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MAKING PREDICTIONS
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→ Integrate differential cross sections over 
specific phase-space regions

LHC detector 
Cosmic-Ray detector 

Neutrino detector 
X-ray telescope 

…
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In particle physics:  
Integrate over all quantum histories 

(+ interferences)

Scattering  
Experiments:



๏Approximate all contributing amplitudes for this … 
•To all orders…then square including interference effects, … 
•+ non-perturbative effects

dσ/dΩ; how hard can it be?
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… and estimate the detector response

… integrate it 
over a ~300-
dimensional 
phase space

Candidate tt̄H event
ATLAS-PHOTO-2016-014-13



➤ EVENT GENERATORS
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๏Aim: generate events in as much detail as mother nature 
•→ Make stochastic choices ~ as in Nature (Q.M.) → Random numbers 
•Factor complete event probability into separate universal pieces, treated 
independently and/or sequentially (Markov-Chain MC) 

๏Improve lowest-order (perturbation) theory by including ‘most 
significant’ corrections 

•Resonance decays (e.g., t→bW+, W→qq’, H0→γ0γ0, Z0→μ+μ-, …) 
•Bremsstrahlung (FSR and ISR, exact in collinear and soft* limits) 
•Hard radiation (matching & merging; next lecture) 
•Hadronization (strings / clusters, next lecture)  
•Additional Soft Physics: multiple parton-parton interactions, Bose-Einstein 
correlations, colour reconnections, hadron decays, … 

๏Coherence* 
•Soft radiation → Angular ordering or Coherent Dipoles/Antennae



ORGANISING THE CALCULATION
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๏Divide and Conquer → Split the problem into many (nested) pieces

Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays:  
Use process-specific (N)LO matrix elements (e.g., gg → H0 → γγ) 
→ Sets “hard” resolution scale for process: QMAX 

ISR & FSR (Initial- & Final-State Radiation):  
Driven by differential (e.g., DGLAP) evolution equations, dP/dQ2, as 
function of resolution scale; from QMAX to QHAD ~ 1 GeV   

MPI (Multi-Parton Interactions) 
Protons contain lots of partons → can have additional (soft) parton-
parton interactions → Additional (soft) “Underlying-Event” activity  

Hadronisation 
Non-perturbative modeling of partons → hadrons transition

Separation of time scales ➤ FactorisationsPhysics Maths



THE MAIN WORKHORSES
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๏PYTHIA (begun 1978) 
Originated in hadronisation studies: Lund String model  

Still significant emphasis on soft/non-perturbative physics 

๏HERWIG (begun 1984) 
Originated in coherence studies: angular-ordered showers 

Cluster hadronisation as simple complement 

๏SHERPA (begun ~2000)  
Originated in Matrix-Element/Parton-Shower matching (CKKW-L) 

Own variant of cluster hadronisation 

๏+ Many more specialised:  
๏ Matrix-Element Generators, Matching/Merging Packages, Resummation packages,  
๏ Alternative QCD showers, Soft-QCD MCs, Cosmic-Ray MCs, Heavy-Ion MCs, Neutrino MCs, 

Hadronic interaction MCs (GEANT/FLUKA; for energies below ECM ~ 10 GeV),  
๏ (BSM) Model Generators, Decay Packages, … 

The workhorses

Herwig, PYTHIA and Sherpa o↵er convenient frameworks
for LHC physics studies, covering all aspects above,
but with slightly di↵erent history/emphasis:

PYTHIA (successor to JETSET, begun in 1978):
originated in hadronization studies,
still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984):
originated in coherent showers (angular ordering),
cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000):
had own matrix-element calculator/generator
originated with matching & merging issues.
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Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = DGLAP splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

/ 1

2(pa · pb)

+ scaling violation: gs2 → 4παs(Q2)

Gluon j → “soft”:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “colour antenna” 

Can apply this many times 
→ nested factorizations 
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Most bremsstrahlung is driven by 
divergent propagators → simple 
structure  

Amplitudes factorise in singular 
limits (→ universal “scale-invariant” 
or “conformal” structure)

hard process

Bremsstrahlung

Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Initial- and Final-state Showers



Example:  
SUSY pair production at LHC14, with MSUSY ≈ 600 GeV 

HOW SOFT IS SOFT?
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๏Naively, QCD radiation suppressed by αs≈0.1 
•➙ Truncate at fixed order = LO, NLO, … 

๏   But beware the jet-within-a-jet-within-a-jet …

100 GeV can be “soft” at the LHC

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive factor-αs estimate

► Naively, brems suppressed by αs ~ 0.1 
•  Truncate at fixed order = LO, NLO, … 
•  However, if ME >> 1  can’t truncate! 

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV 

•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
more 50-GeV jets 
larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for 50 GeV jets ≈ larger than 
total cross section  
→ what is going on?

All the scales are high, Q >> 1 GeV, so perturbation theory should be OK



•F.O. QCD also requires No hierarchies  
•Bremsstrahlung poles ∝1/Q2 integrated 
over phase space ∝dQ2 → logarithms  
•→ large if upper and lower integration 
limits are hierarchically different

210
QHARD

QBrems

APROPOS FACTORISATION
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๏F.O. QCD requires Large scales (αs small enough to be 
perturbative → high-scale processes)

Why are Fixed-Order QCD matrix elements not enough?

