Lecture 2: Beyond Fixed Order - Showers & Merging

To start with, consider what a charged particle really looks like

If it is charged, it has a Coulomb field

Weiszacker (1934) & Williams (1935) noted
that the EM ftields ot an electron in uniform
relativistic motion are predominantly

transverse, with |E| ~ | B

Just like (a superposition of) plane waves!

» Fast electrically charged particles carry
with them clouds of virtual photons

a.k.a. “the method of virtual quanta” (e.g., Jackson, Classical
Electrodynamics) or “the equivalent photon approximation” (EPA)
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The Structure of (Charged) Quantum Fields

What does a charged particle look like in
Quantum Field Theory? (in the interaction picture)

If it has a (conserved) gauge charge, it has a
Coulomb field; made of massless gauge bosons.

=» An ever-repeating self-similar pattern
of quantum fluctuations inside fluctuations inside fluctuations

At increasingly smaller distances : scaling
(modulo running couplings)
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The Structure of (Charged) Quantum Fields

What does a charged particle look like in
Quantum Field TheOry? (in the interaction picture)

If it has a (conserved) gauge charge, it has a
Coulomb field; made of massless gauge bosons.

=» An ever-repeating self-similar pattern
of quantum fluctuations inside fluctuations inside fluctuations

At increasingly smaller distances : scaling
(modulo running couplings)

Nature makes copious use of such structures

— Fractals

Mathematicians
also like them

Infinitely complex self-

similar patterns Mandelbrot st

m oy
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OK, that's pretty ... but so what?

Naively, QCD radiation suppressed by as=0.1
—> Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet ... = 100 GeV can be “soft” at the LHC

Example: SUSY pair production at LHC44, with Msysy = 600 GeV

LHC - spsla - m~600 GeV

Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD |0t ot [pb] gg urg upuy; upup 17T
pr,i > ‘100 GeV\ oo; | 4.83 5.65 0.286 0.502 1.30 o for X + jets much larger than
inclusive X + 1 “jet” ——>0'1j 289 27—1 0136 01—15 07‘3 naive factor—a estimate
inclusive X + 2 “jets” 02 1.09 0.85 0.049 0.039 0.26 >
pr,; >t B0 GeV|| 0o, 4.83 5.65 0.286 0.502 1.30] o for 50 GeV jets = larger than
01 590 5.37 0.283 0.285 1.50\ total cross section
02 417 3.18 0.179 0.117 1.21

(Computed with SUSY-MadGraph)

— what is going on?

All the scales are high, O > 1 GeV, so perturbation theory should be OK

QCD and Event Generators
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Why is tixed-order QCD not enough?

F.O. QCD requires Large scales (as small enough to be perturbative
— high-scale processes)

F.O. QCD also requires No hierarchies

Bremsstrahlung propagators « 1/Q? Oparp [GeV]
integrated over phase space « dQ~ —

— logarithms

— cannot truncate at any fixed order n if

upper and lower integration limits are
hierarchically different
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Harder Processes are accompanied by Harder Jets

The hard process “kicks oft” a shower of successively softer radiation

Fractal structure: it you look at Qer/Quaro << 1, you will resolve substructure.

So it's not like you can put a cut at X (e.g., 50, or even 100) GeV and say: “Ok, now
fixed-order matrix elements will be OK"

Extra radiation:
Will generate corrections to your kinematics

Extra jets from bremsstrahlung can be important combinatorial background
especially it you are looking for decay jets of similar pr scales (often, AM < M)

ls an unavoidable aspect of the quantum description of quarks and gluons
(no such thing as a “bare” quark or gluon; they depend on how you look at them)

This is what parton showers are for
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The QCD Fractal

Most bremsstrahlung is driven by
divergent propagators = simple universal
structure, independent of process details

Amplitudes factorise in singular limits

P(z) = DGLAP splitting kernels, with z = energy fraction = E /(E, + E,)

