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THE STRUCTURE OF QUANTUM FIELDS

What we actually see when we

look at a “jet” (or inside a proton) =
. o A
An ever—repeatmg selt-similar pattern of \\WWW))
guantum fluctuations .
. An Introduction to
At increasingly smaller energies or % Y. Quantum
distances : Scaling (modulo &(Q) scaling violation)
~ Field

To our best knowledge, this is what a
fundamental ('elementary’) particle Th@Ol’y
really looks like
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THE STRUCTURE OF QUANTUM FIELDS

What we actually see when we
look at a “jet” (or inside a proton) B ﬁ"<:

An ever-repeating self-similar pattern of =
guantum fluctuations =

i \] /" An Introduction to
At increasingly smaller energies or “—i o

. gly : e 2/ Quantum
dlStanceS : Scallng (modulo a5(Q) scaling violation) /

To our best knowledge, this is what /}\‘} Field
o our best knowledge, this is what a e
fundamental (‘elementary’) particle @H Theo"y

really looks like i

Nature makes copious use of such (this is not an

structures - Fractals elementary
o particle, but

illustrates the

principle)
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Most bremsstrahlung is driven by
divergent propagators = simple
structure

Amplitudes factorise in singular
limits (— universal “scale-invariant
or “conformal” structure)

n

+ scaling violation: gs> — 4mas(Q?) Can apply this many times

— nested factorizations
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SCALING QCD, IN ACTION

Naively, QCD radiation suppressed by &;=0.1
—> Truncate at fixed order = LO, NLO, ...

But beware the jet-within-a-jet-within-a-jet ...

Example: 100 GeV can be “soft” at the LHC

SUSY pair production at LHC44, with Msysy = 600 GeV

LHC - spsla - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217
FIXED ORDER pQCD |00 [pb]| ¢ urg upuy upurp 17T

pr; > {100 GeV|| o0o; | 4.83 5.65 0.286 0.502 1.30| |FEPEEe, + jets much larger than
inclusive X + 1 “jet” 01 2.89 2.74 0.136 0.145 0.73 naive factor-o, estimate
>0 1.09 0.85 0.049 0.039 0.26

inclusive X + 2 “jets”

:

pr,; >t 50 GeV|| oo 4.83 5.65 0.286 0.502 1.30| [AIEACEVAECEREC[SIgEly
01 5.90 5.37 0.283 0.285 1.50 total cross section
02 4.17 3.18 0.179 0.117 1.21 — what is going on?

(Computed with SUSY-MadGraph)

All the scales are high, Q >> 1 GeV, so perturbation theory should be OK
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RECAP: APROPOS FACTORISATION

B —

Why are Fixed-Order QCD matrix elements not enough?

F.O. QCD requires Large scales (s small enough to be
perturbative = high-scale processes)

F.O. QCD also requires No hierarchies /
100 [4-
Bremsstrahlung poles «1/Q? integrated

10 |---

over phase space «xdQ? = |logarithms

— large it upper and lower integration 1

limits are hierarchically different P
QCD
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PARTON SHOWERS

So it's not like you can put a cut at X (e.g., 50, or even 100) GeV and say: “ok,
now fixed-order matrix elements will be OK”

Harder Processes are Accompanied by Harder Jets

The hard scale Qyrp of your process will “start off” the fractal
Sooner or later you will resolve bremsstrahlung structure (when Qg...ed/Quarp << 1)

Extra radiation:

Will generate corrections to your kinematics

ls an unavoidable aspect of the quantum description of quarks and gluons (no
such thing as a “bare” quark or gluon; they always depend on how you look at them)

Extra jets from bremsstrahlung can be important combinatorial background
especially if you are looking for decay jets of similar py scales (often, AM << M)

This is what parton showers are for
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For any basic process doxy =  (calculated process by process)

ds;1 dsi; NB: here just iterating
dO dO'X_|_1 ~ Nc'2gg J dO’X v a single eikonal
— Si1  S1j emission; should

really sum over all

9 dSiQ d82j emitters.

dox42 ~ Nc2g, dox41
\ $i2 525 Could also have built
an approximation
\ do ~ N~92 2d32'3 dss from iterating
X3 C29s T collinear emissions
(DGLAP)

/ dUX+2
i3 535
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BREMSSTRAHLUNG

For any basic process doxy =  (calculated process by process)
ds;1 dsi; NB: here just iterating
% dO'X_|_1 ~ chgg J dO’X v a single eikonal
* —— Si1  S1y emission; should
K really sum over all
2 2 dSzQ d82 emitters.

