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Coherent Showers In Resonance Decays Using VINCIA

Validation

Coherence In tt̄ Decay
Plot antenna function in top centre of mass frame (b along z):
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g/qqsAK) as a function of �jk in A COM frame

log(E/GeV) = 0.0
log(E/GeV) = 0.2
log(E/GeV) = 0.4
log(E/GeV) = 0.6
log(E/GeV) = 0.8
log(E/GeV) = 1.0
log(E/GeV) = 1.2
log(E/GeV) = 1.4
log(E/GeV) = 1.6
log(E/GeV) = 1.8

Antenna function is consistent with Altarelli-Parisi splitting
function in (quasi-)collinear direction, coherence results in a
suppression in the backwards direction.
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A new shower model based on “Resonance-
Final” antennae (with mass- and helicity-dependence)
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Coherence in resonance decays
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In narrow width approximation,
factorise production and decay of
resonances; these stages are
showered independently.

Goal is to shower the
resonance-final dipole in decay
coherently, without modifying the
invariant mass of the resonance,
needed for resonance-aware
matching.
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Note: interference between production and decay will 
occur at scales < Γ; not the topic of this talk
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๏In narrow width approximation,  
•Factorise production and decay of resonances;  
•These stages are showered independently.  

Goal is to shower 
the resonance-final 
antenna in decay 

coherently, without 
modifying the 

invariant mass of 
the resonance, 

needed for 
resonance-aware 

matching. 
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Prime Motivation: Top Quark Mass
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Motivation

arXiv:1801.03944

“... the very

minimal message

that can be drawn

from our work is

that, in order to

assess a meaningful

theoretical error in

top-mass

measurements, the

use of di↵erent

shower models,

associated with

di↵erent NLO+PS

generators, is

mandatory.”
6



Uncertainties

HE L E N BR O O K S  & PE T E R  SK A N D S !4MO N A S H U.

๏Fixed-order accuracy (μR) + PDFs (μF) + matching/merging (e.g. hdamp) 
๏Parton shower ambiguities from logarithmic accuracy 

•→ Estimate by comparing different shower architectures  
๏ + systematic parametric variations  

•→ To reduce, need systematic improvements:  
๏ At LL / LC: coherence & “optimised” choices (for muR, evolution scale, 

recoil strategies, …) 
๏ Beyond LL / LC: genuine subleading colour (beyond optimised LC) and 

higher-order corrections to shower kernels (beyond optimised LL) 

๏+ Mass Effects, Finite-Width Effects, Polarisation Effects

VINCIA

๏+ Non-perturbative: Renormalon pole mass ambiguity ≲ ΛQCD , 

colour-reconnections,︎ MPI, beam remnant treatment, hadronisation, 
hadron rescattering, hadron and τ decays, … 

( )



Dipoles vs Antennae (in resonance decays)

HE L E N BR O O K S  & PE T E R  SK A N D S !5MO N A S H U.

๏Dipole showers 
•Each branching has a well-defined 
“radiator” and a “recoiler”, with 
distinct kinematics maps. 
•Neglect contribution from  
resonance as radiator (partition 
can even become negative). 
•In principle free to choose recoiler, 
e.g. W in t → W b 

๏Antenna Showers 
•Agnostic as to who is the radiator; 
smooth transition in kinematics 

๏ Interpolates between collinear limits 
•Coherence built in; cannot neglect 
resonance’s contribution 
•Recoil strategy relates to antenna 
factorisation

VINCIA

Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Antennae v. Dipoles for Resonance Decays
Dipole showers

I Have a well-defined notion
of “radiator”.

I Neglect contribution from
resonance as radiator
(partition can actually
become negative).

I In principle free to choose
recoiler, e.g. W in t ! Wb

I Sharp transition in
kinematics

t
b ?

Antenna showers
I Are agnostic as to who is the

radiator: coherence built in
I Cannot neglect resonance’s

contribution
I Recoil strategy relates to

antenna factorisation
I Smooth transition in

kinematics (interpolates
between collinear limits)

X
b �t

9
t → b W :  
Top sits at rest (does not radiate)  
Bottom quark radiates;  recoils against the 
only other final-state parton, W. 
More branchings: ambiguous what recoiler 
to use for parton colour-connected to top

t → b W:  
Antenna between bottom and crossed top.  
Kinematics map with X = W ⟹ W acquires recoil 
More branchings: unambiguous. Parton colour-
connected to top participates in the RF antenna; 
rest = X collectively acquire the recoil.

*

*Note: the original dipole shower, ARIADNE, is of the type I here call “antenna shower”



Current Status of Resonance Decay Showers
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Review of parton showers

Current Status of Resonance Decays In Showers

Shower Type Decay shower? Coherence?
Pythia 8 [hep-ph/0010012]

[hep-ph/0408302]

Dipole 3 7

Sherpa [1412.6478] Catani-Seymour 7
(production only)

(3)

Herwig 7 (q̃)
[1810.06493]

Angular-ordered 3 3

Herwig 7 (dip)
[1810.06493]

Catani-Seymour (3)
(on-shell only)

(3)

Vincia - NEW! Antenna 3 3

8

Slide from H. Brooks

Dire? Dipole ✔?*
*: not completely sure about status

( )
*Via ME corrections

*

(no RF dipole)

(no RF dipole)

✔?



RF Showers 1: Antenna Functions
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b⇤t bt⇤t b +Ant = | |2/ Bornpa
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Review of parton showers

Antenna Functions: generic form
Define massless invariants:

yaj ⌘ saj/(sAK + sjk), µ2
a ⌘ m2

a/(sAK + sjk), etc.

aRF
emit =

1
sAK


(1� yaj)

n + (1� yjk)
2

yajyak

�
2µ2

a

y2
aj

(1� fk(yaj , yjk))�
2µ2

k

y2
jk

(1� gk(yaj , yjk)) + hk(yaj , yjk)

#

aRF
split =

1
2m2

jk

"
y2

ak + y2
aj +

2m2
j

m2
jk

#

where n = 2 if k = q and n = 3 if k = g.