Partons ab
— allp 5, P(2) 5
M [ ] [ ] [ ] 7 ’b, [ ] [ ] [ ] 2 % C M (] [ ] [ ] ’ —I_ b’ [ ] [ ] [ ]
"collinear" | F+1( a )l s 2(pa . pb) | F( a )|

Coherence — Parton j really emitted by (i, k) colour dipole: eikonal

Gluon j
— .. 2 Jg—=0 o (pz . pk) . 9
M e o o ,Z, ’ko e o % SC M e o o 727 k, e o o
“soft": M / ) / (pi - pj)(p;j - Pr) M )

Apply this many times for successively softer / more collinear emissions =» QCD fractal

+ scaling violation: gs2 — 4mas(Q?)

m oy
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Types of Showers

Factorisation of
(squared) amplitudes
in IR singular limits

(leading colour)

28 - 1/ s,- S
qq 84 q8
+—1] — 4+ — K (2) K - (25)
PP . q8:3°°q 48.9°*q
q8°¢q qg gq +
eikonal term collinear terms S%’ Sgc_]
One term for each parton
One term for each Two terms for each
Not a priori coherent. colour connection colour connection
+ Anqular ordering restores
Ang g re Coherent by Coherent by
azimuthally averaged eikonal construction construction

Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.
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s that “All Orders” ?

Great, starting from an arbitrary Born ME, we can now:

Obtain tree-level ME with any number of legs (in soft/collinear approximation)
X@) X+10)

X X+1(M X+2(M X+3M

Loops

Universality (scaling)
—
Jet-within-a-jet-

X+10) — X+20) — X+30) —> e
within-a-jet-...

Legs

Doesn’t look very “all-orders” though, does it? What about the loops?

L]
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Detailed Balance

Showers Impose Detailed Balance (a.k.a. Probability Conservation < Unitarity)

When X branches to X+1 : Gain one X+1, Lose one X =% Virtual Corrections

= - Universality (scaling) 0/)’5‘
\ \ .
— 5
+ + +

JGF‘W.'th'n.'a'Jet' Virtual = - Real
within-a-jet-...

Legs

=>» Showers do “Bootstrapped Perturbation Theory”
Imposed via differential event evolution
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On Probability Conservation a.k.a. Unitarity

Probability Conservation: P(something happens) + P(nothing happens) = 1

When (X) branches to (X+1): Gain one (X+1). Lose one (X). =» A “gain-loss” differential equation.

Cast as iterative (Markov-Chain Monte-Carlo) evolution algorithm, based on universality and unitarity.

. . M, I
With evolution kernel ~ | +}2 (typically a soft/collinear approx thereof) Typical choices
M
" 2
Evolve in some measure of resolution ~ hardness, 1/time ... ~ fractal scale p1, Q% EO, ...

“"Nothing happens” KLN: sum over degenerate quantum ”somethingi; happens”
% " states = finite; infinities must cancel) * &
— Loop = —/Tree—I—F
Qk o F for “finite”

2Re [M(l)/\/l(o)*] Showers neglect F' = “Leading-Logarithmic” (LL) Approximation |/\/l(+of 2

QCD and Event Generators
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Evolution ~ Fine-Graining the Description of the Event

E.qg., starting from QCD 2—2 hard process
E9 J P ) () < (QHARD

Resolution ~ “ ”
Scale Q QHARD QHARD/Q < "Afew Scale Hierarchy!

At most inclusive level At (slightly) finer resolutions, At high resolution, most events
"Everything is 2 jets” some events have 3, or 4 jets have >2 jets

Cross Fixed order:
sections o] .
inclusive

QCD and Event Generators P. Skands /N Monash U.

Fixed order diverges:
Ox+n ~ A IN2(Q/QparDp)Ox

Fixed order:
Ox+n ~ Ad'Ox

Unitarity =» number of splittings diverges
while cross section remains Oinclusive




A Subtlety: Initial vs Final State Showers

ISR FSR
g> <0 — 3 T g> >0
“spacelike” “timelike”
- “« y “«

Separation meaningtul for collinear radiation, but not for soft ...

