6WOh1QMDh3PuvXPv8RNGpbKsL6OwtLyyulZcL21sbm3vmLt7bRmnApMWjlksuj6ShNGItBRVjHQTQRD3Gen4o/rE79wTIWkc3apxQvocDSIaUoyUljzzJLjLTu3clZRDlyM1xIhlN3nFvdYzAuRNNcGzZv0yP/bMslW1poB/iT0nZTBHwzM/3SDGKSeRwgxJ2bOtRPUzJBTFjOQlN5UkQXiEBqSnaYQ4kf1selUOj7QSwDAW+kUKTtWfHRniUo65rysnS8pFbyL+5/VSFV70MxolqSIRnn0UpgyqGE4iggEVBCs21gRhQfWuEA+RQFjpIEs6BHvx5L+kfVa1narTdMo1Zx5HERyAQ1ABNjgHNXAFGqAFMHgAT+AFvBqPxrPxZrzPSgvGvGcf/ILx8Q0QFJ64</latexit>

Distances d > 1/QHAD are meaningful. Distances d < 1/QHAD not meaningful. 



Scales
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๏What is d? (Or at least <d>, to start with)? 
•Considering only pp: related to rproton convoluted with mass distribution 
•In pp, 1/<d> is somewhat smaller than 1/rproton, somewhere in [ΛQCD ,1 GeV] 

๏What is QHAD? 
•Nominally IR cutoff of shower ~ 1 GeV: same order of magnitude as 1/<d> 
•Another relevant quantity is sqrt(κ/π) ~ O(ΛQCD) 

๏What is rstring? 
•A fraction of rproton , r2 ∝ 1/κ? ➤ same order of magnitude as the other numbers 
•(PS: are we talking about coherence length or penetration depth? I don’t know.) 

Option 1: careful modelling dependent on relative O(1) sizes 
Option 2: everything O(ΛQCD) ➤ put all of it in the same (smeared-out) point 
Dynamics determined by time evol. of dofs ≫ ΛQCD (pz & perturbative pT values)  

➤ Stay in momentum space ➤ Simpler modeling. (Some caveats here, ignored.)



Starting Point
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๏Massless quark-antiquark string with invariant mass W: 
•Invariant measure of string length ~ multiplicity of hadrons (with mass m0) 

๏ Note: we take m0 ~ mρ ~ 0.77 GeV ~ 2 * mconstituent-quark. Regulates rapidity-
span calculation so that we get ~ same results for massless endpoints as 
when using PYTHIA’s constituent-quark masses. 

•(Assumes all of the invariant mass is available for particle production) 

๏If another string is nearby: assume some of the initial endpoint 
energy is converted to transverse motion instead  

•➤ some fraction of the energy is not available for particle production 
•➤ Two-step model. “Compression” (reduce W2) + “Repulsion” (add pT2)  
•Idea: preserve string “transverse mass” 

/ �y(m0) = ln(W 2/m2
0)
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1. Identical Parallel Strings
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๏Momentum space ➤ assume total effect of repulsion is proportional to 
rapidity overlap Δyov (= Δystring for identical strings) 

•In principle, could incorporate (physically consistent) knowledge about d via a “form factor”? 
with F→0 for d→∞ and F→1 for d→0.  

๏ Would probably need to be F(y,d) for more general configurations. 
๏ For now, we “hide” <F> in a constant of proportionality. 

๏Repulsion pT (total):  

๏Compression:  

•Right-moving (massless) endpoint scaled by: 
•Left-moving (massless) endpoint scaled by: 
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step, the energy that was removed in the compression step is imparted back to the hadrons
formed in the region(s) of overlap, as transverse momentum (“repulsion”).

3.1 String Compression

Each string is defined by its two endpoints, which for simplicity we take to be massless
for now and travelling in opposite directions along the z axis. Right-moving endpoints
thus start out with lightcone momenta W+ = 2E and W� = 0 and vice versa for the
left-moving ones. In the fully symmetric setup we consider here, both strings will undergo
the same transformations described below. We focus on just one of them.

Since the strings have equal invariant masses, the overlap is simply the full rapidity
span of each string, i.e. �yov = �ystring, which is given by Eq. (2). For this work, we
found that using too small an m0 can lead to pathological results since this presumes that
every hadron you can create has an invariant mass of that order. Instead, we will choose
to work with m0 = m⇢ = 0.77 GeV. Thus, by integration of Eq. (4) the p? gained by each
string will be:

p?R = ±cR ·�yov, (5)

where the ± sign symbolically represents that the kicks will act in opposite directions, so
that no net p? is gained by the string-string system as a whole.

To conserve energy, this p? must be acquired at the expense of some amount of longi-
tudinal momentum. We start by defining a set of intermediate rescaled lightcone momenta
W 0

± = f±W± with

f+f� = 1�
p2?,R

W 2
 1, (6)

which corresponds to a W 0 string system with a lower invariant mass,

W 0
�W

0
+ = W 02 = W 2 � p2?R . (7)

This first step of the model is illustrated by the left-hand part of Fig. 1, labelled “Compres-
sion”. In the simple case studied in this section the compression factors f+ and f� must
be equal for symmetry reasons. (More general cases, with f+ 6= f�, will be considered in
the next section.)

A particularly simple way of representing the repulsion e↵ect would be to boost the W 0

system transversely by a factor ~�? = ~p?R/W 0. However, as G. Gustafson demonstrated
during enjoyable discussions in Lund, such a boost would assign relatively more of the
repulsion p? to high-rapidity hadrons than to central ones, in contrast with the manifestly
longitudinally invariant form of Eq. (4). Instead, we therefore modify the fragmentation
of the W 0 system in a more local way, by allowing each produced hadron to receive an
additional amount of p? in a manner designed to reproduce Eq. (4).

Writing the 4-vectors as (p+, p�, ~p?), the W 0 system is defined by:

p0q = fW+

⇣
1, 0,~0?

⌘
,

p0q̄ = fW�
⇣
0, 1,~0?

⌘
.

(8)

As remarked above, this has a lower total energy, W 0, than that of the original system.
The “missing energy” will gradually be added back during the fragmentation process, in
the form of additional p? given to the hadrons that are formed in the region(s) of overlap.
Unlike the standard fragmentation p? in string breaks, which is randomly and indepen-
dently distributed in azimuth for each breakup, a single global � choice characterises the
p? component from repulsion (with ⇡ + � used for the hadrons in the recoiling string
system). We will now discuss the details of this second step, illustrated by the right-hand
part of Fig. 1, labelled “Repulsion”.
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cR: Effective amount of repulsion pT 
per unit of overlapping rapidity

with
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To conserve energy, this p? must be acquired at the expense of some amount of longi-
tudinal momentum. We start by defining a set of intermediate rescaled lightcone momenta
W 0

± = f±W± with

f+f� = 1�
p2?,R

W 2
 1, (6)

which corresponds to a W 0 string system with a lower invariant mass,

W 0
�W

0
+ = W 02 = W 2 � p2?R . (7)

This first step of the model is illustrated by the left-hand part of Fig. 1, labelled “Compres-
sion”. In the simple case studied in this section the compression factors f+ and f� must
be equal for symmetry reasons. (More general cases, with f+ 6= f�, will be considered in
the next section.)

A particularly simple way of representing the repulsion e↵ect would be to boost the W 0

system transversely by a factor ~�? = ~p?R/W 0. However, as G. Gustafson demonstrated
during enjoyable discussions in Lund, such a boost would assign relatively more of the
repulsion p? to high-rapidity hadrons than to central ones, in contrast with the manifestly
longitudinally invariant form of Eq. (4). Instead, we therefore modify the fragmentation
of the W 0 system in a more local way, by allowing each produced hadron to receive an
additional amount of p? in a manner designed to reproduce Eq. (4).

Writing the 4-vectors as (p+, p�, ~p?), the W 0 system is defined by:

p0q = fW+

⇣
1, 0,~0?

⌘
,

p0q̄ = fW�
⇣
0, 1,~0?

⌘
.