I fk, gk, hk are polynomials in yaj ,yjk which vanish in the soft-collinear

limits, chosen such that all helicity-dependent antennae are

positive-definite over the full phase space.
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…

Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Antenna Functions: generic form
Define massless invariants:

yaj ⌘ saj/(sAK + sjk), µ2
a ⌘ m2

a/(sAK + sjk), etc.

aRF
emit =

1
sAK


(1� yaj)

n + (1� yjk)
2

yajyak

�
2µ2

a

y2
aj

(1� fk(yaj , yjk))�
2µ2

k

y2
jk

(1� gk(yaj , yjk)) + hk(yaj , yjk)

#

aRF
split =

1
2m2

jk

"
y2

ak + y2
aj +

2m2
j

m2
jk

#

where n = 2 if k = q and n = 3 if k = g.

I fk, gk, hk are polynomials in yaj ,yjk which vanish in the soft-collinear

limits, chosen such that all helicity-dependent antennae are

positive-definite over the full phase space.

14

collinear
=) zk ⇠ yak = 1� yaj (+2µ2

j ) , za ⇠ yAK = 1� yjk
<latexit sha1_base64="ASWFlizDJe0CbU7GuWOR0ZD2qMc="></latexit>

Define dimensionless invariants:

Labeling: AI KF| {z }
pre-branching

! aI jF kF| {z }
post-branching

<latexit sha1_base64="LW8v+2NvWNsOBoZZepGIIEU+knU="></latexit>

Note: defined for all helicity configurations & all shower states assigned explicit 
helicities throughout VINCIA; here just showing summed forms for brevity.

aRF
emit =

1

sAK

"
(1� yaj)2+�Kg + (1� yjk)2

yajyjk
� 2µ2

a

y2aj
� 2µ2

k

y2jk
+ f(yaj , yjk, µ

2
a, µ

2
k)

#

<latexit sha1_base64="tp92NmGWEPSFpZICI7iavCJ/TUI="></latexit>

aRF
split =

1

m2
jk

"
y2ak + y2aj +

2m2
j

m2
jk

#
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Polynomial(s) chosen such 
that all helicity components 

remain positive-definite

→ same forms 
as FF, IF, II :* 

*: difference is 1/(sAK + sjk) normalisation and phase-space map
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Review of parton showers

Factorisation
I No emission prob = exp{�

R
d�ant4⇡↵sCā}

I Phase space: d�n+1 = d�antd�n

For the decay A ! K{X} (before), a ! jk{X} (after)

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
.

N.B.: s↵� ⌘ 2p↵ · p� throughout!

I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2
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Example: Collinear Limits
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Review of parton showers

Example: qq antenna limits
Can rewrite antenna as:

aRF
g/qq =

1
sAK

2

6664
2yak

yajyjk
�

2µ2
a

y2
aj

�
2µ2

k

y2
jk| {z }

soft

+
yaj

yjk
+

yjk

yaj| {z }
collinear

+ n.s.

3

7775

Define Q2
⌘ sjk; y ⌘

Q2

sAK
; z ⌘

sak
sAK

)
saj

sAK
= 1 + y � z

aRF
g/qq =

1
Q2


2z(1 + y)
1 + y � z

+ (1 + y � z)�
2m2

k

Q2
+O(y)

�
+ n.s.

In collinear limit, y ! 0

lim
y!0

aRF
g/qq =

1
Q2


1 + z2

1� z
�

2m2
k

Q2

�
=

1
Q2

Pq!gq(z, µ̃)

N.B. Need to sum over neighbouring antennae for gg collinear limit.

15

Labeling: AI KF| {z }
pre-branching

! aI jF kF| {z }
post-branching

<latexit sha1_base64="LW8v+2NvWNsOBoZZepGIIEU+knU="></latexit>
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Review of parton showers

Factorisation
I No emission prob = exp{�

R
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d�ant =
1
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dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
.

N.B.: s↵� ⌘ 2p↵ · p� throughout!

I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2
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y↵� =
s↵�

sAK + sjk
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Example: XGsplitIF
Labeling: AI KF| {z }

pre-branching

! aI jF kF| {z }
post-branching
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Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Factorisation
I No emission prob = exp{�

R
d�ant4⇡↵sCā}

I Phase space: d�n+1 = d�antd�n

For the decay A ! K{X} (before), a ! jk{X} (after)

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
.

N.B.: s↵� ⌘ 2p↵ · p� throughout!

I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2

12

Note sum of ++ antennae have same singularities as sum of +- ones => same singular terms 
obtained when summing over helicity of emitted gluon irrespective of parent helicities 

Identical to RF modulo nonsingular terms y↵� =
s↵�

sAK + sjk
<latexit sha1_base64="NVSQQ1PniNbRy7oBg8rLboV8JbM=">AAACInicbZDLSsNAFIYn9VbrrerSzWARBKEkVVAXQtWN4KaCvUATysl00o6dXJiZCCXkWdz4Km5cKOpK8GGctlnY1h8Gfr5zDmfO70acSWWa30ZuYXFpeSW/Wlhb39jcKm7vNGQYC0LrJOShaLkgKWcBrSumOG1FgoLvctp0B9ejevORCsnC4F4NI+r40AuYxwgojTrF82EnsYFHfbBdqiDFF9j2BJBETvN0BC5vU3yEtXkYpGmnWDLL5lh43liZKaFMtU7x0+6GJPZpoAgHKduWGSknAaEY4TQt2LGkEZAB9Ghb2wB8Kp1kfGKKDzTpYi8U+gUKj+nfiQR8KYe+qzt9UH05WxvB/2rtWHlnTsKCKFY0IJNFXsyxCvEoL9xlghLFh9oAEUz/FZM+6ISUTrWgQ7BmT543jUrZOi5X7k5K1assjjzaQ/voEFnoFFXRDaqhOiLoCb2gN/RuPBuvxofxNWnNGdnMLpqS8fMLrxKk/A==</latexit>