Who emitted that gluon?

QFT = sum over amplitudes, then square = interference quantum = classical (IF coherence)

Respected by antenna and dipole languages (and by angular ordering, azimuthally averaged),
but not by collinear DGLAP (e.g., PDF evolution but also PYTHIA without MECs.)

L]
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Perturbative Ambiguities

The final states generated by a shower algorithm will depend on

Ordering & Evolution-

1. The choice of perturbative evolution variable(s) gl — scale choices

2. The choice of phase-space mapping dCID,%;Lrl /d®,,. < Recoils, kinematics

3. The choice of radiation functions a;, as a function of the phase-space variables.

™~ Non-singular terms,
4. The choice of renormalization scale function up. Coherence, Subleading Colour

Phase-space limits / suppressions for hard

5. Choices of starting and ending scales. radiation and choice of hadronization scale

— gives us additional handles for uncertainty estimates, beyond just up

(+ ambiguities can be reduced by including more pQCD — merging!)

L)
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Fixed Order vs Showers
‘PLM.S

Fixed Order Paradigm: consider a single physical process

Exp|iCit solutions, process—by—process (to some extent automated)
Standard-Model: typically NLO or NNLO
Beyond-SM: typically LO or NLO resummation methods.

Note: can also be cured
via (hon-shower)

Accurate for hard process, to given perturbative order Not covered here.
Limited generality

Multi-scale problems =» logs of scale hierarchies, not resummed =¥ loss of accuracy. —

Event Generators (Showers): consider all physical processes

Universal solutions, applicable to any/all processes

Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)

Note: most showers only formally accurate to (N)LL = LL + important corrections

Maximum generality !

Process-dependence = subleading corrections, large for hard resolved jets. = merging

m
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How Not to Do it ...

A (complete idiot’s) solution
Run generator for X + shower

Run generator for X+1 + shower ... and just add all these samples together

Run generator for ... + shower

Problem: “double counting” (of terms present in both expansions)

X + shower is inclusive: X + anything already produces some X+n events

N
S B s
LA AT
- ~

Adding additional ME X+n events =» double counting

X exclusive X inclusf

What you What you X1 incl s
want get X+2 inclusive

L]
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Example: H° — bb

Born + Shower What the first-order shower

expansion gives you
2 2

Shower Approximation
to Born + |

Born+ 1@ LO

What you get from first-
order (LO), e.g., Madgraph

L]
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Rewrite that as Born x [ ... ]

Born + Shower (tree-level expansion)

-/ | \

_ 2s, 1 [ S S
- — = - 1+gS22CF <4 L+ L) 0ps +

| Sidik - SIk \ Sk Sjk ) /
\ Example of shower kernel
(here, used "antenna function” for coherent Phase-space region
gluon emission from a massless quark pair) covered by shower
Born + 1 @ LO
2 Phase-space region
/ covered by ME
s. 1 S.. S..
k U ij
Sidjk - SIK \ Sjk - Sjk

\ Example of matrix element; /
(what MadGraph would give you)

Total Overkill to add these two. All we need is just that +2 (& cover any difference between @pg and Oyp)
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1. Matrix-Element Corrections

Exploit freedom to choose non-singular terms Bengtsson, sjstrand, PLB 185 (1987) 435

Modify parton shower to use radiation functions « full matrix element for 1st emission:

P )24 P Mn 2 (suppressing Os
Parton Shower (j) > (22) — (’22) ‘ +1‘2 5 and Jacobian
Q Q Q ZZ PZ(Z)/QZ ‘Mn’ b factors)
MEC

Process-dependent MEC — P’ different for each process

Done in PYTHIA for all SM decays and many BSM ones Norrbin, sigstrand, NPB 603 (2001) 297
Based on systematic classitication of spin/colour structures

(Also used to account for mass eftects, and for a few simple hard processes like Drell-Yan.)