(8)

As remarked above, this has a lower total energy, W 0, than that of the original system.
The “missing energy” will gradually be added back during the fragmentation process, in
the form of additional p? given to the hadrons that are formed in the region(s) of overlap.
Unlike the standard fragmentation p? in string breaks, which is randomly and indepen-
dently distributed in azimuth for each breakup, a single global � choice characterises the
p? component from repulsion (with ⇡ + � used for the hadrons in the recoiling string
system). We will now discuss the details of this second step, illustrated by the right-hand
part of Fig. 1, labelled “Repulsion”.
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(by symmetry, for identical strings)



๏A particularly simple way of representing the repulsion effect would 
be to boost the W’ system by a factor βT = pTR/W’ 

•Happy that we had found a very simple way to do the whole thing. But … 
•

Step 2. Repulsion
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Would strings 
do that?

Creates two (forward) jets.  
Hadrons at large rapidities get more of the pT 
Hadrons at mid-rapidities get no additional pT

Transverse boost:

d hp?i /dy
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Repulsion at the Fragmentation Level
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๏Add repulsion pT as we fragment off the individual hadrons 
•How much pT to give to each hadron? 
•Should be proportional to the (overlapping portion of the) rapidity span 
taken by that hadron

�yi = ln

✓
W 2

i�1

m2
0

◆
� ln

✓
Wi

m2
0

◆
= ln

✓
W 2

i�1

W 2
i

◆

<latexit sha1_base64="/HZeyT0/heZoB+CwMWqANJr+cL4="></latexit>

Rapidity span before 
hadron i was fragmented off

Rapidity span after hadron 
i was fragmented off

Rapidity span of 
hadron i independent 
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Parallel Identical Strings: Results
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y = 0 Compression Repulsion

qq̄

q̄ q

Figure 1: Schematic diagram of the simplest two-string configuration and the two steps
in our model: compressing the strings (black solid lines) and repulsion during the string’s
fragmentation. The hadrons (grey ovals) receive p? proportional to the string length they
take. We have ignored the Gaussian transverse momentum generation in the Lund string
model for the purposes of this figure. The transverse separation between the strings in
the diagram is for clarity.

Viewed in space-time, the repulsion between two such strings should depend on their
(time-dependent) transverse separation distance [49, 50]. However, in the context of
hadronization in high-energy particle collisions, the preceding perturbative stages of event
generation are normally treated in momentum space, i.e. in terms of plane-wave approxi-
mations that are not well localized in space-time. Thus, one faces a problem of mapping
partons represented in momentum space onto string systems represented in space-time.
In the framework of classical string theory, on which the Lund model is based, one may
simply use the string tension  to convert between the two pictures. But when multiple
string systems are involved, any interactions between them will depend on the space-time
separation between the production points of each system, which the momentum-space
perturbative boundary conditions only serve to fix up to an ambiguity / 1/⇤QCD. More-
over, while a strict classical interpretation would in principle allow for arbitrarily small
separations, string descriptions are only appropriate for long-distance QCD. Interesting
work has been done recently to bridge the two pictures [45,51], but for the purpose of this
study we would like to explore how far we can get if we stay in momentum space.

Our underlying assumption will be that our colliding systems are of order a hadronic
size (hence we do not address heavy ions) and that, by the time strings are formed, they
are already at least some “typical” transverse distance apart, again of order hadronic sizes
even if the directions of motion of the endpoints were originally completely parallel. We
make the boost-invariant ansatz that parallel strings impart a constant amount of net
transverse momentum to each other per unit of overlap in rapidity,

dp?R

dy
= cR , (4)

where the constant cR, which has dimensions of GeV per unit rapidity, represents the main
tuneable parameter in our model. It controls the strength of the repulsion, or alternatively,
the conversion strength of longitudinal momentum into transverse momentum.1 Non-
parallel configurations will be discussed below. We further make the ansatz that each
hadron produced in the overlap region receives a fraction of the total repulsion p? in
proportion to (the overlapping portion of) its rapidity span according to Eq. 3.

A schematic diagram of how our model works is shown in Fig. 1. In a first step, we
remove an amount of longitudinal momentum from the original endpoints (“compression”),
in proportion to the size of the total rapidity overlap between the two strings. In the second

1In a future extension we shall relate this to an increase in the tension of the individual strings as well,
in a manner similar to what is done in Rope hadronization, but this is outside the scope of this work.
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3.2 Repulsion

As mentioned in Sec. 2.1, we can assign a rapidity span to each hadron as it gets produced
by the rapidity span lost by the string when producing the hadron. Using Eq. (36), a
hadron receives a corresponding fraction of p?R, calculated in the same manner as Eq. (5):

p?h = cR�yh = p?R
�yh

�ystring
, (9)

where �yh is the rapidity span of the string taken by the hadron, such that
P

�yh =
�ystring, and consequently the summed repulsion momentum given to hadrons is equal to
the total repulsion momentum. Generalising to cases in which the two strings do not fully
overlap, the numerator and denominator of the rapidity-span ratio in the last expression
can simply be changed to refer to the overlapping portions of the hadron and total rapidity
spans, respectively. After the hadron receives the repulsion p?, its energy is then adjusted
by the amount required to put it back on shell. In this way, the “missing energy” discussed
above is gradually added back to the system.

Note that, if there were no other sources of transverse momentum, putting a hadron
on-shell after the repulsion would always increase its energy. However, since each string
break is associated with a randomly distributed fragmentation p? (with each hadron in
general receiving contributions from two such breaks), which must be added vectorially
to the repulsion p?, some hadrons may have lower total p? after adding the repulsion
e↵ect. In our modeling setup, such hadrons are regarded as donating some energy back
to the string system’s reservoir of “missing energy”, with the sum over all hadrons still
respecting eq. (5).

With this modification, we follow the same iterative fragmentation procedure as in
ordinary Pythia, splitting o↵ hadrons from either end, allowing them to receive additional
repulsion p? and putting them back on shell, until the invariant mass of the remaining
string system drops below a cuto↵ value:

W 2
rem < W 2

stop. (10)

At this point, we add any remaining repulsion p? to the remnant object, as well as
any energy that is still missing from the compression process. This makes total energy
and momentum conservation explicit. Pythia then produces two final hadrons from this
modified remnant string.

3.3 Results

In the rest of this section, we study the consequences of our model for an explicit example
configuration defined by:

p+1 = p+2 = 400
⇣
1, 0,~0?

⌘
GeV ,

p�1 = p�2 = 400
⇣
0, 1,~0?

⌘
GeV .

(11)

To highlight the e↵ects of the fragmentation repulsion, we have chosen endpoint energies of
200 GeV (corresponding to rather long strings), and, at this stage, consider only primary
hadrons (hadrons that are produced directly from the fragmenting string). The smearing
caused by decays of (short-lived) primary hadrons into secondaries will be discussed in
Sec. 7.

The left pane of Fig. 2 shows the average p? of primary hadrons as a function of
�yh, as defined by Eq. (3). The red dashed histogram shows the results of using the
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Figure 2: Distribution of average primary-hadron p? as a function of �yh. Left: compari-
son of baseline Lund model (red solid line) to our model for cR = 0.2 GeV (blue solid line),
our model with only the repulsion p? component (blue dot-dashed line) and the shoving
model (black dashed line). The shoving model exhibits a lower average p? since the soft
gluons it adds make the strings longer causing the multiplicity of produced hadrons to
increase faster than the total p?. Right: the e↵ect of varying the repulsion strength cR.

ordinary Lund model, which — since the Gaussian transverse momentum generation in
the baseline Lund model is independent of the rapidity span — is a flat distribution
modulo endpoint e↵ects, The two blue histograms illustrate the e↵ects of our compression
and fragmentation repulsion model, for a representative value of cR = 0.2 GeV. The
dot-dashed histogram shows the repulsion component by itself (obtained by turning o↵
the Gaussian fragmentation p? component via StringPT:sigma = 0). The solid blue
histogram shows the combination of the fragmentation and repulsion p? components, for
the same reference value of cR. For small �y, this mimics the baseline string model, while
for large �y, the repulsion p? takes over as the dominant source of transverse momentum.