J
dox42 ~ Nc2g, dox41
\\ S$i2 525 Could also have built
Imation
dSin e an approxima
2 W3 We3y from iterating
dUX+3 ~ NCQQS N S dO-X+2 s collinear emissions
13 37
(DGLAP)

Singularities: universal (mandated by gauge theory)

Non-singular terms: process-dependent

“SOFT" “COLLINEAR”
IM(Z° — Qigjq_k)P 9 28k 1 Sij  Sjk
M(Z° = )2 " *Cr " s
19K j

M(H® = qi9:q1)|? 2. 1 y .
| M( _ %Q{Qk)\z ZQEZCF [ Sik _|__<Szj _|_8]k_|_2>]
IM(H® = q13K)| SijSjk  SIK \Sjk  Sij

“SOFT" “"COLLINEAR" +F
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BREMSSTRAHLUNG

For any basic process doxy =  (calculated process by process)
dsi1 dsy;
2 11 17
/0! dox 41 ~ No2g? dox v
—_— Si1  S1j

dS'Q dSQ'
dO'X_|_2 ~ NCQQ? - J dO'X_|_1

\\\ Si2  S82;
ds;3 dss.
2 Uog3 37

. d0X+2

dO'X_|_3 ~ NCQQS
S$i3 53y

4

Iterated factorization
Gives us a universal approximation to e-order tree-level cross sections.
Exact in singular (strongly ordered) limit.

Non-singular terms (non-universal) = Uncertainties for hard radiation

But something is not right ... Total 0 would be infinite ...

L
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LOOPS AND LEGS

Coefficients of the Perturbative Series

The corrections from

Quantum Loops are

X@  X+1@

mIssing

Loops

X+1 X+2 X+30

Universality (scaling)

+ 10X +20 X +30— N

Jet-within-a-jet-within-a-jet-...

Legs

—
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RECAP: ADDING JETS AT FIXED ORDER

Born @ LO

OBorn — / |M)(?)|2

X+20)

Born+n@ LO

X2 X+1@
O'%&:)_l(R) _ XD X410
Born . X+20
| Mx 11| 2
M2 22CF

Divergent (when sjj and/or sk = 0): Integral = Logarithms

= R = some "“Infrared Safe” phase space region (E.g., cut on p., 4R)

Careful not to take it too low!
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UNITARITY (AT NLO)

NLO:

-
Lo /,M

N

IR smgularmes IR singularities
(from poles of propagators goingon  (from poles of propagators going on shell
shell when integrating to Q% — 0) when integrating over gluon virtuality)

In IR limits, the X+1 final state is indistinguishable from an X+0 one
— singularities must always* sum together (& they cancel!)

example:

O'NLQ(€+€_ — qq) = aLo(e+e_ — qq) (1 | | O(Oﬁ))

Sum of real and virtual O(as) nonsingular;

*) for so-called IR safe observables; discussed in Lecture 3 no IR regulator dependence

Peter Skands @ Monash University
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UNITARITY = EVOLUTION (RESUMMATION})

a— i I S S—

Probability for nothing to happen (~virtual + unresolved-real) + Probability for something to happen (~ resolved real) = 1

Kinoshita-Lee-Nauenberg

(sum over degenerate quantum states = finite; infinities must cancel) ,,

« > Loop = —/Tree + F ‘MT)’

2Re [M(l)/\/l(o)*] ’ +1

qk

Parton Showers neglect F = “Leading-Logarithmic” (LL) Approximation

When (X) branches to (X+1): Gain one (X+1). Loose one (X).

Differential equation with evolution kernel dox 41

(or, typically, a soft/collinear approximation thereof) dox
Evolve in some measure of resolution ~ hardness, 1/time ... ~ fractal scale

. . . . 2 2
+ account for scaling violation via quark masses and g, = 4no(Q")

— includes both real (tree) and virtual (loop) corrections, to arbitrary order

Peter Skands % Monash University
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EVOLUTION ~ FINE-GRAINING

(E.g., starting from QCD 2—2)
) < QHARD

K ~ QUARD Quarp/Q < “A few”

At most inclusive level At (slightly) finer resolutions, At high resolution, most
"Everything is 2 jets” some events have 3, or 4 jets events have >2 jets

Fixed order: Fixed order:
Oinclusive Ox+n ~ O(sn Ox
diverging, while cross section remains Ginclusive

Peter Skands g Monash University A

Fixed order diverges:

Ox+n ~ O IN?"(Q/Quarp)Ox

Unitarity: Reinterpret as number of emissions



EVOLUTION EQUATIONS

What we need is a differential equation

Boundary condition: a few partons detined at a high scale (Qf)

Then evolves (or “runs”) that parton system down to a low scale (the
hadronization cutoff ~ 1 GeV) = It's an evolution equation in Q¢

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant

Probability to remain undecayed in the time

interval [t,t)]

dP—(t) — CN to

dt A(ty,t2) = exp (—/ CN dt) = exp (—cy At)

i1
_ 2
Decay probability per unit time =1 —cyAt+O(cy)
dPes(t) —dA
= — = A(ty,t
dt a v Al

[A(h,tz) : "Sudakov Factor"]

(respects that each of the original nuclei
can only decay if not decayed already)

LI
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THE SUDAKOV FACTOR

-

p
In nuclear decay, the Sudakov factor counts:

How many nuclei remain undecayed after a time t

Probability to remain undecayed in the time interval [#;,]

to
A(t1,t2) = exp <—/ CN dt) = exp (—cy At)
t

1

\_

p
The Sudakov factor for a parton system “counts”:

The probability that the parton system doesn’t evolve (branch) when
we run the factorization scale (~1/time) from a high to a low scale