Difficult to generalise beyond one emission
Parton-shower expansions complicated & can have “dead zones”

Achieved in VINCIA (by devising showers that have simple expansions) Giele, Kosower, Skands, PRD 84 (201 1) 054003
Fischer et al, arXiv:1605.06 142

L)
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http://arxiv.org/abs/arXiv:1605.06142

MECs with Loops: POWHEG

Acronym stands for: Positive Weight Hardest Emission Generator.

Start at Born level

| Mp|?

Generate “‘shower” emission

LL
— — | Mp|* = Z a; |Mpl|* =

Unitarity of Shower

\_, Virtual = — / Real «

Repeat:ordinary parton shower

Correct to Matrix Element

K —o |Mp|* — |Mp|* + 2Re[MzM}] —|—/Real

QCD and Event Generators

Nason, JHEP 0411 (2004) 040

§ Frixione, Nason, Oleari JHEP 0711 (2007) 070
SA + POWHEG Box JHEP 1006 (2010) 043
+2 Note: still LO for X+1

+] / / Shower for X+2, ...

v
0 72 [V

>
+0 +/ +2 +3 Legs

Method is widely applied/available, can be used with
PYTHIA, HERWIG, SHERPA

Subtlety 1: Connecting with parton shower

Truncated Showers & Vetoed Showers

Subtlety 2: Avoiding (over)exponentiation of hard
radiation

Controlled by “hFact” parameter (POWHEG)

P. Skands ;\ Monash U.



2: Slicing (MLM & CKKW-L)

First emission: “the HERWIG correction”
Use the fact that the angular-ordered HERWIG parton shower has a “dead

zone” for hard wide-angle radiation (seymour, 1995)

F @ LOxLL-Soft (HERwWIG Shower)

F+1 @ LOXLL (HERWIG Corrections)

5 J(()2) ; gz)
E1l| o) |of (ot +
~0 0_(()0) SR ISR :(),O)

0 1 2 3
k (legs)

5 G(()z) ng)
21 0(()1) U§1) 051)
2
=0 0'(()0) U§0) 050) Ué())
0 1 2 3
k (legs)

F @ LO; xLL (HERwIG Matched)

5 U(()z) 0&2)
é 1 061) 0&1) 051)
=0 0'(()0) U§0) 050) :gO)
0 1 2 3
k (legs)

Many emissions: the MLM & CKKW-L prescriptions

F+1 @ LOxLL-Soft (excl)

F @ LO xLL-Soft (excl)

(2)

2 op
21| o0 || oW T+
2
<0 OT(()0) SO B[
0 1 2
k (legs)

(CKKW & Lénnblad, 2001)

QCD and Event Generators

¢ (loops)

2 o5
i o0 o | T
0 050) U§o) o0
0 1 2
k (legs)

(Mangano, 2002)

¢ (loops)

F+2 @ LOXLL (incl)

F @ LOy; xLL (MLM & (L)-CKKW)

2| o
1 J(()1) J51)
0 0(()0) MON ;0)
0 1 2
k (legs)

¢ (loops)

(2)

2 o5
1 0(()1) U§1)
0 0_(()0) A0 || O
0 1 2
k (legs)

(+many more recent; see Alwall et al., EPJC53(2008)473)

m
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The Gain The Cost

Example: LHC; : W + 20-GeV Jets Example: ete- & Z = Jets

Q' 12
2 - iplici pfnu> > > 1% 1
% :Jetmultlpllcuy ((ETj>20,|nj|<2.8,ETA3>20,|r]e|<2.47,pT 25,MT 40,AR“J 0.5)):% 2. Tlme tO generate 1000 events
o ) s ATLAS 18
= W + N jets Alpgen + Pythia 6 (350:P2011) (Z — partons, fully showered &
10* | —— Alpgen + Pythia 72y<4< . -
210 ¢ It matched. No hadronization.)
-;: N /\7< -~ Pythia 6 (343:22) ] ‘g
= [ 1"
z | ) 1000 SHOWERS
+ - ]
S - 1000s
5 I . Q>
£ Time
w 10° E
- 15 100s
10 :I P | PR R BT BT | PR I S S T N T | PR N T N S T T | FE I:? 1OS .
0 1 2 3 Nt Matching Order
B oot 1s
O : 0.1s
= .t ! 2 3 4 5 6
o I R N ] Z-n : Number of Matched Emissions
N T T = See e.g. Lopez-Villarejo & Skands, arXiv:|109.3608