We also include a comparison to the shoving model as implemented in Pythia 8.2
[36, 37]. For the shoving parameters used in our study (see App. B for details), the
average transverse momentum per unit rapidity span taken actually decreases relative to
the baseline (solid red) model. We interpret this as a result of the physical mechanism by
which the shoving model pushes the two strings apart, which is implemented as a number
of very soft transverse gluon excitations. While this does increase the total p?, it also
increases the total string length. The latter in turn increases the hadron multiplicity,
with the result that the average p? per hadron can decrease. In our model, by contrast,
the compression step ensures that the total multiplicity decreases; the repulsion step then
adds p?, implying that both the total and the average p? per hadron must increase.

The results of varying cR from 0 GeV (equivalent to the no-repulsion baseline case)
to 0.4 GeV per unit of rapidity overlap are shown in the right panel of Fig. 2. As cR
increases, the slope of the average hadron p? increases with the rapidity span of the string
taken, as expected from the ansatz in Eq. (9).

In Fig. 3, we show the same model examples but now as a function of the more directly
observable rapidity of the hadrons, instead of the rapidity span they take. For the normal
Lund string model, this produces a variant of the famous rapidity plateau (red solid line).
For the parameters we studied, the shoving model (dashed black line) does not change the
average p? appreciably (while the average multiplicity of the event is increased [37]). In
contrast, for our reference value of c = 0.2 GeV, our repulsion model (blue solid line, with
the repulsion component illustrated by the blue dashed line) does increase the average
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Figure 3: Distributions for the average p? of primary hadrons as a function of the hadron’s
rapidity for the symmetric parallel strings configuration. Left : comparison of the baseline
Lund model (red solid line), with our fragmentation repulsion model (blue solid line), which
has a higher hp?i in the plateau region. The component which is due to the repulsion e↵ect
is illustrated by the blue dot-dashed line. Also shown is the result of using the shoving
model (black dashed line) [37], for the same string configuration. The shoving model does
not have significant deviation from the baseline Lund model for this observable (see text).
Right : the e↵ect that varying the repulsion strength cR.

primary hadron p?. The net increase is less than linear since the ordinary (Gaussian)
fragmentation p? is oriented randomly with respect to the repulsion p?, and the two
components add vectorially.

As in the previous figure, the right panel of Fig. 3 illustrates the e↵ect of varying cR in
the range 0 to 0.4 GeV per unit of rapidity overlap. For larger values of cR, the rapidity
plateau begins to lose some of its flat structure, particularly in the middle of the string,
near yhadron = 0. To fix the flatness, one may adjust the stopping mass parameter W 2

stop

in Pythia’s implementation of the string model, though this is outside the scope of this
work.

4 General Parallel Two-String Configuration

We now extend the considerations in Sec. 3 to a more general configuration, by letting
the strings have an arbitrary parallel configuration. Without loss of generality, we assume
that the two strings do still overlap, either partially, or one string’s rapidity span is fully
contained inside the rapidity span of the other. Relabeling as needed, we require in the
former case that the left-moving (W�) end of string 1 is contained within the rapidity span
of string 2, and the right-moving (W+) end of string 2 is contained within the rapidity
span of string 1.

In the context of the momentum-space representation of the Lund model that our
repulsion framework is based on, the full space-time evolution of a string is determined
solely by the starting values of the 4-momenta of its endpoints. By initially reducing
these momenta, the “compression” step of our model expresses the physical expectation
that, as two nearby strings expand simultaneously and repel each other, it will not be
possible to convert all of the kinetic energy of their endpoints into potential energy stored
in the corresponding strings; instead, some fraction of the original kinetic energy is “held
in reserve”, to be converted into transverse momentum during the fragmentation process.
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As in the previous figure, the right panel of Fig. 3 illustrates the e↵ect of varying cR in
the range 0 to 0.4 GeV per unit of rapidity overlap. For larger values of cR, the rapidity
plateau begins to lose some of its flat structure, particularly in the middle of the string,
near yhadron = 0. To fix the flatness, one may adjust the stopping mass parameter W 2
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work.
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We now extend the considerations in Sec. 3 to a more general configuration, by letting
the strings have an arbitrary parallel configuration. Without loss of generality, we assume
that the two strings do still overlap, either partially, or one string’s rapidity span is fully
contained inside the rapidity span of the other. Relabeling as needed, we require in the
former case that the left-moving (W�) end of string 1 is contained within the rapidity span
of string 2, and the right-moving (W+) end of string 2 is contained within the rapidity
span of string 1.

In the context of the momentum-space representation of the Lund model that our
repulsion framework is based on, the full space-time evolution of a string is determined
solely by the starting values of the 4-momenta of its endpoints. By initially reducing
these momenta, the “compression” step of our model expresses the physical expectation
that, as two nearby strings expand simultaneously and repel each other, it will not be
possible to convert all of the kinetic energy of their endpoints into potential energy stored
in the corresponding strings; instead, some fraction of the original kinetic energy is “held
in reserve”, to be converted into transverse momentum during the fragmentation process.

9

Duncan & PS, arXiv:1912.09639

 
Duncan & PS, arXiv:1912.09639

Uniform: this is what we wanted

Varying the strength of cR

http://arxiv.org/abs/arXiv:1912.09639
http://arxiv.org/abs/arXiv:1912.09639
http://arxiv.org/abs/arXiv:1912.09639


(Effect of Hadron Decays)

PE T E R  SK A N D S !20

SciPost Physics Submission

Figure 11: Illustration of the net reduction of average hadron p? caused by allowing
excited primary hadrons (solid histograms) to decay (dot-dashed histograms), for the
baseline Lund model (red) and our fragmentation repulsion model (blue). The example
configuration is the symmetric parallel two-string configuration described in Sec. 3; the
primary-hadron spectra are the same as those in Fig. 3.

In Fig. 10, we plot the results for the two-particle cumulant for the symmetric two-
string configuration at the level of primary hadrons, as a function of the repulsion constant
cR. There are four curves in the plot. The first curve, labelled ‘Symmetric’ is the simplest
two-string configuration, considered in Sec. 3. In this configuration, there is no preferred
� direction, and it takes larger values of the repulsion constant to overcome the Gaus-
sian transverse momentum distribution of the Lund fragmentation model, and to have a
significant e↵ect on the cumulant.

The three other curves are variations on the configuration described in Sec. 5.1 where
the two strings each have a boost of � = 0.1 in equal and opposite directions. The varia-
tions occur when one adds the repulsion p? to the primary hadrons during fragmentation.
The curves are labelled according to the direction in which the repulsion p? is added with
respect to the given string’s overall boost direction. If we add the repulsion p? in the
same direction as the string’s motion, we can greatly enhance the two-particle cumulant.
If instead we add it in the opposite direction, we at first reduce the two-particle cumulant,
but as the repulsion gets larger, the cumulant begins to increase. Lastly, if we add the
repulsion p? perpendicularly to the string’s motion we greatly reduce the cumulant, but
at large values of the repulsion constant, the rate of decrease begins to level out.

We obtain analogous results for the general configuration in the right panel of Fig. 10,
though the cumulant for all values of cR is less than for the symmetric case, due to the
smaller overlap in rapidity.

We compared the symmetric parallel configuration in our fragmentation repulsion
framework to the analogous configuration in the shoving model, and found that the two-
particle cumulant is significantly smaller for the shoving model, at least with the parameter
set described in App. B. For the shoving model, we calculated the two-particle cumulant
to be c2{2} = 0.00957 (averaged over 200,000 events), which is of the order of the baseline
Lund model.
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๏It is rare that nature hands you two identical straight strings 
•Asymmetric straight parallel strings 
•Strings with a relative boost 
•Strings with a relative rotation 
•Strings with heavy endpoints 
•More than 2 strings  
•Strings with gluon kinks 
•Junction strings 
•Finite-distance effects 
•
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Figure 4: Schematic (1+1)-D spacetime diagram of the general parallel two-string config-
uration, where the two strings have a region of overlap (dotted parallel lines). The two
endpoints in the region of overlap will be subjected to more compression and repulsion.