QHARD [GeV]

1

ΛQCD

F.O. 
ME

10

100 large 
logs

perturbative

non-perturbative



PARTON SHOWERS
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๏So it’s not like you can put a cut at X (e.g., 50, or even 100) GeV and say: “ok, 
now fixed-order matrix elements will be OK” 

๏The hard process will “kick off” a shower of successively softer radiation 
•If you look at QResolved/QHARD << 1, you will resolve shower structure 

๏Extra radiation:  
•Will generate corrections to your kinematics 
•Is an unavoidable aspect of the quantum description of quarks and gluons (no 
such thing as a bare quark or gluon; they depend on how you look at them) 
•Extra jets from bremsstrahlung can be important combinatorial background 
especially if you are looking for decay jets of similar pT scales (often, ΔM << M)

Harder Processes are Accompanied by Harder Jets

This is what parton showers are for 



BREMSSTRAHLUNG
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(calculated process by process)For any basic process

Note: here just 
iterating a single 
eikonal emission; 
should really sum 
over all emitters. 

Could also have built 
an approximation 

from iterating 
collinear emissions 

(DGLAP)



BREMSSTRAHLUNG
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Singularities: universal (mandated by gauge theory) 
Non-singular terms: process-dependent 
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◆�“SOFT”

“COLLINEAR”“SOFT” +F

“COLLINEAR”

Note: here just 
iterating a single 
eikonal emission; 
should really sum 
over all emitters. 

Could also have built 
an approximation 

from iterating 
collinear emissions 

(DGLAP)

Note: to get the 
Pq→qg(z) Altarelli-
Parisi splitting 

kernel, take the 
collinear limit (sij→0 

or sjk→0) of these 
ratios



BREMSSTRAHLUNG
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Iterated factorization 
Gives us a universal approximation to ∞-order tree-level cross sections.  

Exact in singular (strongly ordered) limit. 
Non-singular terms (non-universal) → Uncertainties for hard radiation

But something is not right … Total σ would be infinite … 
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LOOPS AND LEGS
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๏ Coefficients of the Perturbative Series

X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The corrections from 
Quantum Loops are 

missing

Universality (scaling)

Jet-within-a-jet-within-a-jet-...



๏Total cross section for 
emitting a jet:

RECAP: ADDING JETS AT FIXED ORDER
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|MX+1|2

|MX |2 /|M(Z0 ! qigj q̄k)|2

|M(Z0 ! qI q̄K)|2 = g2s 2CF
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๏R = some “Infrared Safe” phase space region (E.g., cut on p⊥ , ΔR)

P.  S k a n d s

Cross sections at LO

Born @ LO 
!
!
!
!

Born + n @ LO 
!
!
!

Infrared divergent → Must be regulated 

R = some Infrared Safe phase space region 
(Often a cut on p⊥ > n GeV) 

Careful not to take it too low!
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Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z � 3 jets:
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Taking R→0 seems to produce a disaster 
Logarithms → infinities 

Can we make any sense of this limit? 
Physically? Mathematically?

X(2) X+1(2) …

X(1) X+1(1) …

Born X+1(0) X+2(0)
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UNITARITY (AT NLO)
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๏Next-to-Leading Order: 

๏

P.  S k a n d s

�NLO(e
+e� ! qq̄) = �LO(e

+e� ! qq̄)

✓
1 +

↵s(ECM)

⇡
+O(↵2

s)

◆

Cross sections at NLO

NLO: 

!
!

!

KLN Theorem (Kinoshita-Lee-Nauenberg) 
Sum over ‘degenerate quantum states’ :                
Singularities cancel at complete order (only finite terms left over)

30

Z � 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16

(note: this is not the 1-loop diagram squared)
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Z decay:

q

q q
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X(2) X+1(2) …
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P.  S k a n d s

Cross sections at LO

Born @ LO 
!
!
!
!

Born + n @ LO 
!
!
!

Infrared divergent → Must be regulated 

R = some Infrared Safe phase space region 
(Often a cut on p⊥ > n GeV) 

Careful not to take it too low!
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Z decay:

q

q q

q

∑

colours

|M |2 =

∝ δijδ
∗
ji

= Tr[δij]

= NC

Z � 3 jets:

qk

qi

qi

gjk
a

qk

qi

qi

gik
a

8

IR singularities 
(from poles of propagators going on 

shell when integrating to Q2 → 0)

IR singularities 
(from poles of propagators going on shell 

when integrating over gluon virtuality)

�NLO(e
+e� ! qq̄) = �LO(e

+e� ! qq̄)

✓
1 +

↵s(ECM)

⇡
+O(↵2

s)

◆example:

Sum of real and virtual O(αs) nonsingular; no IR regulator dependence

In IR limits, the X+1 final state is indistinguishable from an X+0 one 
→ singularities must always* sum together (& they cancel!)

*) for Infrared-safe safe observables



UNITARITY → EVOLUTION (RESUMMATION)

Peter  Skands !17Monash Univers i ty

Kinoshita-Lee-Nauenberg  
(sum over degenerate quantum states = finite; infinities must cancel) 

Parton Showers neglect F → “Leading-Logarithmic” (LL) Approximation

Unitarity: sum(probability) = 1
Probability for nothing to happen (~virtual + unresolved-real) + Probability for something to happen (~ resolved real) = 1

P.  S k a n d s

From Legs to Loops

๏Parton Showers: reformulation of pQCD corrections as gain-loss diff eq. 
•Iterative (Markov-Chain) evolution algorithm, based on universality and unitarity 

•With evolution kernel ~            (or soft/collinear approx thereof) 

•Generate explicit fractal structure across all scales (via Monte Carlo Simulation) 
•Evolve in some measure of resolution ~ hardness, virtuality, 1/time … ~ fractal scale 
•+ account for scaling violation via quark masses and gs

2 → 4παs(Q
2
)

12

Kinoshita-Lee-Nauenberg:  
(sum over degenerate quantum states = finite: infinities must cancel!) 

!

