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MIN-BIAS VS THE UNDERLYING EVENT

Tautology: a jet trigger provides
a bias(ed subsample of min-bias)

Pedestal effect:

Events with a hard jet trigger are

accompanied by a higher plateau
of ambient activity (extending far
from the jet cores)

MPI: interpreted as a biasing
effect. Small impact parameters —
larger matter overlaps = more
MPI — higher chances for a hard
one (and the trigger throws out
any events that didn’t have at
least one)
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DEFINING THE UNDERLYING EVENT

Jet trigger (or other hard probe but want high statistics)

Consider event in transverse plane (x,y)

Jet 49=0

Operational
definition of UE

= “"Transverse

Look at 90 degrees to
e 60°<|AQ|<120°
leading jet direction:

Region”

Note: if your hard probe is a Z, you

can also |oo'|< in the "Towards” region If your hard probe is a ttbar pair, can
(subtracting the decay leptons). do "Swiss Cheese” or jet median

UE in Drell-Yan studies by ATLAS and . approach (also generally applicable)
CMS Recoiling Jet

Cacciari, Salam, Sapeta, “On the characterisation of the
underlying event,” JHEP04(2010)065,arXiv:0912.4926 [hep-phl.
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THE (AVERAGE) UE

By now lots of
measurements of the
average properties of the
underlying event, and of
its (non)-evolution™ with

PTtrigger

NB: trigger can be:

if you don't have < Hardest track

(good) calorimetry Hardest track—jet

more inclusive  —» M ardest Calo—jet

*: radiation spillover into the UE does
provide a (slow) evolution with priigger
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FLUCTUATIONS OF THE UE

7000 GeV pp

ATLAS: UE fluctuates a lot
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STRANGENESS IN THE UE
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FLIPPING THE AXES

Instead of plotting UE plateau as function of trigger jet pr,

=> Plot salient quantities (e.g., strangeness) as function of event-by-
event UE level, for some window of trigger jet pr

Eur.Phys.J. C76 (2016) 5, 299, arXiv:1603.05298

We propose a window just
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WHAT MIGHT YOU SEE?

Bear in mind: models only represent a subset of the

possibilities in nature
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THEORY: UNDER THE HOOD
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THE UE ANALOGUE OF <PT>(NCH)

Rising trend in minimum-bias taken as indicative of
collectivity; how about in UE?
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STRANGENESS !

Significant power to separate different physics mechanisms
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IT'S EVEN MORE FUN WITH BARYONS
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SUMMARY / OUTLOOK

The UE provides a complementary phase-space region to min-bias
which could well exhibit similar phenomena as high-mult min-bias

Hard trigger biases selection to small impact parameters

But can find “ultra-quiet” UE levels with even less activity / higher b, than MB (LEP-like?)
Can explore events with “extreme” UE levels = collectivity?

Models based on different principles predict qualitatively ditterent trends
for the various particle ratios, as functions of the UE level

NB: so far, we only studied particle multiplicities (ratios) and spectra; particle
correlations would provide additional information

Work is ongoing in ATLAS; but limited by PID capabilities

CMS similar? (but not aware of any measurement underway?)

ALICE and LHCb have the PID to do it

What is the status of UE studies?
Jet or hard-track triggers? Other hard trigger probes?

.
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FIDUCIAL CUTS (FOR OUR EXAMPLES)

Fiducial cuts are applied to the MC generator output to approximate experimental sensitivity and
this results 1n an inclusive set of particles formed of two components. The ‘prompt charged’
component of the inclusive set consists of charged particles with p;, > 200 MeV, |n| < 2.5,
lifettme 7 > 300 ps and which are not created from the decay of a state with 30 < 7 < 300
ps. This set is dominantly 7%, K*, p and p. The definition is based around the ATLAS fiducial
selection 1n ref. [76]. The second component consists of ‘identifiable prompt strange hadrons’;
here both charged and neutral strange hadrons are included if they typically undergo weak decay
to one or more charged particles. These states are also required to satisty p;, > 200 MeV,
In| < 2.5 and for themselves to not be created from the decay of other states with 30 < 7 < 300
ps*. This set is comprised of K0, A, A, 2%, %, ¥F and Q.

Track jets are clustered from prompt charged and prompt identifiable strange hadrons. They
are reconstructed with the anti-£; algorithm [77] using radius parameter R = 0.4, the leading jet
is required to be within |n| < 2.3.
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