When we now turn to consider asymmetric configurations, we must answer not only how
much of the total kinetic energy must be held in reserve in this way, but also which fraction
of it to take from each of the reservoirs represented by the two endpoints.

In our fragmentation repulsion model, we will use the ansatz that endpoints “inside”
a region of overlap should undergo more compression than ones “outside”, since the cor-
responding string regions experience more of the accumulated interaction. In Fig. 4, we
show a (1+1)-D diagram of a general string configuration, with an overlapping region cen-
tred around a slightly negative rapidity (in the given frame). The right-moving endpoint
of the dashed-orange string piece overlaps with the solid-black string system during the
entire time over which its original kinetic energy is converted to potential energy. By
contrast, the left-moving endpoint of the same dashed-orange string piece only overlaps
with the black system during half of the time that it takes to convert all of its kinetic
energy to potential energy. In this sense, the right-moving endpoint can be considered to
be “inside” the region of overlap while the left-moving one ultimately travels “outside” of
that region. Alternatively, the portion of the black-solid string system that is represented
by its left-moving endpoint has a bigger fraction of total overlapping area than the portion
that is represented by its right-moving endpoint.

4.1 String Compression

In the general case that the strings are not symmetric in the longitudinal direction, one
must make a choice whether to allow them to exchange pL or not. For simplicity and
since we wish to focus on the transverse repulsion e↵ects here, we choose to ignore the
possibility of pL exchange in this first version version of our model. Thus, the only change
with respect to the symmetric case is that the rescaling factors for each of the four endpoint
momenta will no longer be equal.

Regardless of longitudinal recoil, the compression factors for each string system i 2
[1, 2] must satisfy:

f+1f�1 = f2
1 = 1�

p2?,R

W 2
1

,

f+2f�2 = f2
2 = 1�

p2?,R

W 2
2

,

, (12)
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f+1f�1 = f2
1 = 1�

p2?,R

W 2
1

,

f+2f�2 = f2
2 = 1�

p2?,R

W 2
2

,

, (12)
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hence pTR) still straightforward
Main new question is whether to allow 
pz exchange: “longitudinal recoil” ?

Regardless of pz strategy, the rescaling 
factors must satisfy:

Need one more constraint. For now, we impose no pz exchange (for simplicity; 
not convinced it is consistent with Lorentz invariance: pz frame dependent. 
Reasonable starting point(?): no Δpz in frame with centre of overlap at y=0).
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where p?,R is the total p? / �yov from repulsion to be assigned (equally and oppositely) to
the two systems, see eq. (5), and longitudinal momentum conservation, �pL,1 = ��pL,2,
implies:

(1� f+1)W+1 � (1� f�1)W�1

= (1� f�2)W�2 � (1� f+2)W+2 .
(13)

This gives three constraints for four unknowns. Imposing the further condition of no
longitudinal momentum exchange, �pL,1 = �pL,2 = 0, eq. (13) separates into:

(1� f+1)W+1 � (1� f�1)W�1 = 0,

(1� f�2)W�2 � (1� f+2)W+2 = 0.
(14)

The problem can then be solved with a unique set of solutions for each compression factor
f±i. Inserting the first two constraints Eq. (12) into Eq. (14), we obtain a quadratic
equation for f�i:

W�if
2
�i + (W+i �W�i) f�i � f2

i W+i = 0. (15)

Since the compression factors must be positive, there is only one solution to this equation:

f�i =
(W�i �W+i) +

q
(W�i �W+i)

2 + 4W 2
i f

2
i

2W�i
, (16)

or equivalently using the longitudinal momentum component WLi = (W+i �W�i)/2,

W 0
�i = f�iW�i =

q
W 2

Li +W 2
i f

2
i �WLi ,

W 0
+i = f+iW+i =

q
W 2

Li +W 2
i f

2
i +WLi .

(17)

In the limit of W+i = W�i, i.e. WLi = 0, we reproduce the symmetric case for the

given string i, i.e. f±i =
q
f2
i . By construction, longitudinal momentum is conserved,

W 0
+i �W 0

�i = W+i �W�i. However, energy is not:

E0
i =

W 0
+i +W 0

�i

2
= Ei

s

1�
p2?,R

E2
i

. (18)

When we perform the fragmentation repulsion, we regain the “lost” energy by giving
the primary hadrons the repulsion p? and putting them on-shell again, with the string
remnant absorbing the remaining energy. Thus, we conserve energy and momentum after
compression and fragmentation of the strings.

It should be mentioned that our choice of no pL exchange does introduce a dependence
on the frame in which the system is considered. This is due to the fact that while the light-
cone momenta W± follow a simple rescaling under longitudinal boosts, the compression
factors f±i depend non-linearly on W±i as seen in Eq. (16), complicating their transfor-
mations under such boosts. Specifically, compressing the strings then boosting the entire
system results in a (marginally) di↵erent momentum topology than boosting the strings
with the same boost factor and then compressing them. In this work unless otherwise
stated, we compute compression factors in the overall CM frame of the two-string system.
(A possible alternative, not pursued here, would be to boost the system longitudinally
such that the centre of the overlap region is at y = 0.)
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๏By construction longitudinal momentum is conserved:  
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When we perform the fragmentation repulsion, we regain the “lost” energy by giving
the primary hadrons the repulsion p? and putting them on-shell again, with the string
remnant absorbing the remaining energy. Thus, we conserve energy and momentum after
compression and fragmentation of the strings.

It should be mentioned that our choice of no pL exchange does introduce a dependence
on the frame in which the system is considered. This is due to the fact that while the light-
cone momenta W± follow a simple rescaling under longitudinal boosts, the compression
factors f±i depend non-linearly on W±i as seen in Eq. (16), complicating their transfor-
mations under such boosts. Specifically, compressing the strings then boosting the entire
system results in a (marginally) di↵erent momentum topology than boosting the strings
with the same boost factor and then compressing them. In this work unless otherwise
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When we perform the fragmentation repulsion, we regain the “lost” energy by giving
the primary hadrons the repulsion p? and putting them on-shell again, with the string
remnant absorbing the remaining energy. Thus, we conserve energy and momentum after
compression and fragmentation of the strings.

It should be mentioned that our choice of no pL exchange does introduce a dependence
on the frame in which the system is considered. This is due to the fact that while the light-
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factors f±i depend non-linearly on W±i as seen in Eq. (16), complicating their transfor-
mations under such boosts. Specifically, compressing the strings then boosting the entire
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such that the centre of the overlap region is at y = 0.)

11

SciPost Physics Submission

where p?,R is the total p? / �yov from repulsion to be assigned (equally and oppositely) to
the two systems, see eq. (5), and longitudinal momentum conservation, �pL,1 = ��pL,2,
implies:

(1� f+1)W+1 � (1� f�1)W�1

= (1� f�2)W�2 � (1� f+2)W+2 .
(13)

This gives three constraints for four unknowns. Imposing the further condition of no
longitudinal momentum exchange, �pL,1 = �pL,2 = 0, eq. (13) separates into:

(1� f+1)W+1 � (1� f�1)W�1 = 0,

(1� f�2)W�2 � (1� f+2)W+2 = 0.
(14)

The problem can then be solved with a unique set of solutions for each compression factor
f±i. Inserting the first two constraints Eq. (12) into Eq. (14), we obtain a quadratic
equation for f�i:

W�if
2
�i + (W+i �W�i) f�i � f2

i W+i = 0. (15)

Since the compression factors must be positive, there is only one solution to this equation:

f�i =
(W�i �W+i) +

q
(W�i �W+i)

2 + 4W 2
i f

2
i

2W�i
, (16)

or equivalently using the longitudinal momentum component WLi = (W+i �W�i)/2,

W 0
�i = f�iW�i =

q
W 2

Li +W 2
i f

2
i �WLi ,

W 0
+i = f+iW+i =

q
W 2

Li +W 2
i f

2
i +WLi .