3
Plot from mcplots.cern.ch; see arXiv:1306.3436

m e
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3: Subtraction

Examples: MC@NLO, aMC@NLO

LO x Shower NLO

X2  X+[@ .. X2  X+1@)

XM X+ X+2() X+3() X+ X+2(1)  X+3(1)

X+10) X+20) X+30)

- Fixed-Order Matrix Element

Shower Approximation

X+20) X+3(0)

QCD and Event Generators P. Skands /N Monash U.



Matching 3: Subtraction

LO x Shower

QCD and Event Generators

X((2)

X1

X+[@)

X+ X+201)  X+3(1)

X+10) X+20) X+30)

Examples: MC@NLO, aMC@NLO

N LO - ShOWGFNLQ

Fixed-Order Matrix Element

Shower Approximation

X2 X+[?

X X+ X+2(h)  X+3()

Born X+10) X+20) X+3(0)

Expand shower approximation to
NLO analytically, then subtract:

Fixed-Order ME minus Shower
Approximation (NOTE: can be < 0!)

P. Skands ;\ Monash U.



Matching 3: Subtraction

Examples: MC@NLO, aMC@NLO

LO x Shower (NLO - Showernio) x Shower
X2  X+1@) X X
X X+ X+2(0) X+3(0) . X X X X
Born X+[0) X+20) X+30) ., Born X+[©  X() X

: . Fixed-Order ME minus Shower
Fixed-Order Matrix Element Approximation (NOTE: can be < 0!)

Subleading corrections generated by

Shower Approximation shower off subtracted ME

m
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Matching 3: Subtraction

Combine » MC@NLO

Frixione, Webber, JHEP 0206 (2002) 029
Consistent NLO + parton shower (though correction events can have w<0)

Recently, has been fully automated in aMC@NLO

Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli, JHEP 1202 (2012) 048

X2  X+[©2

X+ X+2(1)  X+3(1)

X+20) X+30)

Note: negative weights w < 0 are a problem because they kill efficiency:
Extreme example: 1000 w(+1) + 999 w(-1) events — statistical precision of 1 event, for
2000 generated. [For comparison, standard MC@NLO typically has O(10%) w = -1 events.]

L]
QCD and Event Generators P. Skands N\ Monash U.



POWHEG vs MC@NLO

Both methods include the complete

Example: Higgs Production
. . 10! . ; ; ; : : :
first-order (NLO) matrix elements. o damping
---  no damping, LHEF
Difterence is in whether only the shower 10° e
kernels are exponentiated (MC@NLQO) or [ h =30 GeV
- SN —  h=130GeV, LHEF |
whether part of the matrix-element Z 10 o
corrections are too (POWHEGQG) = i
éy:& 10774 pure NLO _> 'iO,DamPing-
In POWHEG, how much of the MEC
you exponentiate can be controlled by O ot from Bagnashivicin, ey
the “hFact” parameter [ JHER ST Goie) 056 i
. . 7050 100 150 200 20 300 350 400
Variations basically span range between pl (GeV)
MC@NLO-like case, and original (hFact=1) i
POWHEG case (~ PYTHIA-style MECs) Ph =y

R° = Dh Rdiv Rf — (1 — Dh) Rdiv

exponentiated not exponentiated

L)
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Merging — Summary

The Problem:

Showers generate singular parts of (all) higher-order matrix elements
Those terms are of course also present in X + jet(s) matrix elements

To combine, must be careful not to count them twice! (double counting)

3 Main Methods

1. Matrix-Element Corrections (MECs): multiplicative correction factors
Pioneered in PYTHIA (mainly for real radiation = LO MECs)
Similar method used in POWHEG (with virtual corrections m NLO)
Generalised to multiple branchings: VINCIA

2. Slicing: separate phase space into two regions: ME populates high-Q region, shower populates
low-Q region (and calculates Sudakov factors)

CKKW-L (pioneered by SHERPA) & MLM (pioneered by ALPGEN)
3. Subtraction: MC@NLO, now automated: aMC@NLO

State-of-the-art » Multi-Leg NLO (UNLOPS, MiNLO, FxFx)

L)
QCD and Event Generators P. Skands /N Monash U.