Neglect non-singular piece, F → “Leading-Logarithmic” (LL) Approximation

Unitarity: sum(probability) = 1

→ Can also include loops-within-loops-within-loops … 
→ Bootstrap for approximate All-Orders Quantum Corrections!

Z � 3 jets:
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qi

gjk
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qi

gik
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Z � 2 1-loop:

qk

qi

qk

gik
a

qi

qk

qk

16

Loop = �
Z

Tree + F

|Mn+1|2

|Mn|2

2Re[M(1)M(0)⇤]
���M(0)

+1

���
2

2Re
h
M(1)M(0)⇤

i ���M(0)
+1

���
2

→ includes both real (tree) and virtual (loop) corrections, to arbitrary order

Imposed by Event evolution:  “detailed balance”

When (X) branches to (X+1): Gain one (X+1). Lose one (X). 

Differential equation with evolution kernel

Evolve in some measure of resolution ~ hardness, 1/time … ~ fractal scale

(or, typically, a soft/collinear approximation thereof)
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EVOLUTION ~ FINE-GRAINING

Peter  Skands !18Monash Univers i ty

๏(E.g., starting from QCD 2→2 hard process)

At most inclusive level 
“Everything is 2 jets”

At (slightly) finer resolutions, 
some events have 3, or 4 jets

At high resolution, most 
events have >2 jets

Q ⇠ QHARD

Fixed order:  
σinclusive

QHARD/Q < “A few”

Fixed order:  
σX+n ~ αsn σX

Q ⌧ QHARD

Scale Hierarchy!

    Fixed order diverges:  
σX+n ~ αsn ln2n(Q/QHARD)σX

Unitarity: Reinterpret as number of emissions 
diverging, while cross section remains σinclusive

Resolution 
Scale

Cross 
sections



BOOTSTRAPPED PERTURBATION THEORY

Peter  Skands !19Monash Univers i ty

๏ Start from an arbitrary lowest-order process (green = QFT amplitude squared) 
๏ Parton showers generate the (LL) bremsstrahlung terms of the rest of 
the perturbative series (approximate infinite-order resummation)

+0(2) +1(2) …

+0(1) +1(1) +2(1) +3(1)

Lowest 
Order +1(0) +2(0) +3(0)N
o.

 o
f Q

ua
nt

um
 L

oo
ps

 
(v

irt
ua

l c
or

re
ct

io
ns

)

No. of Bremsstrahlung Emissions 
(real corrections)

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation

Unitarity

Cancellation of real & virtual singularities

fluctuations within fluctuations

Note! LL ≠ full QCD! (→ matching, merging, MECs)



WHAT ARE THE EVOLUTION KERNELS?

Peter  Skands !20Monash Univers i ty

๏

Partons ab → 
“collinear”:

|MF+1(. . . , a, b, . . . )|2
a||b! g2sC

P (z)

2(pa · pb)
|MF (. . . , a+ b, . . . )|2

P(z) = DGLAP splitting kernels, with z = energy fraction = Ea/(Ea+Eb)

Gluon j → “soft”:

|MF+1(. . . , i, j, k. . . )|2
jg!0! g2sC

(pi · pk)
(pi · pj)(pj · pk)

|MF (. . . , i, k, . . . )|2
Coherence → Parton j really emitted by (i,k) “colour antenna” 

๏Recall: two universal (bremsstrahlung) limits → can build different types 
of parton showers (and, in general, different kinds of resummations)

Collinear (DGLAP) Limit: two partons becoming parallel

Soft (eikonal) Limit: an emitted gluon having vanishing energy

This is the basis of the original PYTHIA and HERWIG showers 
Both implement modifications to account for coherence in the soft (eikonal) limit

This is the basis of most modern showers; called dipole or antenna showers 
These implement additional terms to obtain the correct collinear (DGLAP) limits
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where λ(a, b, c) = a2+b2+c2−2ab−2bc−2ca is the Källén function, s[i] is the invariant mass squared
of the branching dipole, and mâ,b̂ are the rest masses of the original endpoint partons. The second line
represents the massless case, with the two orientation angles θ and ψ fixed as discussed above.

Immediately following the phase space in eq. (2) is a δ function requiring that the integration variable
tn+1 should be equal to the ordering variable t evaluated on the set of n+1 partons, {p}n+1, i.e. that the
configuration after branching indeed corresponds to a resolution scale of tn+1. We leave the possibility
open that different mappings will be associated with different functional forms for the post-branching
resolution scale, and retain a superscript on t[i] to denote this.

Finally, there are the evolution or showering kernels Ai({p}n→{p}n+1), representing the differen-
tial probability of branching, which we take to have the following form,

Ai({p}n→{p}n+1) = 4παs(µR({p}n+1)) Ci ai({p}n→{p}n+1) , (11)

where 4παs = g2
s is the strong coupling evaluated at a renormalization scale defined by the function

µR, Ci is the color factor (e.g. Ci = Nc = 3 for gg → ggg), and ai is a radiation function, giving a
leading-logarithmic approximation to the corresponding squared evolution amplitude (that is, a parton
or dipole-antenna splitting kernel). When summed over possible overlapping phase-space regions, the
combined result should contain exactly the correct leading soft and collinear logarithms with no over- or
under-counting. Non-logarithmic (‘finite’) terms are in constrast arbitrary. They correspond to moving
around inside the leading-logarithmic uncertainty envelope. The renormalization scale µR could in
principle be a constant (fixed coupling) or running. Again, the point here is not to impose a specific
choice but just to ensure that the language is sufficiently general to explore the ambiguity.