(17)

In the limit of W+i = W�i, i.e. WLi = 0, we reproduce the symmetric case for the

given string i, i.e. f±i =
q
f2
i . By construction, longitudinal momentum is conserved,

W 0
+i �W 0

�i = W+i �W�i. However, energy is not:

E0
i =

W 0
+i +W 0

�i

2
= Ei

s

1�
p2?,R

E2
i

. (18)

When we perform the fragmentation repulsion, we regain the “lost” energy by giving
the primary hadrons the repulsion p? and putting them on-shell again, with the string
remnant absorbing the remaining energy. Thus, we conserve energy and momentum after
compression and fragmentation of the strings.

It should be mentioned that our choice of no pL exchange does introduce a dependence
on the frame in which the system is considered. This is due to the fact that while the light-
cone momenta W± follow a simple rescaling under longitudinal boosts, the compression
factors f±i depend non-linearly on W±i as seen in Eq. (16), complicating their transfor-
mations under such boosts. Specifically, compressing the strings then boosting the entire
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stated, we compute compression factors in the overall CM frame of the two-string system.
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putting them on-shell again, with the string remnant absorbing the remaining energy.
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p�1 p+1

p+2p�2

Compression Repulsiony = 0

Figure 5: Schematic diagram of the general two-string configuration and how we perform
the string compression using Eq. (16), and then the fragmentation repulsion. Only primary
hadrons in the region of overlap will receive p? proportional to the string length taken.
We have ignored the Gaussian transverse momentum generation in the Lund string model
for the purposes of this figure.

4.2 Repulsion

The repulsion e↵ect we seek to model is local; additional p? should be imparted to hadrons
formed within regions of string overlap, and not to those outside. Fragmenting the (com-
pressed) string from the outside in as usual, and using Eq. (3) to compute rapidity spans,
we distinguish three cases for each produced hadron:

1. The span is completely outside the overlap region;

2. The span is completely inside the overlap region;

3. The span straddles the boundary of the overlap region.

In the first case, the hadron receives no repulsion p?, while in the second, it is computed
according to Eq. (9) and assigned repulsion p? following the same procedures as described
in Sec. 3. In the last case, only the portion of the rapidity span inside the overlap region
contributes to Eq. (9).

To illustrate the repulsion e↵ect we consider a two-string scenario defined by the fol-
lowing endpoints (using the same lightcone notation as previously),

p+1 = 1200
⇣
1, 0,~0?

⌘
GeV,

p�1 = 300
⇣
0, 1,~0?

⌘
GeV,

p+2 = 100
⇣
1, 0,~0?

⌘
GeV,

p�2 = 1000
⇣
0, 1,~0?

⌘
GeV,

(19)

This configuration is then boosted back to the overall CM frame. An illustration of the
compression and repulsion steps for this type of configuration is given in Fig. 5.

4.3 Results

In Fig. 6, we show the average primary hadron p? distribution as a function of the string
rapidity span taken by the hadron.

In the left panel of Fig. 6, the red histogram is the ordinary Lund model, which is
agnostic to the the rapidity span taken by a hadron. The blue histograms are the result of
our implemented model for cR = 0.2 GeV, for both the repulsion component (dot-dashed),
which matches the ansatz in Eq. (9), and the full fragmentation (solid), which matches
the baseline Lund model and the repulsion component in the limits of small and large �y
respectively. Lastly, we have also included the results of using the shoving model for this
configuration. These results are largely similar to the results for the symmetric, parallel
configuration in Sec. 3.3.
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2. The span is completely inside the overlap region;

3. The span straddles the boundary of the overlap region.

In the first case, the hadron receives no repulsion p?, while in the second, it is computed
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This configuration is then boosted back to the overall CM frame. An illustration of the
compression and repulsion steps for this type of configuration is given in Fig. 5.

4.3 Results

In Fig. 6, we show the average primary hadron p? distribution as a function of the string
rapidity span taken by the hadron.

In the left panel of Fig. 6, the red histogram is the ordinary Lund model, which is
agnostic to the the rapidity span taken by a hadron. The blue histograms are the result of
our implemented model for cR = 0.2 GeV, for both the repulsion component (dot-dashed),
which matches the ansatz in Eq. (9), and the full fragmentation (solid), which matches
the baseline Lund model and the repulsion component in the limits of small and large �y
respectively. Lastly, we have also included the results of using the shoving model for this
configuration. These results are largely similar to the results for the symmetric, parallel
configuration in Sec. 3.3.
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Figure 7: Distribution of average hadron p? for primary hadrons as a function of yhadron,
for the asymmetric two-string example described in the text. The repulsion component of
our fragmentation repulsion increases the hp?i in the region of overlap (indicated by the
grey dashed lines, using m0 = 0.5 GeV in the rapidity calculation).
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Figure 8: Schematic diagram of two string systems defined by the endpoint momenta given
in Eq. (20), corresponding to (left) a relative boost and (right) a relative rotation.

remains a sensible choice of common rapidity axis. Specifically, we will consider systems
like those illustrated in Fig. 8, with endpoint momenta (in conventional 4-momentum
notation):

p1 = E( 1, sin ✓, 0, � cos ✓) ,

p2 = E( 1, sin ✓, 0, cos ✓) ,

p3 = E( 1, � sin ✓, 0, � cos ✓) ,

p4 = E( 1, � sin ✓, 0, cos ✓) ,

(20)

so that the string systems defined by the (1,2) and (3,4) pairings are still parallel but
each are transversely boosted relative to the overall CM, by � = ± sin ✓, while the systems
defined by the pairings (1,4) and (2,3) are at rest relative to the overall CM but are rotated
with respect to each other, with a relative opening angle of 2✓. In all cases, the CM energy
is ECM = 4E. For definiteness we take sin ✓ = 0.1 in the examples below unless otherwise
stated.

5.1 Symmetric configuration with relative boost

Taking the simplest symmetric two-string configuration, we ask what happens in the
situation depicted in the left-hand panel of Fig. 8 in which both strings have some (equal
and opposite) transverse momentum before compression.

Using the same arguments as above, we wish to convert a fraction of the original
longitudinal momenta of the endpoints (defined along the common rapidity axis, here the
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Although we used pretty 
long strings (we thought), 
effects of partial overlaps 
still somewhat obscured 
by endpoint falloffs. 



Topologies with a relative transverse boost
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Figure 7: Distribution of average hadron p? for primary hadrons as a function of yhadron,
for the asymmetric two-string example described in the text. The repulsion component of
our fragmentation repulsion increases the hp?i in the region of overlap (indicated by the
grey dashed lines, using m0 = 0.5 GeV in the rapidity calculation).
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p2 = E( 1, sin ✓, 0, cos ✓) ,

p3 = E( 1, � sin ✓, 0, � cos ✓) ,

p4 = E( 1, � sin ✓, 0, cos ✓) ,

(20)

so that the string systems defined by the (1,2) and (3,4) pairings are still parallel but
each are transversely boosted relative to the overall CM, by � = ± sin ✓, while the systems
defined by the pairings (1,4) and (2,3) are at rest relative to the overall CM but are rotated
with respect to each other, with a relative opening angle of 2✓. In all cases, the CM energy
is ECM = 4E. For definiteness we take sin ✓ = 0.1 in the examples below unless otherwise
stated.

5.1 Symmetric configuration with relative boost

Taking the simplest symmetric two-string configuration, we ask what happens in the
situation depicted in the left-hand panel of Fig. 8 in which both strings have some (equal
and opposite) transverse momentum before compression.

Using the same arguments as above, we wish to convert a fraction of the original
longitudinal momenta of the endpoints (defined along the common rapidity axis, here the
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Boost β = ± sin(θ) = 0.1

1. Evaluate rapidity overlap 
along common axis (smaller 
than the individual string CM 
rapidity spans) ➤ total pTR2. Rescale string ends similarly to before 

This causes the ends to lose some pT. 
Added to pT reservoir to be added back 
during fragmentation. 
Alternative: boost compressed strings so 
they regain their original pT? Reduce pz , 
then E to bring back on shell?

3. Hadron rapidity spans 
projected onto common axis:

SciPost Physics Submission

z axis) into transverse momentum instead of into potential energy of the string(s).
As before, the total amount of repulsion p? is determined from the e↵ective rapid-

ity overlap, which we compute from the longitudinal momentum components (along the
chosen common axis) of the endpoints,

�yov = min(y1+, y2+)�max(y1�, y2�) , (21)

where yi+ and yi� refer to the rapidities of the right- and left-moving endpoints of string i
respectively and we regulate the rapidity values of massless endpoints in the p? ! 0 limit
by imposing m � m0 in the denominator of our rapidity definition:

y = ln
E + pLq
m2 + p2?