The helicity contributions are:

a(X+ ! X �+) =
1

2m2
jk

"
y
2
ak �

m
2
jyak

m
2
jk(1� yak)

#
, (C.50)

a(X+ ! X +�) =
1

2m2
jk

"
y
2
aj �

m
2
jyaj

m
2
jk(1� yaj)

#
, (C.51)

a(X+ ! X ++) =
m

2
j

2m4
jk


yaj

(1� yaj)
+

yak

(1� yak)
+ 2

�
. (C.52)

Note, in principle the exact crossing corresponds to performing the substitution m
2
jk !

m
2
jky

2
AK in the denominators above, which is neglected since the yjk ! 0 limit corresponds

to yAK ! 1.

C.3.6 QXsplitIF

The QXsplitIF functions are essentially identical to the QXsplitII functions, the only difference
being that the recoiler is now a final-state parton.

The helicity-averaged antenna function is:

a(qAXK ! gaq̄jXk) =
1

sAK


y
2
AK + (1� yAK)2

yaj
+

2µ2
jyAK

y
2
aj

�
. (C.53)

The individual helicity contributions are:

a(+X ! +�X) =
1

sAK


y
2
AK

yaj
�

µ
2
jy

2
AK

y
2
aj(1� yAK)

�
, (C.54)

a(+X ! ��X) =
1

sAK


(1� yAK)2

yaj
�

µ
2
j(1� yAK)

y
2
aj

�
, (C.55)

a(+X ! ++X) =
1

sAK


µ
2
j

y
2
aj(1� yAK)

�
, (C.56)

a(�X ! �+X) = a(+X ! +�X) , (C.57)

a(�X ! ++X) = a(+X ! ��X) , (C.58)

a(�X ! ��X) = a(+X ! ++X) . (C.59)

C.3.7 GXconvIF

The GXconvIF functions are essentially identical to the GXconvII functions, the only difference
being that the recoiler is now a final-state parton.
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The helicity-averaged antenna function is:

a(gAgK ! gagjqk) = (C.42)

1

sAK


(1� yaj)3 + (1� yjk)3

yajyjk
+

1 + y
3
jk

yaj(1� yjk)
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1� 2yaj
yjk

+ 3� 2yjk

�
.

The helicity contributions are:

a(++ ! +++) =
1

sAK


1

yajyjk
+ (1� ↵)

1� 2yaj
yjk

+
1

yaj(1� yjk)

�
, (C.43)

a(++ ! +�+) =
1

sAK


(1� yaj)3 + (1� yjk)3 � 1

yajyjk
+ 6� 3yaj � 3yjk + yajyjk

�
,(C.44)

a(+� ! ++�) =
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sAK
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(1� yaj)3
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, (C.45)

a(+� ! +��) =
1

sAK
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(1� yjk)3

yajyjk
+ (1� ↵)

1� 2yaj
yjk

+ 3yaj � yjk � yajyjk

�
.(C.46)

Note: the nonsingular terms for the helicity-flip antenna are chosen such that it remains positive-
definite over the phase space with p

2
? < sAK and still goes to zero in the hard-collinear limits.

Note 2: the last function includes some quadratic terms to remain positive definite.
The two additional antennae, with helicity flips on the incoming gluon leg (i.e., with parton

j inheriting the a helicity, rather than A) are the same as for the GQemitIF case:

a(++ ! ��+) =
1

sAK

y
3
jk

yaj(1� yjk)
, (C.47)

a(+� ! ���) = a(++ ! ��+) . (C.48)

C.3.5 XGsplitIF

The XGsplitIF functions are essentially identical to the final-state gluon-splitting antennae, the
only difference being that the recoiler is now an initial-state parton. The helicity average (for
unpolarised partons, including an optional correction term for splitting to massive quarks) is:

a(XAgK ! Xaq̄jqk) =
1

2m2
jk

"
y
2
ak + y

2
aj +

2m2
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m
2
jk

#
. (C.49)
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HELICITY SUM:

The helicity-averaged antenna function is:

a(gAgK ! gagjqk) = (C.42)
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The helicity contributions are:
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Note: the nonsingular terms for the helicity-flip antenna are chosen such that it remains positive-
definite over the phase space with p

2
? < sAK and still goes to zero in the hard-collinear limits.

Note 2: the last function includes some quadratic terms to remain positive definite.
The two additional antennae, with helicity flips on the incoming gluon leg (i.e., with parton

j inheriting the a helicity, rather than A) are the same as for the GQemitIF case:

a(++ ! ��+) =
1

sAK

y
3
jk

yaj(1� yjk)
, (C.47)

a(+� ! ���) = a(++ ! ��+) . (C.48)

C.3.5 XGsplitIF

The XGsplitIF functions are essentially identical to the final-state gluon-splitting antennae, the
only difference being that the recoiler is now an initial-state parton. The helicity average (for
unpolarised partons, including an optional correction term for splitting to massive quarks) is:

a(XAgK ! Xaq̄jqk) =
1

2m2
jk
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2
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2
aj +

2m2
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Helicity Structure for Gluon Emissions
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C.3.2 QGemitIF

The helicity-averaged antenna function is:

a(qAgK ! qagjgk) =
1

sAK
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(1� yaj)3 + (1� yjk)2
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The individual helicity contributions are:
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a(+� ! +��) =
1

sAK
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Note that the sum of the ++ antenna functions has the same singularities as the sum of the +-
ones, thus the same singular terms are obtained when summing over the helicity of the emitted
gluon, irrespective of parent helicities.