Quiz: Connect the Boxes

Ambiguity about how much of the
nonsingular parts of the ME that get
exponentiated; controlled by:

hFact

Procedure can lead to a fraction of

events having: CKKW-L & MLM
Negative Weights

3

Ambiguity about definition of which
events “count” as hard N-jet events;

controlled by:

Merging Scale

m e
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(Advertisement: Uncertainties in Parton Showers)

Recently, HERWIG, PYTHIA & SHERPA all published papers on automated
calculations of shower uncertainties (based on tricks with the Sudakov algorithm)

pp—Z—leptons 7000 GeV

Weight of event={1,0.7,1.2, ...} o 10
S p,, (Born)
@)
log,o (kL jet resolution 3 — 4[GeV]) S 1 = ATLAS
F | | | | | | | 3 - 10-1 —— MECs OFF: muR
2 10° ‘ Sherpa pp — W(ev) at LO+PS ‘ o MECs OFF: P(2)
~ g . from CT14 to MMTH2014 3 1072k
E 10t o Tem 1 : Example 2:
= f SHERPA: Bothmann, 107 Renormalisation
e 102 £ ) Schoénherr,. Schumann: in -
— - dedicated arXiv:1605.04692 104
bO‘E 100 ;_ - I‘eW’d: ME ] E
— - ’ 7. _5|_ PYTHIA 8: Mrenna & PS;
= : rewd: ME+PS(1st em.) 1077 arXiv:1605.08352
b 1072k — rewd: ME+PS -
© F 10°%E Data from JHEP09(2014)145
o - Pythia 8.219 2
3 1077 = ' >
_8 1.4
2 8 -
+~ ©
< a
— > 1F
0.2 04 0.6 0.8 1.0 1.2 14 1.6 1.8 8 af
F L
C 1 | N A Y | | AN SN |
See also HERWIG++ ; VINCIA: 10 10° b [GeV]
Bellm et al.. arXiv:1605.08256 Giele. Kosower PS: arXiv:1102.2126 &

Encouraged to start using those, and provide feedback
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Evolution Equations

What we need is a differential equation
Boundary condition: a few partons defined at a high scale (Qf)

Then evolves (or “runs”) that parton system down to a low scale (the hadronization cutoff ~ 1
GeV) = It's an evolution equation in Qf

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Probability to remain undecayed in the time interval
[t1,t2]
dP(t) o
dt A(t1,t2) = exp (—/ CN dt) = exp (—cy At)
t1
_ 2
Decay probability per unit time =1—cnAt +O(ey)
dPres(t) —dA
= — = A(ty,t
dt a - v Al

[A(t1't2) . "Sudakov Factor"]

(respects that each of the original nuclei can
only decay if not decayed already)

QCD and Event Generators
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The Sudakov Factor

- N
In nuclear decay, the Sudakov factor counts:
How many nuclei remain undecayed after a time t
Probability to remain undecayed in the time interval [¢#;,1;]
t2
A(t1,t2) = exp (—/ CN dt) = exp (—cy At)

t
: J

4 N

The Sudakov factor for a parton system “counts”:

The probability that the parton system doesn’t evolve (branch) when we run the
factorization scale (~1/time) from a high to a low scale

(i.e., that there is no state change)

Evolution probability per unit “time”

dPreS (t) _dA
= — = A
at T en At 1)

(replace t by shower evolution scale)

(replace cn by proper shower evolution kernels)