Together, eqs. (2), (4), and (11) can be used as a framework for defining more concrete parton
showers. An explicit evolution algorithm (whether based on partons, dipoles, or other objects) must
specify:

1. The choice of perturbative evolution variable(s) t[i].

2. The choice of phase-space mapping dΦ[i]
n+1/dΦn.

3. The choice of radiation functions ai, as a function of the phase-space variables.

4. The choice of renormalization scale function µR.

5. Choices of starting and ending scales.

The definitions above are already sufficient to describe how such an algorithm can be matched to
fixed order perturbation theory. We shall later present several explicit implementations of these ideas, in
the form of the VINCIA code, see section 5.

Let us begin by seeing what contributions the pure parton shower gives at each order in perturbation
theory. Since∆ is the probability of no branching between two scales, 1−∆ is the integrated branching
probability Pbranch. Its rate of change gives the instantaneous branching probability over a differential

PERTURBATIVE AMBIGUITIES

Peter  Skands !21Monash Univers i ty

๏The final states generated by a shower algorithm will 
depend on

→ gives us additional handles for uncertainty estimates, beyond just μR

(+ ambiguities can be reduced by including more pQCD → matching!)

Ordering & Evolution-
scale choices

Recoils, kinematics

Non-singular terms, 
Reparametrizations, 
Subleading Colour

Phase-space limits / suppressions for hard 
radiation and choice of hadronization 

scale 



(ADVERTISEMENT: UNCERTAINTIES IN PARTON SHOWERS)

Peter  Skands !22Monash Univers i ty

๏Recently, HERWIG, PYTHIA & SHERPA all included automated 
calculations of shower uncertainties (based on tricks with the Sudakov algorithm) 

•Weight of event = { 1 , 0.7, 1.2, … } 
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Fig. V.16: Predictions for jet resolutions for W -boson productions at the LHC at LO+PS.
Results from reweighting runs CT14 æ MMHT2014 PDF are compared to the dedicated result for
direct use of the MMHT2014 PDF.
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3 Ntuples for NNLO events produced by EERAD3 7

We study the production of Ntuples based on the program EERAD3 which produces parton-level
QCD events to calculate event shapes and jet rates in electron-positron annihilation through to
order –3

s. The aim of this study is to assess the viability of Ntuples as a general way to have
NNLO results stored and made available to the experimental community.

3.1 Introduction
High precision calculations will be vital in the next phase(s) of the LHC in order to be able
profit from the high quality data being collected. In order to further explore the Higgs sector
and distinguish BSM e�ects from higher order e�ects within the Standard model, next-to-next-
to leading order (NNLO) predicitions are necessary for a number of proccesses. However, such
predictions are the results of complex calculations, which may take a considerable amount of time
and computing resources. Running such programs for various scale choices, parton distribution
functions and sets of cuts is a tedious, time consuming task.

For processes with multi-particle final states at NLO, one is faced with similar problems.
A possible solution, described in detail in Ref. [344], is to store the phase space points and
the corresponding matrix elememt weights, together with other relevant information, in Root
Ntuple files. This has the following advantages:

1. the results are flexible for (tighter) cuts to be applied at a later stage,
7 G. Heinrich, D. Maître
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SHERPA: Bothmann, 
Schönherr, Schumann; 
in arXiv:1605.04692
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Figure 4: Illustration of the default nonsingular variations for ISR splitting kernels, corresponding to cNS =
±2 (shown in red with \\\ hashing), compared with the default renormalisation-scale variations by a factor
of 2 with the NLO compensation term switched on (shown in blue with /// hashing). Left: matrix-element
corrections OFF. Right: matrix-element corrections ON. Distribution of the p? spectrum of the lepton pair in
pp ! Z ! e

+
e
�
/µ

+
µ
� at the Z pole (66 < m``/GeV < 116), for leptons in the phase-space window

|⌘`| < 2.4, p?` > 20 GeV; data from the ATLAS experiment [27].
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See also HERWIG++ : 
Bellm et al., arXiv:1605.08256 

VINCIA:   
Giele, Kosower PS; arXiv:1102.2126 

PYTHIA 8: Mrenna & PS; 
arXiv:1605.08352 

Example 2: 
Renormalisation
-scale and  
Non-Singular 
Term Variations

http://arxiv.org/abs/arXiv:1605.08256
http://arxiv.org/abs/arXiv:1102.2126


FINAL TOPIC: COHERENCE

Peter Skands !23Monash Univers i ty

Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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COHERENCE AT WORK IN QCD

Peter  Skands !24Monash Univers i ty

๏Example: quark-quark scattering in hadron collisions   
•Consider, for instance, scattering at 45o 
•  2 possible colour flows :

a) “forward” colour flow

b) “backward” 
colour flow
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certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Out 1

Out 2

Out 1

Out 2

BA

BA

http://arxiv.org/abs/arXiv:1210.6345


Introduction to Event Generators Bryan Webber, MCnet School, 201429

● Radiation function can be separated into two parts containing collinear singularities along
lines i and j. Consider for simplicity massless particles, vi,j = 1. Then Wij = W i

ij + W j
ij

where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq
−

1

1 − cos θjq

«

.