Note 3: the nonsingular terms are to ensure positive-definite functions which do not vanish
at the arbitrary line across the diagonal of the phase space while still vanishing for hard-collinear
helicity flips.

Note 4: The ++ ! + � + and +� ! + + � antennae have had non-singular pieces
proportional to the mass terms added to guarantee positive definiteness over the full phase space
for any choices of masses.
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Example: QGemitIF

MHV

Labeling: AI KF| {z }
pre-branching

! aI jF kF| {z }
post-branching
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Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Factorisation
I No emission prob = exp{�

R
d�ant4⇡↵sCā}

I Phase space: d�n+1 = d�antd�n

For the decay A ! K{X} (before), a ! jk{X} (after)

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
.

N.B.: s↵� ⌘ 2p↵ · p� throughout!

I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2

12

Note sum of ++ antennae have same singularities as sum of +- ones => same singular terms 
obtained when summing over helicity of emitted gluon irrespective of parent helicities 

“Helicity Flip” proportional to mass squared

“Helicity Flip” proportional to mass squared

NMHV

Identical to RF modulo nonsingular terms

Helicity conservation => Suppressed when xk or xa -> 0 

y↵� =
s↵�

sAK + sjk
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“Gluon collinear partitioning” interpolates between GP (α=1) and GGG (α=0)
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RF Showers 2: Evolution Variables
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Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Evolution Variables

Emissions:

Q2
evol =

sajsjk

sjk + sAK

⇣ =
sjk + sAK

sAK

Splittings:

Q2
evol =

(sjk + 2m2
q)(saj � m2

q)

sAK + sjk + 2m2
q

⇣ =
sak

sAK

16

Labeling: AI KF| {z }
pre-branching

! aI jF kF| {z }
post-branching
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Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Factorisation
I No emission prob = exp{�

R
d�ant4⇡↵sCā}

I Phase space: d�n+1 = d�antd�n

For the decay A ! K{X} (before), a ! jk{X} (after)

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
.

N.B.: s↵� ⌘ 2p↵ · p� throughout!

I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2

12



๏2→3 phase-space factorisation: 

RF Showers 3: Phase-Space Factorisation
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VINCIA

2

mainly to ensure that all of our antenna functions remain
positive over all of their respective phase spaces. This
makes them straightforward to interpret in the proba-
bilistic context of a Shower MC. We combine these an-
tenna functions with a recoil strategy (a.k.a. kinematics
map) which preserves the 4-momentum of the decaying
resonance (and hence in particular its invariant mass),
while imparting a (collective) recoil to the other final-
state particle(s) produced in the decay. We argue that
this approach should exhibit improved coherence proper-
ties over the baseline PYTHIA shower model, and that
it represents an interesting alternative to other current
Shower MC implementations. We also show that it com-
bines quite naturally with resonance-aware matching in
the POWHEG formalism [? ].

Finally, we combine our treatment with recent work on
QED showers [? ], to extend our treatment of resonance-
decay showers to include both QCD and QED shower
branchings, within a single interleaved framework. In
QED, there is of course no “leading colour” limit; a co-
herent treatment of soft photon radiation necessitates the
inclusion of genuine multipole interference e↵ects. The
most widely used approach for this in the Shower MC
context is probably the YFS formalism [1? ], which al-
lows to “dress” the external legs of a hard process with
coherent QED radiation. This is done as an “after-
burner”; there is no interleaving with the QCD shower
process. Recently, a complementary approach was pro-
posed by Kleiss and Verheyen [? ], which allows to
treat both QCD and (fully coherent) QED branchings
within a single interleaved sequence. As their approach
is based on a multipole generalisation of the antenna pic-
ture, it is straightforward to adapt to the context pre-
sented here. (For comparison, e.g., PYTHIA employs a
simplified treatment based on a set of “maximally screen-
ing” QED dipoles, see [? ].)

Motivations:

• Why do we want coherence in resonance decays?

• Relevance for top mass measurements

– vacuum stability - want a precise measure-
ment

– theoretical uncertainties from MC modelling:
both perturbative/non-perturbative in origin.

– perturbative uncertainties: one source is
shower ambiguities. e.g choice of recoil strat-
egy and radiation pattern

II. ANTENNA SHOWERS IN RESONANCE
DECAYS

Begin with some general remarks about coherence and

recoils in the decays of coloured resonances, a summary

of current treatments and their issues (if not done in in-

troduction), some figures to illustrate what is done eg in

Pythia, pathological cases?

Pythia 8.2 [2, 3] Herwig 7 [4–8] Sherpa [9]

A. Resonance-Final Phase Space Factorisation

Denoting a generic shower evolution variable by Q2,
the no-emission probability for an antenna evolved over
the interval [Q2

1, Q
2
2] is given by the antenna Sudakov

factor, e�A, where

A(Q2
1, Q

2
2) =

Z Q2
2

Q2
1

d�ant 4⇡↵sCā, (1)

where �ant is the (3-dimensional) 2 ! 3 antenna phase
space, ā is a colour- and coupling-stripped antenna func-
tion, and C is the appropriate colour factor (for a dis-
cussion on the conventions used, see [10]). The antenna
function captures the leading singularities of the relevant
tree-level matrix elements (but may also contain finite
terms in addition).

The antenna phase space depends on a factorisation of
the post-branching Lorentz invariant phase space,

d�n+1 = d�ant ⇥ d�n (2)

in such way that the degrees of freedom of the branching
itself and the pre-branching particles can be treated in-
dependently. Unlike in traditional parton showers where
such phase space factorisations only hold in the soft and
collinear limits, eq. (2) is exact.