L)
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Nuclear Decay

Nuclei remaining undecayed N tht dP
. = — X — -
after time t (t1; 12) = exp dt
t1
100 % ~ "sOrder M Second Order Third Order [l Exponential
Second-Order
50 % 50
All Orders
Exponential
Early . Late
o/ + : Time - >
0% T Times | | Times
Third-Qrder
-50 %
4
-100 %
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A Shower Algorithm

— 1. For each evolver, generate a random number R € [0, 1]

SOlVG equation R p— A(t17 t) for [ (with starting scale 1)
Analytically for simple splitting kernels,
else numerically and/or by trial+veto

— t scale for next (trial) branching

2. Generate another Random Number, R, € [0,1]

To tind second (linearly independent) phase-space invariant

I,(z,t)
Solve equation R, = for z at scale t
i * 7 L (Zmax(1), 1) |
© dA(?
With the “primitive function” I, (Z,t) — / dz (, )
Zmin(t) dt t/ =t

3. Generate a third Random Number, Ry € [0,1]
Solve equation R, = ¢/2m for ¢ = Can now do 3D branching

Accept/Reject based on full kinematics. Update t1 = t. Repeat.

L]
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Example: DGLAP Kernels

DGLAP: from collinear limit ot MEs (pp+p)2—0

+ evolution equation from invariance with respect to Qr = RGE

DGLAP 14 22
(E.g., PYTHIA) Pyqg(z) = CF ,
9., 1 -2
Xgbe L (1 T Z(l o Z))2
dPa — ; o PaHbC(Z) dt dZ . Pg—>gg(z) — NC’ Z(l — Z) 9
&
c Pya(z) = Tr(z*+(1-2)7),
x > 1+ 22
a b Pioqy(2) = 6(21 1 _ .
Pb = Z Pa 1+ 22
Pe = (1-2) pa P€—>£’y(z) — 6? )
1 -2
4 )
d 2 ... with Q2 some measure of “hardness”
dt = i — dln Q2 = event/jet resolution
Q2 measuring parton virtualities / formation time / ...
\_ J

NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

QCD and Event Generators




Coherence

QED: Chudakov effect (mid-fifties)

— e‘l‘
NN\ \ NNV VNN
. - e
cosmic ray v atom
lllustration by T. Sjéstrand
emulsion plate rreduced _nhormal
lonization lonization

L)
QCD and Event Generators P. Skands /N Monash U.



DGLAP and Coherence: Angular ordering

Physics: (applies to any gauge theory)

Interference between emissions from colour-connected partons (e.g. i and k)
— coherent dipole patterns

(More complicated multipole effects beyond leading colour; ignored here) k

DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in an azimuthally
averaged sense) by angular ordering

Start from the M.E. factorisation formula in the soft limit

E]2 (pi - pi) B 1 — cosB; B 1 — cos6; n 1 - 1
(pi - p;)(p; - Pr) (1 —cosb;;)(1 —cosb,) (1 —cosb;;)(1 —cosbr) 2(1—cosb;;) 2(1—cosbx)
Add and subtract 1/(1-cos8;) and 1/(1-cosBj) to isolate ij and jk collinear pieces

/QW dyi; 1 — cos b N 1 1 B 1 m cos 0;; — cos Oy,
o 4m \(1—-cosf;;)(1 —cosb;r) 1—cosb;; 1—cosb ~ 2(1 — cos 0;) | cos 0;; — cos 0]

ake the ij piece and integrate over azimuthal angle d¢j (using explicit momentum representations)

_ . 1 _ .
> Soft radiation X if 0 < By ; otherwise 0

/4
averaged over Qj : 1 — cos 0;; T
kill radiation outside ik

opening angle

Note: Dipole & antenna showers include this effect point by point in ¢ (without averaging)

QCD and Event Generators P. Skands '/\ Monash U.