. (22)

Using lightcone coordinates as before, the longitudinal component of a general string-end
momentum is pL = (W+ �W�)/2, and the energy is E = (W+ +W�)/2.

The string-ends will be rescaled in a similar manner to the parallel strings in Sec. 3.
Since the rescaling is done on the full 4-vectors, the string endpoints will lose some p?.
We use the ansatz of giving this extra transverse momentum reservoir, denoted p?,res to
the fragmenting hadrons as a fraction of the rapidity span they take from the string:

p?,h =

✓
cR +

p?,res

�yov

◆
�yh, (23)

where �yov is string-string overlap defined via Eq. (21, and �yh is the amount of rapidity
span taken by the hadron inside of the overlap region, as discussed in Sec. 4. (Alternatively,
and probably more correctly, one could distribute p?,res among all the hadrons, not just
those in the overlap region; or boosting the compressed string transversely so that it
regains its original total p?; but since since p?,res is typically very small it is a minor
e↵ect.)

As in the previous section we assume no longitudinal momentum exchange, �pL = 0.
Writing the total longitudinal momentum of string i 2 [1, 2] as

pL,i = pL,+i + pL,�i , (24)

with pL,±i the longitudinal momentum of the respective endpoints, we can generalize
Eq. (16) to:

f�i =
pL,i +

q
p2L,i � 4pL,�ipL,+if2

i

2pL,�i
. (25)

In the limit of the string ends carrying p? ! 0, Eq. (25) exactly reproduces Eq. (16).
The amount of repulsion ? given to each hadron during the fragmentation process

should be proportional to the (overlapping portion of the) rapidity span it takes. The def-
inition, Eq. (36), is given in terms of the quantities used to characterize the fragmentation
of each string in its own CM frame, along the axis defined by its endpoints in that frame,
whereas we here want to along the chosen common axis in the string-string CM frame. As
a very simple way to “project” the rapidity span, we use

�ye↵ =
�ystring
�y⇤string

�y⇤taken , (26)

where the �ystring is the rapidity span of the given string evaluated along the common
axis defined in the string-string frame and �y⇤string = ln

�
W 2/m2

0

�
is the (larger) span
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In reality, soft hadrons should have fov~1?
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Figure 9: Distribution of average hadron p? of primary hadrons as a function of the
hadron’s rapidity, for the symmetric configuration (left) and the general configuration
(right), where the two strings have an equal and opposite boost in the transverse direction.
The latter configuration is boosted back to the two-string rest frame before compression
and fragmentation. We have added the repulsion p? in the same direction as the overall
motion of each string.

evaluated in the string’s own rest frame. �y⇤taken = ln
�
W 2/W 02� is the rapidity span of

the hadron taken in the string’s own rest frame.
The e↵ective string length in Eq. (26) taken is invariant under longitudinal boosts,

and reproduces the parallel configuration in the limit where each string endpoint carries
vanishing p?. Eq. (26) also sums to give the correct rapidity span along the z-axis, and is
agnostic to the direction of the transverse momentum.

The last point to address is in which direction in azimuth to apply the repulsion.
Considering the transverse plane only (in the string-string CM frame), the two systems
will have some equal and opposite overall motion, which we denote by ~p?,rel = ~p?1�~p?2 =
2~p?1. Assuming that, by the time strings are formed, the string systems are already
separated a bit (on average) along this axis, it seems plausible to us to apply the repulsion
p? along the same direction. To provide some variability and in order to have a well-
defined repulsion axis also in the p?,rel to0 limit, we add a random component as well:

~n?1 = N(~p?,rel + ⇢~n?,ran) (27)

where ~n?,ran is a unit-vector in a randomly chosen azimuthal direction, the normalisation
factor

N =
1q

p2?,rel + ⇢2 + 2⇢(~p?,rel · ~n?,ran)
(28)

ensures |n?1| = 1, and ⇢ is a free parameter of order 1 GeV which governs the relative
importance of the random component. The repulsion for string 1 is oriented with n?1,
and that for string 2 in the opposite direction.

The choice of direction can have a significant e↵ect on two-particle azimuthal corre-
lations, as we will describe in Sec. 6, but it does not have a drastic e↵ect at the level of
the distributions for the average hadron transverse momentum versus hadron rapidity and
rapidity span taken.
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Subtlety: which direction? We assume same direction as relative boost, with random 
component added to have well-defined behaviour in boost→0 limit

(same as the one used earlier with 
boost β=0.1 in opposite directions)
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๏To connect with collective-flow / HI observables, we considered 
the two-particle cumulant
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Figure 10: Two-particle cumulant for the symmetric (left panel) and the general (right
panel) two-string configurations, at the level of primary hadron production. We show
the curves for the simplest parallel two-string case, and three variations on the equal
and oppositely boosted two-string case. The variations are: the repulsion p? acts in
the same direction as the given string’s overall transverse motion (“Boosted, (+)”), the
repulsion p? acts in the opposite direction (“Boosted, (�)”), and lastly, the repulsion p?
acts perpendicularly to the string’s boost (“Boosted, (?)”). For each curve, when cR = 0,
we reproduce the baseline Lund string model.

There are many other configurations that one may consider, but with the four config-
urations discussed in this work, we have presented the overall framework for our model of
fragmentation repulsion.

6 Flow and Cumulants for Two-String Configurations

Long-distance correlations in rapidity and azimuth have been used extensively to probe
collective aspects of event structure, including flow, in both proton-proton and heavy-ion
collisions. (See, e.g., [52] for a succinct review of elliptic flow in heavy-ion phenomenology,
and references therein.) Here, we focus on just one such observable, the two-particle
cumulant, c2 {2}, which is designed to suppress non-flow contributions. It is calculated as:

c2 {2} =
D
he2i(�i��j)i

E
,

=

*
2

n (n� 1)

nX

i<j

cos (2(�i � �j))

+
,

(29)

where in the first line the outer angle bracket is the average over all events, and the inner
is the average over all n particles in a given event. In the second line of Eq. (29), we have
removed the self-correlations i = j, and used the fact that the cosine function is an even
function.

The two-particle cumulant will depend not only on the repulsion strength cR, but also
on the direction of the repulsion, in particular for cases where the strings have an overall
transverse motion such as the transversely boosted strings, where ~vdet 6= 0. In this work,
we will simply show the three extreme cases of the repulsion directions for the transversely
boosted configurations, as discussed in Sec. 5.2
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Figure 12: Two-particle cumulant for final-state hadrons in the symmetric configuration
(left), and the general configuration (right), as a function of the repulsion constant cR.
Both plots exhibit the same trends as the primary hadron distributions in Fig. 10, though
the correlations are slightly reduced, as expected from excited hadrons decaying isotropi-
cally into potentially non-hadronic final states.

7 Final-State Hadrons

In the previous sections, we considered the p? and rapidity distributions at the level of
the primary hadrons produced in the fragmentation process. Decays of those hadrons into
secondaries (via processes like ⇢ ! ⇡⇡, ⇡0 ! ��, etc.) will smear the distributions in
rapidity and dilute the p? enhancement per hadron. In this section, we include decays of
all final-state particles with lifetimes shorter than ⌧ = 10 mm/c. In Pythia, this is done
with the two switches: ParticleDecays:limitTau0 = on, and ParticleDecays:tau0Max

= 10. With this criterion, weakly decaying strange hadrons are treated as stable, while all
particles with shorter lifetimes are decayed. This matches the typical definition for stable
particles used at LHC.

In Fig. 11, we present the average hadron p? distribution as a function of hadron
rapidity, for the symmetric parallel configuration from Sec. 3. We replot the results for the
baseline Lund model (red solid) and our fragmentation repulsion (blue solid) for primary
hadrons. Allowing excited primary hadrons to decay produces the dot-dashed lines in
Fig. 11, for the baseline Lund (red dot-dashed) and our fragmentation repulsion (blue
dot-dashed).