We now consider the decay of a coloured resonance
A ! K + {X}, where K is a final-state particle colour-
connected to A, and {X} schematically denotes any other
decay products. (E.g., in t ! bW , the top quark would
be identified with A, the b quark with K, and the W
with X.) The phase space measure is simply (ref):

d�A!K+{X} =
1

8(2⇡)2
�1/2(m2

A, m2
AK , m2

X)

m2
A

d⌦K (3)

where �(a, b, c) = a2+b2+c3
�2ab�2ac�2bc is the Källén

function, and m2
A = p2

A, m2
AK = (pA � pK)2 and m2

X =
p2

X . There are only two degrees of freedom, representing
the global orientation of the frame.

After a branching from the dipole stretching between
A � K, we denote the post-branching partons by a !

jk + {X 0
}, where the prime on X 0 emphasises that an

overall recoil may be imparted to the X system. Defining
the invariant sjk ⌘ 2pj · pk (as opposed to the m2

jk =

(pj + pk)2), the phase space can be written as:

d�a!jk+{X} =
1

(4⇡)5
dsajdsjkd�

m2
A

d⌦K , (4)

where � corresponds to a rotation of the branching plane
about the original orientation of K.

The antenna phase space measure is therefore:

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
. (5)

Labeling: AI KF| {z }
pre-branching

! aI jF kF| {z }
post-branching
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Review of parton showers

Factorisation
I No emission prob = exp{�

R
d�ant4⇡↵sCā}

I Phase space: d�n+1 = d�antd�n

For the decay A ! K{X} (before), a ! jk{X} (after)

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
.

N.B.: s↵� ⌘ 2p↵ · p� throughout!

I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2
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Review of parton showers

Factorisation
I No emission prob = exp{�

R
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I Phase space: d�n+1 = d�antd�n
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I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2

12

pA = pK + pX =) m2
X = (pA � pK)2 ⌘ (pa � pj � pk)

2 = m2
X0
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mainly to ensure that all of our antenna functions remain
positive over all of their respective phase spaces. This
makes them straightforward to interpret in the proba-
bilistic context of a Shower MC. We combine these an-
tenna functions with a recoil strategy (a.k.a. kinematics
map) which preserves the 4-momentum of the decaying
resonance (and hence in particular its invariant mass),
while imparting a (collective) recoil to the other final-
state particle(s) produced in the decay. We argue that
this approach should exhibit improved coherence proper-
ties over the baseline PYTHIA shower model, and that
it represents an interesting alternative to other current
Shower MC implementations. We also show that it com-
bines quite naturally with resonance-aware matching in
the POWHEG formalism [? ].

Finally, we combine our treatment with recent work on
QED showers [? ], to extend our treatment of resonance-
decay showers to include both QCD and QED shower
branchings, within a single interleaved framework. In
QED, there is of course no “leading colour” limit; a co-
herent treatment of soft photon radiation necessitates the
inclusion of genuine multipole interference e↵ects. The
most widely used approach for this in the Shower MC
context is probably the YFS formalism [1? ], which al-
lows to “dress” the external legs of a hard process with
coherent QED radiation. This is done as an “after-
burner”; there is no interleaving with the QCD shower
process. Recently, a complementary approach was pro-
posed by Kleiss and Verheyen [? ], which allows to
treat both QCD and (fully coherent) QED branchings
within a single interleaved sequence. As their approach
is based on a multipole generalisation of the antenna pic-
ture, it is straightforward to adapt to the context pre-
sented here. (For comparison, e.g., PYTHIA employs a
simplified treatment based on a set of “maximally screen-
ing” QED dipoles, see [? ].)

Motivations:

• Why do we want coherence in resonance decays?

• Relevance for top mass measurements

– vacuum stability - want a precise measure-
ment

– theoretical uncertainties from MC modelling:
both perturbative/non-perturbative in origin.

– perturbative uncertainties: one source is
shower ambiguities. e.g choice of recoil strat-
egy and radiation pattern

II. ANTENNA SHOWERS IN RESONANCE
DECAYS

Begin with some general remarks about coherence and

recoils in the decays of coloured resonances, a summary

of current treatments and their issues (if not done in in-

troduction), some figures to illustrate what is done eg in

Pythia, pathological cases?

Pythia 8.2 [2, 3] Herwig 7 [4–8] Sherpa [9]

A. Resonance-Final Phase Space Factorisation

Denoting a generic shower evolution variable by Q2,
the no-emission probability for an antenna evolved over
the interval [Q2

1, Q
2
2] is given by the antenna Sudakov

factor, e�A, where

A(Q2
1, Q

2
2) =

Z Q2
2

Q2
1

d�ant 4⇡↵sCā, (1)

where �ant is the (3-dimensional) 2 ! 3 antenna phase
space, ā is a colour- and coupling-stripped antenna func-
tion, and C is the appropriate colour factor (for a dis-
cussion on the conventions used, see [10]). The antenna
function captures the leading singularities of the relevant
tree-level matrix elements (but may also contain finite
terms in addition).

The antenna phase space depends on a factorisation of
the post-branching Lorentz invariant phase space,

d�n+1 = d�ant ⇥ d�n (2)

in such way that the degrees of freedom of the branching
itself and the pre-branching particles can be treated in-
dependently. Unlike in traditional parton showers where
such phase space factorisations only hold in the soft and
collinear limits, eq. (2) is exact.

We now consider the decay of a coloured resonance
A ! K + {X}, where K is a final-state particle colour-
connected to A, and {X} schematically denotes any other
decay products. (E.g., in t ! bW , the top quark would
be identified with A, the b quark with K, and the W
with X.) The phase space measure is simply (ref):

d�A!K+{X} =
1

8(2⇡)2
�1/2(m2

A, m2
AK , m2

X)

m2
A

d⌦K (3)

where �(a, b, c) = a2+b2+c3
�2ab�2ac�2bc is the Källén

function, and m2
A = p2

A, m2
AK = (pA � pK)2 and m2

X =
p2

X . There are only two degrees of freedom, representing
the global orientation of the frame.