● This function has remarkable property of angular ordering. Write angular integration in polar
coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq. Performing azimuthal integration,
we find

Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij, otherwise 0.

i

j

Thus, after azimuthal averaging,
contribution from W i

ij is confined to
cone, centred on direction of i, extending
in angle to direction of j. Similarly, W j

ij,
averaged over φjq, is confined to cone
centred on line j extending to direction of
i.
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k

! 1

1� cos ✓ij

➾ Soft radiation 
averaged over φij : 

if θij < θik ; otherwise 0

what you get from a DGLAP kernel
kill radiation outside 

ik opening angle

DGLAP AND COHERENCE: ANGULAR ORDERING

Peter  Skands !25Monash Univers i ty

๏Physics: (applies to any gauge theory) 
•Interference between emissions from colour-connected 
partons (e.g. i and k) → coherent dipole patterns 
•DGLAP kernels, though incoherent a priori, can reproduce this 
pattern (at least in an azimuthally averaged sense) by angular ordering 

๏

➠ Angular-ordered showers in HERWIG (& angular Veto / rapidity-ordering in PYTHIA) 
Note: Dipole & antenna showers include this effect point by point in φ (without averaging)

E2
j (pi · pk)

(pi · pj)(pj · pk)
=

1� cos ✓ik
(1� cos ✓ij)(1� cos ✓jk)

=
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
± 1

2(1� cos ✓ij)
⌥ 1

2(1� cos ✓jk)

Z 2⇡

0

d'ij

4⇡

✓
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
+

1

1� cos ✓ij
� 1

1� cos ✓jk

◆
=

1

2(1� cos ✓ij)

✓
1 +

cos ✓ij � cos ✓ik
| cos ✓ij � cos ✓ik|

◆

Soft Eikonal Factor (write out 4-products) Add and subtract 1/(1-cosθij) and 1/(1-cosθjk) to isolate ij and jk collinear pieces

Take the ij piece and integrate over azimuthal angle dφij (using explicit momentum representations)

๏Start from the M.E. factorisation formula in the soft limit 

P. Skands Introduction to QCD
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j
I

K

k

i

j

Figure 16: Diagrams (squared) giving rise to collinear (left) and soft (right) singularities.

I, goes on shell; the singularity of the associated propagator factor is the origin of the 1/sij

collinear singularities. On the right is shown the interference between a diagram with emission
from parton I and one with emission from parton K. The resulting term has propagator
singularities when both partons I and K go on shell, which can happen simultaneously if
parton j is soft. This generates the 2sik/(sijsjk) soft singularity, also called the soft eikonal
factor or the dipole factor.

We now understand the fundamental origin of the IR singularities, why they are universal,
and why amplitudes factorise in the soft and collinear limits — the singularities are simply
generated by intermediate parton propagators going on shell, which is independent of the
nature of the hard process, and hence can be factorised from it.

Thus, for each pair of (massless) color-connected partons I and K in F , the squared am-
plitude for F + 1 gluon, |MF+1|

2, will include a factor

|MF+1|
2 = g

2

s NC

✓
2sik

sijsjk
+ collinear terms

◆

| {z }
Antenna Function

|MF |
2

, (62)

where g
2
s = 4⇡↵s is the strong coupling, i and k represent partons I and K after the branching

(i.e., they include possible recoil effects) and sij is the invariant between parton i and the
emitted parton, j.

The branching phase space of a color dipole (i.e., a pair of partons connected by a color-
index contraction) is illustrated in figure 17. Expressed in the branching invariants, sij and sjk,
the phase space has a characteristic triangular shape, imposed by the relation s = sij+sjk+sik

(assuming massless partons). Sketchings of the post-branching parton momenta have been
inserted in various places in the figure, for illustration. The soft singularity is located at the
origin of the plot and the collinear regions lie along the axes.

The collinear terms for a qq̄ ! qgq̄ “antenna” are unambiguous and are given in section 2.4.
Since gluons are in the adjoint representation, they carry both a color and an anticolor index
(one corresponding to the rows and the other to the columns of the Gell-Mann matrices),
and there is therefore some ambiguity concerning how to partition collinear radiation among
the two antennae they participate in. This is discussed in more detail in [88]. Differences
are subleading, however, and for our purposes here we shall consider gluon antenna ends as
radiating just like quark ones. The difference between quark and gluon radiation then arise
mainly because gluons participate in two antennae, while quarks only participate in one. This
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INITIAL-STATE VS FINAL-STATE EVOLUTION

Peter  Skands !26Monash Univers i ty

p2 = t < 0

ISR:FSR:

p2  > 0

Virtualities are 
Timelike: p2>0

Virtualities are 
Spacelike: p2<0

Start at Q2 = QF2 
“Forwards evolution”

Start at Q2 = QF2 
Constrained backwards evolution 
towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft …



INITIAL-FINAL INTERFERENCE

Peter  Skands !27Monash Univers i ty

Separation meaningful for collinear radiation, but not for soft …

Who emitted that gluon?

Real QFT = sum over amplitudes, then square → interference (IF coherence) 
Respected by dipole/antenna languages (and by angular ordering, azimuthally 

averaged), but not by conventional DGLAP (→ all PDFs are “wrong”)

+

A tricky aspect for many parton showers. Illustrates that quantum ≠ classical !



TRACING THE COLOUR FLOW

Peter  Skands  28Monash Univers i ty

๏MC generators use a simple set of rules for “colour flow”  
•Based on “Leading Colour” (LC)   

•

Illustrations from PDG Review on MC Event Generators

q ! qg

Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.
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g ! gg

8 = 3⌦ 3  1

•LC: gluons = outer products of 
triplet and antitriplet                                    
•(➾ valid to ~ 1/NC

2  ~ 10%)



COLOUR FLOW EXAMPLE
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๏Showers (can) generate lots of partons, 𝒪(10-100).  
•Colour Flow used to determine between which partons 
confining potentials arise

Example: Z0 → qq

Figure 1.1: Color development of a shower in e+e� annihilation. Systems of color-connected
partons are indicated by the dashed lines.
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for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay �� ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably a⇥ect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order �em ln Q/me, or even of order �em ln Q/me ln E�/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut o⇥ below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not a⇥ected by it.