As expected, the plateau has been lowered for the baseline Lund model, since excited
primary hadrons can decay into non-hadronic final state particles, which remove some of
the available p?. Similarly, the fragmentation repulsion exhibits a lowering of its peak
and general structure. However, the di↵erence between the structure of the fragmentation
repulsion and the rapidity plateau of the Lund model remains intact when decays are
turned on, meaning our model can still be distinguished from the baseline Lund model.

In Fig. 12, we show the e↵ects of varying the repulsion constant cR on the two-particle
azimuthal cumulant c2{2} of final-state hadrons, for the symmetric configurations (left)
and the general configurations (right). As shown, the cumulant exhibits the same trends
as the primary hadron counterparts in Fig. 10, though the e↵ects have been somewhat
reduced, due to the non-hadronic particles produced during particle decays.

The key result of allowing particle decays is that our fragmentation repulsion model,
implemented at the level of the primary hadrons produced during string fragmentation,
still retains its key signatures at the level of final-state hadrons, at least at the level of the
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๏Much theoretical activity to understand, model, and disentangle signs of 
collective effects in pp collisions 
๏Interesting to take a step further back: re-examine the modelling of the 
fragmentation of a single string.  

•Grey zone between shower, VCoulomb, and asymptotic string descriptions.  
•Expanding geometry ⟷ entanglement ⟷ effective thermal effects?  
•E.g., a τ-dependent effective string tension can generate a <pT> vs 
strangeness correlation. (Fluctuating string tension likewise?) 
•I have no good LEP measurements on <pT> vs strangeness? Only inclusive 
<pTin>, <pTout> and (limited) PID x spectra dominated by pz. 

๏First steps towards a simple framework for momentum-space modelling 
of string-string repulsion effects 

•Basic framework: 2-step “compression” + “fragmentation repulsion" 
•So far considered only rather simple / textbook sort of setups. Interested to 
discuss merits (or showstoppers) to motivate further work.
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where xh,± is the lightcone momentum fraction taken by a new hadron fragmentation from
the positive end and negative end respectively.

At some cuto↵ invariant massW 2
stop, this fragmentation process stops, and the remnant

string is broken into two final hadrons.

B Shoving Model Parameters

In the shoving model (as implemented in Pythia 8.2), there are several parameters that
govern the rate and amount of shoving. We summarise the parameter values we used to
produce Fig. 3 in Tab. 1. We did not include the flavour changing aspects of the Rope
model.

Parameter Value

Ropewalk:rCutOff 10.0

Ropewalk:limitMom on

Ropewalk:pTcut 2.0

Ropewalk:r0 0.41

Ropewalk:m0 0.2

Ropewalk:gAmplitude 10.0

Ropewalk:gExponent 1.0

Ropewalk:deltat 0.1

Ropewalk:tShove 1.0

Ropewalk:deltay 0.1

Ropewalk:tInit 1.5

Table 1: Input parameters used in Fig. 3 for the shoving model.

We also set the two strings’ endpoints to have mu = 0.33 GeV, though this configu-
ration and our massless endpoint configuration were set to have the same total invariant
mass for each string. Since the shoving model also requires partons to have transverse
spacetime coordinates, we set the strings to be 2.46 fm apart in transverse space (six
times the input parameter Ropewalk:r0). We chose to set the strings relatively far apart,
relative to the transverse radius of the string, since we discovered that for the above pa-
rameter set, a transverse separation between our two straight strings of d? < 5r0 lead to,
in our opinion, pathological results. To understand what each parameter governs in the
model, we direct the reader to [37].
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(Note on fluctuating string tension)
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๏Following a suggestion by Bialas (hep-ph/9909417), a recent study 
(Pirner, Kopeliovich, Reygers, arXiv:1810.0473) allowed for a fluctuating κ.  

•Flux tube size r2 ∝ 1/κ. Allow Gaussian fluctuations with κ2 = λ and  

•Extremely simplified pion spectrum: 

๏They fit <κ> from dN/dpT in [0.5, 1.4] GeV in 4 multiplicity classes 
(using a Tsallis function to extrapolate for the total Nch to pT=0) 

Strangeness Enhancement due to String Fluctuations
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We study string fragmentation in high multiplicity proton-proton collisions in a model where the
string tension fluctuates. These fluctuations produce exponential pion spectra which are fitted to
the transverse momentum distributions of charged particles for di↵erent multiplicities. For each
multiplicity the so obtained hadronic slope parameter defines the magnitude of the string fluctua-
tions which in turn determines the produced ratio of strange to light quarks. Pythia string decay
simulations are used to convert each ratio of strange to light quarks to the appropriate ratio of
strange hadrons to pions.

I. INTRODUCTION

Recently hadronic spectra with strange and multi-
strange hadrons were measured in pp collisions at the
LHC [1]. With increasing multiplicity a strong enhance-
ment of strangeness was observed. This result suggests
collective processes in pp collisions which have been ad-
vocated for heavy ion collisions since long time ago [2, 3].
In this paper we want to present an alternative approach
in line with work focussing on the string dynamics in low
momentum hadron production. Our work parallels other
recent work on modifications of string dynamics [4–6].

Previously we have shown that in AA collisions where
many strings are produced, flux tube dynamics can in-
fluence the azimuthal symmetry of the produced hadrons
[7]. In this work we did not relate the Gaussian momen-
tum distribution of quarks obtained from the Schwinger
model [8] and the tunneling mechanism of Casher, Neu-
berger, and Nussinov [9] with the observed exponential
hadron spectra. This di↵erence has been discussed in the
literature [10] and the idea is that the fluctuations of the
string tension (the energy per unit length of the tube) can
account for the “thermal” distribution of hadrons. The
spectrum of primarily produced hadrons would then be
close to the maximum entropy distribution [11]. There
would be no need for further collisions between partons to
obtain the final form of the observed distribution. Such
a mechanism could explain early thermalization. Obvi-
ously, pp collisions present good examples to test this
hypothesis, since in these collisions the available interac-
tion volume and interaction time is limited.

In this paper we will work out the details of this idea in
three stages. We first calculate the e↵ect of string tension
fluctuations on the Gaussian transverse momentum spec-
trum of produced quarks in the Schwinger model. Then
we take into account that the mean transverse momen-
tum of the produced hadron arises from the transverse
momenta of the produced quark and antiquark, i.e., it is
larger than the transverse momentum of the quarks. As
a second step, we fit this theoretical form of the spectrum
to the observed hadron spectra. The data clearly indicate
that the fluctuations of the string tension become larger
with increasing hadron multiplicity. In the third step we

use the ratios of produced strange to light quarks as input
to a Pythia calculation of string fragmentation. This way
each strange and multistrange hadron is calculated from
the string fragmentation as implemented in the standard
Pythia 8.2 code. The fluctuations with higher average
string tension naturally produce relatively more strange
quarks. The result of the third stage is then calculated as
a function of the total charged-hadron multiplicity and
compared with data.

II. HADRONIC FRAGMENTATION
SPECTRUM FROM A FLUCTUATING FLUX

TUBE

The transverse spectrum of quarks produced in a flux
tube by tunneling from vacuum is given by [9]

dn

d2p
= e�

⇡m2
?