After a branching from the dipole stretching between
A � K, we denote the post-branching partons by a !

jk + {X 0
}, where the prime on X 0 emphasises that an

overall recoil may be imparted to the X system. Defining
the invariant sjk ⌘ 2pj · pk (as opposed to the m2

jk =

(pj + pk)2), the phase space can be written as:

d�a!jk+{X} =
1

(4⇡)5
dsajdsjkd�

m2
A

d⌦K , (4)

where � corresponds to a rotation of the branching plane
about the original orientation of K.

The antenna phase space measure is therefore:

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
. (5)
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mainly to ensure that all of our antenna functions remain
positive over all of their respective phase spaces. This
makes them straightforward to interpret in the proba-
bilistic context of a Shower MC. We combine these an-
tenna functions with a recoil strategy (a.k.a. kinematics
map) which preserves the 4-momentum of the decaying
resonance (and hence in particular its invariant mass),
while imparting a (collective) recoil to the other final-
state particle(s) produced in the decay. We argue that
this approach should exhibit improved coherence proper-
ties over the baseline PYTHIA shower model, and that
it represents an interesting alternative to other current
Shower MC implementations. We also show that it com-
bines quite naturally with resonance-aware matching in
the POWHEG formalism [? ].

Finally, we combine our treatment with recent work on
QED showers [? ], to extend our treatment of resonance-
decay showers to include both QCD and QED shower
branchings, within a single interleaved framework. In
QED, there is of course no “leading colour” limit; a co-
herent treatment of soft photon radiation necessitates the
inclusion of genuine multipole interference e↵ects. The
most widely used approach for this in the Shower MC
context is probably the YFS formalism [1? ], which al-
lows to “dress” the external legs of a hard process with
coherent QED radiation. This is done as an “after-
burner”; there is no interleaving with the QCD shower
process. Recently, a complementary approach was pro-
posed by Kleiss and Verheyen [? ], which allows to
treat both QCD and (fully coherent) QED branchings
within a single interleaved sequence. As their approach
is based on a multipole generalisation of the antenna pic-
ture, it is straightforward to adapt to the context pre-
sented here. (For comparison, e.g., PYTHIA employs a
simplified treatment based on a set of “maximally screen-
ing” QED dipoles, see [? ].)

Motivations:

• Why do we want coherence in resonance decays?

• Relevance for top mass measurements

– vacuum stability - want a precise measure-
ment

– theoretical uncertainties from MC modelling:
both perturbative/non-perturbative in origin.

– perturbative uncertainties: one source is
shower ambiguities. e.g choice of recoil strat-
egy and radiation pattern
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where �ant is the (3-dimensional) 2 ! 3 antenna phase
space, ā is a colour- and coupling-stripped antenna func-
tion, and C is the appropriate colour factor (for a dis-
cussion on the conventions used, see [10]). The antenna
function captures the leading singularities of the relevant
tree-level matrix elements (but may also contain finite
terms in addition).

The antenna phase space depends on a factorisation of
the post-branching Lorentz invariant phase space,

d�n+1 = d�ant ⇥ d�n (2)

in such way that the degrees of freedom of the branching
itself and the pre-branching particles can be treated in-
dependently. Unlike in traditional parton showers where
such phase space factorisations only hold in the soft and
collinear limits, eq. (2) is exact.

We now consider the decay of a coloured resonance
A ! K + {X}, where K is a final-state particle colour-
connected to A, and {X} schematically denotes any other
decay products. (E.g., in t ! bW , the top quark would
be identified with A, the b quark with K, and the W
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After a branching from the dipole stretching between
A � K, we denote the post-branching partons by a !

jk + {X 0
}, where the prime on X 0 emphasises that an

overall recoil may be imparted to the X system. Defining
the invariant sjk ⌘ 2pj · pk (as opposed to the m2
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(pj + pk)2), the phase space can be written as:
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mainly to ensure that all of our antenna functions remain
positive over all of their respective phase spaces. This
makes them straightforward to interpret in the proba-
bilistic context of a Shower MC. We combine these an-
tenna functions with a recoil strategy (a.k.a. kinematics
map) which preserves the 4-momentum of the decaying
resonance (and hence in particular its invariant mass),
while imparting a (collective) recoil to the other final-
state particle(s) produced in the decay. We argue that
this approach should exhibit improved coherence proper-
ties over the baseline PYTHIA shower model, and that
it represents an interesting alternative to other current
Shower MC implementations. We also show that it com-
bines quite naturally with resonance-aware matching in
the POWHEG formalism [? ].

Finally, we combine our treatment with recent work on
QED showers [? ], to extend our treatment of resonance-
decay showers to include both QCD and QED shower
branchings, within a single interleaved framework. In
QED, there is of course no “leading colour” limit; a co-
herent treatment of soft photon radiation necessitates the
inclusion of genuine multipole interference e↵ects. The
most widely used approach for this in the Shower MC
context is probably the YFS formalism [1? ], which al-
lows to “dress” the external legs of a hard process with
coherent QED radiation. This is done as an “after-
burner”; there is no interleaving with the QCD shower
process. Recently, a complementary approach was pro-
posed by Kleiss and Verheyen [? ], which allows to
treat both QCD and (fully coherent) QED branchings
within a single interleaved sequence. As their approach
is based on a multipole generalisation of the antenna pic-
ture, it is straightforward to adapt to the context pre-
sented here. (For comparison, e.g., PYTHIA employs a
simplified treatment based on a set of “maximally screen-
ing” QED dipoles, see [? ].)

Motivations:

• Why do we want coherence in resonance decays?