7

System #1 System #2 System #3

Coherence of pQCD cascades → suppression of “overlapping” systems 
→ Leading-colour approximation pretty good 

(LEP measurements in e+e-→W+W-→hadrons confirm this (at least to order 10% ~ 1/Nc2 ))

1 1

11

2

2 2

4

4 4

3

3 3

5

5 5 6
7

7

Note: (much) more color getting kicked around in hadron collisions. 
Signs that LC approximation is breaking down? → Lecture 4



SUMMARY: TWO WAYS TO COMPUTE QUANTUM CORRECTIONS

Peter  Skands !30Monash Univers i ty

๏Fixed Order Paradigm: consider a single physical process 
•Explicit solutions, process-by-process (often automated, eg MadGraph) 

๏ Standard Model: typically NLO (+ many NNLO, not automated) 
๏ Beyond SM: typically LO or NLO 

•Accurate for hard process, to given perturbative order 
•Limited generality  

๏Event Generators (Showers): consider all physical processes 
•Universal solutions, applicable to any/all processes 

๏ Process-dependence = subleading correction (→ matrix-element corrections 
/ matching / merging)  

•Maximum generality  
๏ Common property of all processes is, e.g., limits in which they factorise! 

•Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)



Extra Slides
+ Supporting Lecture Notes (~80 pages): “Introduction to QCD”, arXiv:1207.2389 

+ MCnet Review: “General-Purpose Event Generators”, Phys.Rept.504(2011)145 

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1101.2599


FACTORISATION ➾ WE CAN STILL CALCULATE!

Peter  Skands !32Monash Univers i ty

Why is Fixed Order QCD not enough? 
: It requires all resolved scales >> ΛQCD AND no large hierarchies

Factorization

d⇤

dX
=

⇥

a,b

⇥

f

�

X̂f

fa(xa, Q
2
i )fb(xb, Q

2
i )

d⇤̂ab�f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f � X, Q2
i , Q

2
f)

20

PDFs: needed to compute inclusive 
cross sections

FFs: needed to compute 
(semi-)exclusive cross sections

PDFs: connect incoming hadrons with the high-scale process 
Fragmentation Functions: connect high-scale process with final-state hadrons 
(each is a non-perturbative function modulated by initial- and final-state radiation)

Resummed pQCD:  All resolved scales >> ΛQCD AND X Infrared Safe
*)pQCD = perturbative QCD

Will take a closer look at both PDFs and final-state aspects (jets and showers) in the next lectures

In MCs: made exclusive as initial-state radiation + 
non-perturbative hadron (beam-remnant) structure 

(+ multiple parton-parton interactions)

In MCs: resonance decays, final-state 
radiation, hadronisation, hadron decays  

(+ final-state interactions?)



DGLAP KERNELS
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๏DGLAP: from collinear limit of MEs (pb+pc)2→0 
•+ evolution equation from invariance with respect to QF → RGE

DGLAP 
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability

287

a

c
b

pb = z pa

pc = (1-z) pa

NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

dt =
dQ2

Q2
= d lnQ2

… with Q2 some measure of “hardness” 
= event/jet resolution 

measuring parton virtualities / formation time / …
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Figure 5: Illustration of the running of ↵s at 1- (open circles) and 2-loop order (filled circles),
starting from the same value of ↵s(MZ) = 0.12.

whereby the specific single-scale choice µ
n = µ1µ2 · · · µn (the geometric mean) can be seen to

push the difference between the two sides of the equation one order higher than would be the
case for any other combination of scales10.

The appearance of the number of flavours, nf , in b0 implies that the slope of the running
depends on the number of contributing flavours. Since full QCD is best approximated by
nf = 3 below the charm threshold, by nf = 4 and 5 from there to the b and t thresholds,
respectively, and then by nf = 6 at scales higher than mt, it is therefore important to be aware
that the running changes slope across quark flavour thresholds. Likewise, it would change
across the threshold for any coloured new-physics particles that might exist, with a magnitude
depending on the particles’ colour and spin quantum numbers.

The negative overall sign of equation (19), combined with the fact that b0 > 0 (for nf 

16), leads to the famous result11 that the QCD coupling effectively decreases with energy,
called asymptotic freedom, for the discovery of which the Nobel prize in physics was awarded
to D. Gross, H. Politzer, and F. Wilczek in 2004. An extract of the prize announcement runs as
follows:

10In a fixed-order calculation, the individual scales µi, would correspond, e.g., to the n hardest scales appearing
in an infrared safe sequential clustering algorithm applied to the given momentum configuration.

11 Perhaps the highest pinnacle of fame for equation (19) was reached when the sign of it featured in an episode
of the TV series “Big Bang Theory”.
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Q = mb are caused by discontinuities in the running across the flavour thresholds.

calculations used to extract them. As a rule of thumb, fits to experimental data typically
yield smaller values for ↵s(MZ) the higher the order of the calculation used to extract it (see,
e.g., [29, 32, 34, 35]), with ↵s(MZ)|LO ⇠

> ↵s(MZ)|NLO ⇠
> ↵s(MZ)|NNLO. Further, since the

number of flavours changes the slope of the running, the location of the Landau pole for
fixed ↵s(MZ) depends explicitly on the number of flavours used in the running. Thus each
value of nf is associated with its own value of ⇤, with the following matching relations across
thresholds guaranteeing continuity of the coupling at one loop,

nf = 5 $ 6 : ⇤6 = ⇤5

✓
⇤5

mt

◆ 2
21

⇤5 = ⇤6

✓
mt

⇤6

◆ 2
23

, (26)

nf = 4 $ 5 : ⇤5 = ⇤4

✓
⇤4

mb

◆ 2
23

⇤4 = ⇤5

✓
mb

⇤5

◆ 2
25

, (27)

nf = 3 $ 4 : ⇤4 = ⇤3

✓
⇤3

mc

◆ 2
25

⇤3 = ⇤4

✓
mc

⇤4

◆ 2
27

. (28)