 , (1)

where  is the string tension, the energy stored in the
tube per unit length, and m? =

p
m2 + p2? is the trans-

verse mass of the quark. Conventionally, the quark
masses which enter this formula are the constituent
masses, i.e., for the light u and d quark mass mq and
for the strange quark ms we use,

mq = 0.3GeV, ms = 0.5GeV. (2)

These quark masses are approximate, and we did not try
to optimize their values for a best fit to the data. The
transverse flux tube size varies as r2 / 1/. Defining
�2 ⌘  and following the suggestion of Bialas [10] we let
� fluctuate according to a Gaussian distribution. More
general weight functions are possible. In the context of
Tsallis distributions it has been suggested that gamma
distributions are appropriate as weight functions [12]. As
an example, fluctuations of the inverse string tension 1/
according to a gamma distribution are studied in the ap-
pendix. Here we proceed with Gaussian fluctuations:

P (�) d� =

r
2

⇡µ
e�

�2

2µ d�. (3)
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The average string tension is

hi ⌘ h�2i = µ =

Z 1

0
�2P (�) d�. (4)

Taking into account the Gaussian fluctuations as de-
scribed by Eq. 3, one obtains an exponential transverse
momentum distribution for the produced quark or anti-
quark:

dn

d2pq,?
/ e

�
r

2⇡(m2
q+p2

q,?)

hi . (5)

Of course after the quark production a complicated
hadronic formation process takes place. The coalescence
of produced quarks and antiquarks contributes to low
momentum produced hadrons. At large momenta gluon
radiation and subsequent fragmentation would be more
appropriate. Quark antiquark coalescence leads to an av-
erage meson momentum p2? approximately twice as large
as the quark average momenta:

hp2?i = hp2q,?i+ hp2q̄,?i. (6)

This leads to the following spectrum for pions:

dN

d2p?
= N0e

�
r

2⇡(m2
q+p2?/2)

hi . (7)

The mean transverse momentum squared of the meson
of this distribution equals the sum of the mean transverse
momenta squared of the quark and antiquark. The spec-
trum does obeym? scaling, but with a meson mass which
is 1.5 times higher than the constituent quark mass. This
spectrum does not take into account chiral symmetry as-
sociated with the small mass of the pion and therefore
leads to a worse quality fit at small momenta. But we
think that the slope of the spectrum dominated by high
momenta is a good indicator of the quark fragmentation
dynamics underlying it. In principle large di↵erences of
quark momenta are influenced by the wave function of
the meson which is not taken into account in the simple
formula above. A full calculation including the folding
of the quark distributions with the wave function of the
meson would make the consequences of string fluctua-
tions less transparent, therefore we rely on the simplified
procedure.

III. FITTING HADRONIC SPECTRA FOR
HIGH MULTIPLICITIES IN PP COLLISIONS

Recently the ATLAS collaboration has obtained
charged hadron transverse momentum spectra in pp col-
lisions at a center-of-mass energy 8 TeV in di↵erent
charged-hadron multiplicity classes [13], reaching high
average multiplicities of dNch/d⌘ ⇡ 30 corresponding
to more than 4–5 times the multiplicity in minimum
bias pp collisions at this collision energy [14]. The
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FIG. 1. Gaussian distributions P (�) as a function of �, i.e.,
the square root of the string tension , for strings created in
pp collisions for the four multiplicity classes of Tab. I.

charged-hadron transverse momentum spectra start at
p? ⇡ 0.55GeV/c. In order to determine the average
string tension for each of the four multiplicity classes
we fit the function of Eq. 7 in the range 0.5 < p? <
1.4GeV/c to the spectra measured. Translating this pa-
rameter into the quark spectrum Eq. 5 for strange and
light quarks we obtain the ratios of produced strange to
light quarks ss̄/(uū+ dd̄). To estimate the total average
charged-hadron multiplicity of each class we extrapolate
the measured spectrum to p? = 0 using a Tsallis function
[15, 16]. The results are summarized in Table I.

(dNch/d⌘)⌘=0 hi in GeV2 ss̄/(uū+ dd̄)

7.92 0.21 0.237

11.87 0.22 0.243

18.8 0.25 0.258

31.7 0.29 0.275

TABLE I. Charged-hadron multiplicities at mid-rapidity in
pp collisions at 8 TeV, mean string tension in GeV2, and the
resulting ratio ss̄/(uū+ dd̄).

In Fig. 1 we show the corresponding distributions of �,
the square root of the string tension, for the four multi-
plicity classes. The curve for the lowest multiplicity is the
most narrow. For higher multiplicities the widths of the
Gaussian fluctuations increase. A higher average string
tension corresponds to a smaller average diameter of the
flux tube. The Schwinger mechanism takes into account
pair creation by tunneling in a time-independent electric
field, which is proportional to the average string tension
[9]. The field itself is determined by the charges at the
end of the string and the transverse area of the flux tube
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Taking into account the Gaussian fluctuations as de-
scribed by Eq. 3, one obtains an exponential transverse
momentum distribution for the produced quark or anti-
quark:

dn

d2pq,?
/ e

�
r

2⇡(m2
q+p2

q,?)

hi . (5)

Of course after the quark production a complicated
hadronic formation process takes place. The coalescence
of produced quarks and antiquarks contributes to low
momentum produced hadrons. At large momenta gluon
radiation and subsequent fragmentation would be more
appropriate. Quark antiquark coalescence leads to an av-
erage meson momentum p2? approximately twice as large
as the quark average momenta:

hp2?i = hp2q,?i+ hp2q̄,?i. (6)

This leads to the following spectrum for pions:
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The mean transverse momentum squared of the meson
of this distribution equals the sum of the mean transverse
momenta squared of the quark and antiquark. The spec-
trum does obeym? scaling, but with a meson mass which
is 1.5 times higher than the constituent quark mass. This
spectrum does not take into account chiral symmetry as-
sociated with the small mass of the pion and therefore
leads to a worse quality fit at small momenta. But we
think that the slope of the spectrum dominated by high
momenta is a good indicator of the quark fragmentation
dynamics underlying it. In principle large di↵erences of
quark momenta are influenced by the wave function of
the meson which is not taken into account in the simple
formula above. A full calculation including the folding
of the quark distributions with the wave function of the
meson would make the consequences of string fluctua-
tions less transparent, therefore we rely on the simplified
procedure.

III. FITTING HADRONIC SPECTRA FOR
HIGH MULTIPLICITIES IN PP COLLISIONS

Recently the ATLAS collaboration has obtained
charged hadron transverse momentum spectra in pp col-
lisions at a center-of-mass energy 8 TeV in di↵erent
charged-hadron multiplicity classes [13], reaching high
average multiplicities of dNch/d⌘ ⇡ 30 corresponding
to more than 4–5 times the multiplicity in minimum
bias pp collisions at this collision energy [14]. The
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charged-hadron transverse momentum spectra start at
p? ⇡ 0.55GeV/c. In order to determine the average
string tension for each of the four multiplicity classes
we fit the function of Eq. 7 in the range 0.5 < p? <
1.4GeV/c to the spectra measured. Translating this pa-
rameter into the quark spectrum Eq. 5 for strange and
light quarks we obtain the ratios of produced strange to
light quarks ss̄/(uū+ dd̄). To estimate the total average
charged-hadron multiplicity of each class we extrapolate
the measured spectrum to p? = 0 using a Tsallis function
[15, 16]. The results are summarized in Table I.
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field, which is proportional to the average string tension
[9]. The field itself is determined by the charges at the
end of the string and the transverse area of the flux tube
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p? ⇡ 0.55GeV/c. In order to determine the average
string tension for each of the four multiplicity classes
we fit the function of Eq. 7 in the range 0.5 < p? <
1.4GeV/c to the spectra measured. Translating this pa-
rameter into the quark spectrum Eq. 5 for strange and
light quarks we obtain the ratios of produced strange to
light quarks ss̄/(uū+ dd̄). To estimate the total average
charged-hadron multiplicity of each class we extrapolate
the measured spectrum to p? = 0 using a Tsallis function
[15, 16]. The results are summarized in Table I.
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TABLE I. Charged-hadron multiplicities at mid-rapidity in
pp collisions at 8 TeV, mean string tension in GeV2, and the
resulting ratio ss̄/(uū+ dd̄).

In Fig. 1 we show the corresponding distributions of �,
the square root of the string tension, for the four multi-
plicity classes. The curve for the lowest multiplicity is the
most narrow. For higher multiplicities the widths of the
Gaussian fluctuations increase. A higher average string
tension corresponds to a smaller average diameter of the
flux tube. The Schwinger mechanism takes into account
pair creation by tunneling in a time-independent electric
field, which is proportional to the average string tension
[9]. The field itself is determined by the charges at the
end of the string and the transverse area of the flux tube

Crude techniques but the idea of 
extracting an effective average 
tension from <pT>(Nch) and relating 
that to strangeness enhancement 
may have merit.