• Relevance for top mass measurements

– vacuum stability - want a precise measure-
ment

– theoretical uncertainties from MC modelling:
both perturbative/non-perturbative in origin.

– perturbative uncertainties: one source is
shower ambiguities. e.g choice of recoil strat-
egy and radiation pattern
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factor, e�A, where
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where �ant is the (3-dimensional) 2 ! 3 antenna phase
space, ā is a colour- and coupling-stripped antenna func-
tion, and C is the appropriate colour factor (for a dis-
cussion on the conventions used, see [10]). The antenna
function captures the leading singularities of the relevant
tree-level matrix elements (but may also contain finite
terms in addition).

The antenna phase space depends on a factorisation of
the post-branching Lorentz invariant phase space,

d�n+1 = d�ant ⇥ d�n (2)

in such way that the degrees of freedom of the branching
itself and the pre-branching particles can be treated in-
dependently. Unlike in traditional parton showers where
such phase space factorisations only hold in the soft and
collinear limits, eq. (2) is exact.

We now consider the decay of a coloured resonance
A ! K + {X}, where K is a final-state particle colour-
connected to A, and {X} schematically denotes any other
decay products. (E.g., in t ! bW , the top quark would
be identified with A, the b quark with K, and the W
with X.) The phase space measure is simply (ref):
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1
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After a branching from the dipole stretching between
A � K, we denote the post-branching partons by a !

jk + {X 0
}, where the prime on X 0 emphasises that an

overall recoil may be imparted to the X system. Defining
the invariant sjk ⌘ 2pj · pk (as opposed to the m2
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(pj + pk)2), the phase space can be written as:
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1
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where � corresponds to a rotation of the branching plane
about the original orientation of K.
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Same form as the final-final antenna phase space

… with mX = mAK as one of the Born parameters



RF Showers 4: Kinematics Map (Recoil)
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Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Kinematic Map (recoil strategy)
I Construct in A rest frame, and rotate such that K is along z.
I Specify system X only recoils longitudinally.
I Rotate about z by � (flatly sampled).
I Boost back to lab frame.
I For each recoiler i, boost pi by pX0 � pX

Note!

If we fix to just one recoiler i.e. A ! RKX, a ! rjkX then
CANNOT simulatenously preserve m2

A, m2
R and m2

AK .
Replace A ! A � X everywhere.

I Antenna mass is modified!

I Phase space normalisation is modified!

I Mass used everywhere is (pA � pX)2 - not same as propagator!

13

Labeling: AI KF| {z }
pre-branching

! aI jF kF| {z }
post-branching
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Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

Factorisation
I No emission prob = exp{�

R
d�ant4⇡↵sCā}

I Phase space: d�n+1 = d�antd�n

For the decay A ! K{X} (before), a ! jk{X} (after)

d�ant =
1

16⇡2

dsajdsjk

�1/2(m2
A, m2

AK , m2
K)

d�

2⇡
.

N.B.: s↵� ⌘ 2p↵ · p� throughout!

I Factorisation is exact, not just in soft, collinear limits
I Preserves invariant mass of resonance: pA = pa

I Preserves invariant mass of system of recoilers:
m2

AK = (pA � pK)2 = (pa � pj � pk)2

12

*Note the prescription defined here is similar to one recently implemented in Herwig7 by Cormier et al., arXiv:1810.06493



Effect of Kinematics Map
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Validation

E↵ect of Kinematic Map
Consider average recoil |�~pW |, after first and second emission(s).

Recoil after first:
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PYTHIA 8 (W recoil map)
VINCIA (W recoil map)
VINCIA (default map)

Recoil after second:
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PYTHIA 8 (W recoil map)
VINCIA (W recoil map)
VINCIA (default map)
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Second branching: 
Collective RF map 
→ less recoil to W

First branching: 
there is only the W



(Coherence In Production)
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Validation

Coherence In pp̄ ! tt̄ Production
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VINCIA

Forward-backwards asymmetry:

AFB(O) =
d�
dO

��
�y>0

�
d�
dO

��
�y<0

d�
dO

��
�y>0

+ d�
dO

��
�y<0

Coherent showers include part of
the real emission correction that
generates a FB asymmetry that
becomes negative for large
pT (tt̄). [1205.1466]

20

(b)
_

__

_
qq

(a)

q

t

t t

qqqq q

ttt t

q q

Figure 2: Colour flow and QCD radiation in (a) forward and (b) backward tt̄ production.

In the following section we examine in more detail the approximations made in event

generators, in comparison to the fixed-order perturbative treatment. Then in Section 3

we explain in general terms how they can produce a positive inclusive asymmetry while

only containing the LO production process. In Section 4 we present results from the

HERWIG++, PYTHIA and SHERPA generators for the inclusive asymmetry and various dif-

ferential asymmetry distributions. In Section 5 we summarize our findings and comment

on their implications.

2. Comparison with fixed order

To establish notation we first consider the lowest-order process,

q(p1) + q̄(p2) ! Q(p3) + Q̄(p4) , (2.1)

for which the leading-order spin-averaged matrix element squared is

X��M(qq̄ ! QQ̄)
��2 = g

4
CF

N

✓
t̄
2 + ū

2

s̄2
+

2m2

s̄

◆
(2.2)

where m is the heavy quark mass and

s̄ = 2 p1 · p2 , t̄ = �2 p1 · p3 , ū = �2 p1 · p4 . (2.3)

The corresponding di↵erential cross section,

d�̂B

dt̄
=

1

16⇡ s̄2

X��M(qq̄ ! QQ̄)
��2 , (2.4)

is used for the primary hard subprocess in the event generators. Clearly, it does not

exhibit any forward–backward asymmetry. Thus for an asymmetry to be produced by a

leading-order generator, some parton showering must occur.