It is sometimes stated that QCD only has a single free parameter, the strong coupling.
However, even in the perturbative region, the beta function depends explicitly on the number
of quark flavours, as we have seen, and thereby also on the quark masses. Furthermore, in
the non-perturbative region around or below ⇤QCD, the value of the perturbative coupling, as
obtained, e.g., from equation (24), gives little or no insight into the behavior of the full theory.
Instead, universal functions (such as parton densities, form factors, fragmentation functions,
etc), effective theories (such as the Operator Product Expansion, Chiral Perturbation Theory,
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THE STRONG COUPLING
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๏ Bjorken scaling: 
•To first approximation, QCD is 
SCALE INVARIANT (a.k.a. conformal) 

๏ Jets inside jets inside jets …  
๏ Loops (fluctuations) inside loops 

inside loops … 

๏ If the strong coupling didn’t 
“run”, this would be absolutely 
true (e.g., N=4 Supersymmetric Yang-Mills)  

๏ Since αs only runs slowly 
(logarithmically) → can still gain 
insight from fractal analogy  

๏ (→ lecture 2 on showers)

Note: I use the terms “conformal” and “scale invariant” interchangeably 
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance

1-Loop

2-Loop

Full

Large values, 
fast running at 

low scales

Q2 @↵s

@Q2
= �(↵s)

�(↵s) = �↵2
s(b0 + b1↵s + b2↵

2
s + . . .) ,

b0 =
11CA � 2nf

12⇡

↵s(mZ) ⇠ 0.118

mc

mb

Landau Pole at 
ΛQCD~200 MeV

> 0
for nf  16
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MANY WAYS TO SKIN A CAT
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๏The strong coupling is (one of) the main perturbative parameter(s) in 
event generators. It controls: 

The overall amount of QCD initial- and final-state radiation 

Strong-interaction cross sections (and resonance decays) 

The rate of (mini)jets in the 
underlying event 

๏
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calculations used to extract them. As a rule of thumb, fits to experimental data typically
yield smaller values for ↵s(MZ) the higher the order of the calculation used to extract it (see,
e.g., [29, 32, 34, 35]), with ↵s(MZ)|LO ⇠

> ↵s(MZ)|NLO ⇠
> ↵s(MZ)|NNLO. Further, since the

number of flavours changes the slope of the running, the location of the Landau pole for
fixed ↵s(MZ) depends explicitly on the number of flavours used in the running. Thus each
value of nf is associated with its own value of ⇤, with the following matching relations across
thresholds guaranteeing continuity of the coupling at one loop,
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It is sometimes stated that QCD only has a single free parameter, the strong coupling.
However, even in the perturbative region, the beta function depends explicitly on the number
of quark flavours, as we have seen, and thereby also on the quark masses. Furthermore, in
the non-perturbative region around or below ⇤QCD, the value of the perturbative coupling, as
obtained, e.g., from equation (24), gives little or no insight into the behavior of the full theory.
Instead, universal functions (such as parton densities, form factors, fragmentation functions,
etc), effective theories (such as the Operator Product Expansion, Chiral Perturbation Theory,
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Example (for Final-State Radiation):

PYTHIA : tuning to LEP 3-jet rate; requires ~ 20% increase 
TimeShower:alphaSvalue   default = 0.1365 
TimeShower:alphaSorder   default = 1 
TimeShower:alphaSuseCMW   default = off

SHERPA : uses PDF or PDG value, with “CMW” translation  
alphaS(mZ) default = 0.118 (pp) or 0.1188 (LEP) 
running order: default = 3-loop (pp) or 2-loop (LEP) 
CMW scheme translation: default use ~ alphaS(pT/1.6) 
→ roughly 10% increase in the effective value of αs 

MCs: get value 
from: PDG? 

PDFs? Fits to 
data (tuning)?

will undershoot LEP 3-jet rate by ~ 10% (unless combined with NLO 3-jet ME)

Agrees with LEP 3-jet rate “out of the box”; but no guarantee tuning is universal.



EVOLUTION EQUATIONS
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๏What we need is a differential equation 
•Boundary condition: a few partons defined at a high scale (QF) 
•Then evolves (or “runs”) that parton system down to a low scale 
(the hadronization cutoff ~ 1 GeV) → It’s an evolution equation 
in QF 

๏Close analogue: nuclear decay 
•Evolve an unstable nucleus. Check if it decays + follow chains of 
decays.

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,

dP (�)

d�
= g

2

s C A(�) , (9)

where we use � as shorthand to denote a phase-space point. (If there are several partons/dipoles/antennae,
the total probability for branching of the event as a whole is obtained as a sum of such terms.)

An equally fundamental object in both analytical resummations and in parton showers is the Sudakov
form factor, which defines the probability for a radiator not to have any emissions between two scales,
Q1 and Q2,

�(Q2
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2
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Z Q2
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Q2
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Z Q2
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g
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s C A(�) d�

!
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where it is understood that the integral boundaries must be imposed either as step functions on the
integrand or by a suitable transformation of integration variables, accompanied by Jacobian factors.