Coherence at Work in QCD

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions

Consider, for instance, scattering at 45¢

2 possible colour flows :

Out 1
a) “forward” colour flow 2
Q
1
180°
Out 2
Out 1
b) “backward” | ‘ ‘
i 0° 45° 90° 135° 180°
colour flow 0 (gluon, beam)
> < Fi . T o
igure 4: Angular distribution of the first gluon emission in

qq — qq scattering at 45°, for the two different color flows.

The light (red) histogram shows the emission density for the

Out 2 forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

Another nice physics example is the SM contribution to the Tevatron top-quark forward-backward
asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

L]
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http://arxiv.org/abs/arXiv:1210.6345

PDG: 0.119
ME : 0.127

From MS to MC

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

A
/1 4 22 2 A2)
% < g
P g, 2) — —C | (_)
( S ) 9 F 1 _ & | - >
Eg Analytic resummation (in Mellin space): General Structure
_ 1 ZN_]' o 1 - dpi J for DIS _ _
R dz /— A ag) + B(ag
_/0 -2 | 102L (A(as) ( ))_ _
BW = —3CF/2
Afay) = AV 4 A®) (%)QJF... 1 o ;’/ 1
7T ' AP = §CF (CA (1_8 B 67T2> N §NF) = §CFKCMW
s Xs
Rep|ace PZ(Q{S7 Z) - C@ - (1 -+ KCMW 27‘(‘)

(for z—1: soft gluon limit): B 1 — 2



PDG: 0.119

ME : 0.127

From MS to MC B

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

A
/14 52 a. N2 A2)
Pl(ag, ile | (—S>
(@5,2) = or 12 s 1 —2z
Replace C Plaw.s) = Ci% (1+ Komw52)
(for z—1: soft gluon limit): LAY 1 — »
_ (MS)
aMC) — (MS) (1 + Konvw s ) Main Point:
> > 2T :
Doing an
Kenw uncompensated
Amvc = Aggexp ( 47 B, ) ~ 157 Ay scale variation

(for nF=5)

actually ruins this

. 2 2 — (12
Note also: used muz= pt2= (1-2)Q result

Amati, Bassetto, Ciafaloni, Marchesini, Veneziano, 1980



The Shower Operator

Born

dO |Bom

_ /dch MY 2 50— O({p}n))

H = Hard process

{p}: partons

But instead of evaluating O directly on the Born final state,

first insert a showering operator

Born

+ shower dO

doy

o

[ d@u 1M S({p}i. O

{p}: partons

S : showering operator

QCD and Event Generators

Unitarity: to first order, S does nothing

SHptu,0)=06(0—-0O{pta)) + O(as)

P. Skands ;\ Monash U.




The Shower Operator

To ALL Orders

(Markov Chain)

S({prx, O) = Altstart; thaa)0(O—O({p}x))

“Nothing Happens” — “Evaluate Observable”

thad
_/ dt dA( e ) SHrtx+1, O)
t dt

“Something Happens” —  “Continue Shower”

start

All-orders Probability that nothing happens

2 qp (Exponentiation)
A(th t2) = eXP (—/ dt —) Analogous to nuclear decay

dt N(t) ~ N(0) expl-ct)

QCD and Event Genera tors




(Multi-Leg Merging at NLO)

Currently, much activity on how to combine several NLO matrix elements for the same
process: NLO for X, X+1, X+2, ...

Unitarity is a common main ingredient for all of them

Most also employ slicing (separating phase space into regions defined by one particular
underlying process)

Methods
UNLOPS, generalising CKKW-L/UMEPS: Lonnblad, Prestel, arXiv:1211.7278

MINLQO, based on POWHEG: Hamilton, Nason, Zanderighi (+more)  arXiv:1206.3572, arXiv:1512.02663
FXFX, based on MC@NLQO: Frederix & Frixione, arXiv:1209.6215

(V|NC|A, based on NLO MECS)I Hartgring, Laenen, Skands, arXiv:1303.4974

Most (all?) of these also allow NNLO on total inclusive cross section
Will soon define the state-of-the-art for SM processes

For BSM, the state-of-the-art is generally one order less than SM

L)
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