2.1 One gluon emission

The leading-order shower contribution is the one-gluon emission process,

q(p1) + q̄(p2) ! Q(p3) + Q̄(p4) + g(k) . (2.5)

– 3 –

Well-studied effect in 
p-pbar collisions 

Top quark FB 
asymmetry

PS, Webber, Winter JHEP 1207 (2012) 151

Coherent showers 
produce a pTdependent 

asymmetry

Herwig7 dipole shower exhibits 
exactly same behaviour as VINCIA



Coherence in Decay
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Coherence In tt̄ Decay
Plot antenna function in top centre of mass frame (b along z):
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log10(a
RF
g/qqsAK) as a function of �jk in A COM frame

log(E/GeV) = 0.0
log(E/GeV) = 0.2
log(E/GeV) = 0.4
log(E/GeV) = 0.6
log(E/GeV) = 0.8
log(E/GeV) = 1.0
log(E/GeV) = 1.2
log(E/GeV) = 1.4
log(E/GeV) = 1.6
log(E/GeV) = 1.8
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Pgq(z)/Q2 as a function of �jk in A COM frame

log(E/GeV) = 0.0
log(E/GeV) = 0.2
log(E/GeV) = 0.4
log(E/GeV) = 0.6
log(E/GeV) = 0.8
log(E/GeV) = 1.0
log(E/GeV) = 1.2
log(E/GeV) = 1.4
log(E/GeV) = 1.6
log(E/GeV) = 1.8

Antenna function is consistent with Altarelli-Parisi splitting
function in (quasi-)collinear direction, coherence results in a
suppression in the backwards direction.
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Ratio to AP kernelLog of antenna function



๏VINCIA gives narrower b-jets than Pythia 8 
•Effect survives MPI + hadronisation

B-Jet Profiles
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Validation

b-jet Profiles
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PYTHIA 8

VINCIA

I VINCIA gives narrower b-jets than PYTHIA 8.
I E↵ect survives MPI + hadronisation.
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Shower only Shower + MPI + Hadr

Tentative conclusion: more coherence ~ more wide-angle suppression?
*Also agrees with intuition from dipole language where “top dipole” can be negative
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Matching with POWHEG
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Matching with POWHEG

I Use POWHEG v2 (tt̄dec)1

(no need for exact finite width
e↵ects)

I Very similar setup to matching
with PYTHIA in 2.

I Veto hardest emission in
production with

Vincia:QmaxMatch = 1

I Veto hardest emission in decay
with UserHooks interface

ATLAS dileptonic tt̄ @ 8 TeV
[1709.09407]

100 150 200 250 300 350
pT e + pT µ[GeV ]

0.8

1.0

1.2

R
at

io
to

A
T

L
A

S
da

ta

10�4

10�3

10�2

1 �
d
�

d
(p

T
e
+

p
T

µ
)
[G

eV
�

1
]

pp ! tt̄ ! bb̄`+`�⌫�⌫̄�,
�

s = 8 TeV

PS only (no MPI)

ATLAS data

PY8+POWHEG

VINCIA+POWHEG

H7(ang)+POWHEG

PYTHIA 8 @LO

1
[1412.1828],[1509.0907]

2
[1801.03944]

3
Thanks to S. Ferrario Ravasio for providing an interface to H7 24
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Validation

pp̄ ! tt̄ @ 8 TeV: mbj`⌫
Monte-Carlo “truth” (parton-level) analysis:

I Assumes we can reconstruct p⌫ and match correct `, bj pair.
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Top Mass Profile @ 8 TeV : Parton Level
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Validation

pp̄ ! tt̄ @ 8 TeV: mbj`⌫
Monte-Carlo “truth” (parton-level) analysis:

I Assumes we can reconstruct p⌫ and match correct `, bj pair.

25

(looking under the hood / “cheating”)

Plot from H. Brooks



Top Mass Profile @ 8 TeV
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Validation

pp̄ ! tt̄ @ 8 TeV: mbjµ

Full hadron-level analysis: choose pairing for `, bj that minimise
average mass. Again, note endpoint.
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Validation

pp̄ ! tt̄ @ 8 TeV: mbjµ

Full hadron-level analysis: choose pairing for `, bj that minimise
average mass. Again, note endpoint.

27

 

Note Endpoint

(example of a realistic observable)

Plot from H. Brooks



Summary
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๏VINCIA can now do 
production and decay 
of top quarks 

•With full mass and 
helicity dependence 

๏Based on new 
“resonance-final” 
antennae 

•Coherent top+b (& 
top+g) radiation 
patterns 
•Collective recoil 
kinematics 

VINCIA

Coming soon...

PYTHIA 8.3 ! Watch this space!



Outlook
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๏Finite-width effects 
•Baseline naive model: 

•+ some alternatives (with Rob Verheyen)

VINCIA

IF antenna

IF antenna

II 
an

te
nn

a

⊗
RF antenna

RF antenna

⊗

Q > Γ
Q > Γ

Q < Γ

IF antenna

Note: we do not expect these effects to be large for top decays, cf e.g.,  
Khoze & Sjöstrand Phys.Lett. B328 (1994) 466-476 



Shower Architectures
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๏Sum over all dipoles / antennae should reproduce the 
leading log

VINCIA

Coherent Showers In Resonance Decays Using VINCIA

Review of parton showers

What are all these di↵erent showers anyway?

Type Singularities Coherence? No dead Examples
soft collinear zones?

DGLAP part. full 7 7
Angular full+veto full+veto 3 7 H7 q̃
Dipole part. part. 7 3 Pythia 8
C-S part. part. 3 3 Sherpa,

H7 dip
Antenna
(global)

full part. 3 3 Vincia

Antenna
(sector)

full full+veto 3 3 Vincia

Sum over all dipoles should reproduce the correct leading log.

7

Table from H. Brooks