This has a very close analogue in the simple process of nuclear decay, in which the probability for a
nucleus to undergo a decay, per unit time, is given by the nuclear decay constant,

dP (t)

dt
= cN . (11)

The probability for a nucleus existing at time t1 to remain undecayed before time t2, is

�(t1, t2) = exp

✓
�

Z t2

t1

cN dt

◆
= exp (�cN �t) . (12)

This case is especially simple, since the decay probability per unit time, cN , is constant. By conservation
of the total number of nuclei (unitarity), the activity per nucleon at time t, equivalent to the “resummed”
decay probability per unit time, is minus the derivative of �,

dPres(t)

dt
=

�d�

dt
= cN �(t1, t) . (13)

In QCD, the emission probability varies over phase space, hence the probability for an atennna not to
emit has the more elaborate integral form of eq. (10). By unitarity, the resummed branching probability
is again minus the derivative of the Sudakov factor,

dPres(�)

d�
= g

2

s C A(�) �(Q2

1, Q
2(�)) , (14)

where Q
2(�) gives the value of the shower evolution scale (typically chosen as a measure of invariant

mass or transverse momentum, see the section on ordering below) evaluated on the phase-space point
�.

In shower algorithms, branchings are generated with this distribution, starting from a uniformly
distributed random number R 2 [0, 1], by solving the equation,

R = �(Q2

1, Q
2) , (15)
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(respects that each of the original nuclei 
can only decay if not decayed already)

= 1� cN�t+O(c2N )

∆(t1,t2) : “Sudakov Factor”
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๏In nuclear decay, the Sudakov factor counts:  
•How many nuclei remain undecayed after a time t 

๏The Sudakov factor for a parton system “counts”: 
•The probability that the parton system doesn’t evolve (branch) 
when we run the factorization scale (~1/time) from a high to a low 
scale  

๏ (i.e., that there is no state change) 

In a shower context, the amplitude and phase-space factorizations above imply that we can interpret
the radiation functions (AP splitting kernels or dipole/antenna functions) as the probability for a radiator
(parton or dipole/antenna) to undergo a branching, per unit phase-space volume,
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Evolution probability per unit “time”

(replace cN by proper shower evolution kernels)
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Probability to remain undecayed in the time interval [t1,t2]

(replace t by shower evolution scale)
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2. Generate another Random Number, Rz ∈ [0,1] 

To find second (linearly independent) phase-space invariant 

Solve equation                                       for z (at scale t) 

With the “primitive function” Iz(z, t) =

Z z

zmin(t)
dz

d�(t0)

dt0

����
t0=t

Rz =
Iz(z, t)

Iz(zmax(t), t)

A SHOWER ALGORITHM
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๏1. For each evolver, generate a random number R ∈ [0,1] 
•Solve equation                            for t (with starting scale t1) 

๏ Analytically for simple splitting kernels,  
๏ else numerically and/or by trial+veto 
๏ → t scale for next (trial) branching

R = �(t1, t)
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Figure 1: Contours of constant value of the antenna function, ā0ijk for qq̄ → qgq̄ derived from Z decay
as function of the two phase-space invariants, with an arbitrary normalization and a logarithmic color
scale. Larger values are shown in lighter shades. The (single) collinear divergences sit on the axes,
while the (double) soft divergence sits at the origin.

factor, and ā0ijk is a generic color- and coupling-stripped dipole-antenna function, with superscript 0 to
denote a tree-level quantity. The three-particle matrix element is averaged azimuthally (over φ). Note
that our use of lower-case letters for the antenna function is intended to signify that it corresponds to
what is called a sub-antenna in ref. [36] for which lower-case letters are likewise used2.

For illustration, contours of constant value of ā0qgq̄(s, sqg, sgq̄) as derived from Z decay are shown
in fig. 1, over the 2 → 3 phase space, with an arbitrary normalization and a logarithmic color scale.
This function is called A0

3 in ref. [36] and is identical to the radiation function used for qq̄ → qgq̄
splittings in ARIADNE. One clearly sees the large enhancements towards the edges of phase space,
with a double pole (the overlap of two singularities, usually called soft and collinear) sitting at the
origin, and single singularities (soft or collinear) localized on the axes.

Writing the coupling factor as g2 = 4παs and combining it with the phase space factor, eq. (12),
we have the following antenna function normalization

a0IK→ijk(s, sij, sjk) ≡
1

√
λ
(
s,m2

I ,m
2
K

)
αs

4π
Cijk ā0ijk(s, sij , sjk) . (15)

That is, we use the notation ā for the coupling- and color-stripped antenna function, and the notation
a for the “dressed” antenna function, i.e., including its coupling, color, and phase-space prefactors.

Note that g2×(phase-space normalization) leads to a factor αs/(4π) independently of the type of
branching. As we believe that the formalism becomes more transparent if the origin of each factor
is kept clear throughout, we shall therefore use this factor for all branchings, instead of the more
traditional convention of using αs/(2π) for some branchings and αs/(4π) for others. Obviously, this
convention choice will be compensated by our conventions for the color factors and antenna-function
normalizations, such that the final result remains independent of this choice.

2Thus, in the notation of ref. [36], our dipole-antenna functions would be ā0
3 = A0

3, d̄03 = d03, ē03 =
1
2E

0
3 , f̄0

3 = f0
3 , and

ḡ03 =
1
2G

0
3.
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t

t1

(t,z)

3. Generate a third Random Number, Rφ ∈ [0,1] 
Solve equation                     for φ → Can now do 3D branching 

Accept/Reject based on full kinematics. Update t1 = t. Repeat.

R' = '/2⇡



IF YOU WANT TO PLAY WITH RANDOM NUMBERS
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๏I will not tell you how to write a Random-number generator. (For 
that, see the references in the writeup.) 

๏Instead, I assume that you can write a computer code and link to a 
random-number generator, from a library  

•E.g., ROOT includes one that you can use if you like.  
•PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under “Random Numbers”: 

+ Other methods for exp, x*exp, 1D Gauss, 2D Gauss.

Random numbers R uniformly distributed in 0 < R < 1 are obtained with

   Pythia8::Rndm::flat();