(i.e., that there is no state change)

Evolution probability per unit “time”

dPres(t) _dA
_ T2 v At
dt dt e Alt1,t)

(replace t by shower evolution scale)

(replace cy by proper shower evolution kernels)

Peter Skands % Monash University
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NUCLEAR DECAY

. . 2 AP
Nuclei remaining undecayed = A(ty, t5) = exp (_/ dt _>
t

1

dt

after time t

1 OO % st Order M Second Order Third Order [l Exponential

50 %
All Orders
Exponential

Earl ) ~ Late
0 % : Y I Time I - >
Times | Times

Third-Order

-50 %

4
-100 %
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A SHOWER ALGORITHM

— 1. For each evolver, generate a random number R € [0, 1]

10p €

Solve equation R = A(tl, t) fort (with starting scale f))
Analytically for simple splitting kernels,
else numerically and/or by trial+veto

— t scale for next (trial) branching i

2. Generate another Random Number, R, € [0,1] g S

To find second (linearly independent) phase-space invariant

I.(z,t
Solve equation R, = (2,1 for z (atscale )
I (Zmax(t), ?) /
© dA(t
With the “primitive function” IZ(Z, t) — / dz (, )
Zmin(t) dt t/ =t

3. Generate a third Random Number, R, € [0,1]
Solve equation R, = /27 for ¢ = Can now do 3D branching

Accept/Reject based on full kinematics. Update t1 = t. Repeat.
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BOOTSTRAPPED PERTURBATION THEORY

Start from an arbitrary lowest-order process (green = QFT amplitude squared)

Parton showers generate the (LL) bremsstrahlung terms of the rest of
the perturbative series (approximate infinite-order resummation)

+0@— 1@ N Universality (scaling)

Jet-within-a-jet-within-a-jet-...

T T T Cancellation of real & virtual singularities

No. of Quantum Loops
(virtual corrections)

+10)— 420, 4 3(0) TExponentiation

fluctuations within fluctuations

Note! LL # full QCD! (= matching, merging, MECs)

(real corrections)

L
Peter Skands g Monash University
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1=«c1|H two universal (bremsstrahlung) limits:

Collinear (DGLAP) Limit: two partons becoming parallel

Soft (eikonal) Limit: an emitted gluon having vanishing energy

— can build different types of parton showers
(and, in general, different kinds of resummations)

Peter Skands % Monash University
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TYPES OF PARTON SHOWERS

r4a
HI ' KL
Coll(1) Soft(IK)
Parton Shower (DGLAP) ar ar + ag
Coherent Parton Shower (HERWIG [12,40], PYTHIAG [11]) Orar Orar + Orag
Global Dipole-Antenna (ARIADNE [17], GGG [36], WK [32], arx +agr arg
VINCIA)
Sector Dipole-Antenna (LP [41], VINCIA) Orxarg +Opgragr arg
Partitioned-Dipole Shower (SK [23], NS [42], DTW [24], arx + a7 g arx + a1
PYTHIAS [38], SHERPA, DIRE)
Starting from collinear (parton) limit:
DGLAP evolution, collinear factorisation (MSbar PDFs) *angular ordering —

coherence only in an averaged
sense; discussed later

“Conventional Parton Showers” : earliest shower models
Moditied for correct soft limits: angular ordering* (or vetos), (CS) Dipole showers

Starting from soft (dipole) limit:

DLA (only double-pole piece), eikonal approximations

Extended to include DGLAP collinear limits: (Lund) Dipole / Antenna showers

Peter Skands Monash University é



DGLAP KERNELS

DGLAP: from collinear limit of MEs (pp+p.)2—0

+ evolution equation from invariance with respect to Qr = RGE

DGLAP 1+ 22
(E.g., PYTHIA) Pomagl2) = Cpo——
K abe - (1 o Z(l T Z))2
dPa — ; o Pa—>bC<Z) dt dz Pgﬁgg(z) = Nc¢ Z(l — Z) ;
,C
c Peqq(?) = Tr(z*+(1-2)7),
D > 1 2
a b Pomqy(2) = 63 1t2 :
Pb = < Pa 1 n
Z
Pc = (]'Z) Pa Pg_%v(Z) = 66 1 ,
— 2
4 )
dQQ ... with Q? some measure of "hardness”
dt = — dIn QZ = event/jet resolution
Q2 o : e L
measuring parton virtualities / formation time / ...
\_ J

NB: dipoles, antennae, also have DGLAP kernels as their collinear limits

Peter Skands % Monash University
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QED: Chudakov effect (mid-fifties)

UVAVAVAVAVAVAVAVAVAY L
cosmicray v atom

»e_

reduced normal

emulsion plate AR A
lonization lonization
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ANGULAR ORDERIN

Physics: (applies to any gauge theory)

Interference between emissions from colour-connected
partons (e.g. i and k) = coherent dipole patterns

(More complicated multipole effects beyond leading colour; ignored he

DGLAP kernels, though incoherent a priori, can reproduce this pattern (at least in
an azimuthally averaged sense) by angular ordering

Start from the M.E. factorisation formula in the soft limit

EJZ (Pz‘ 'pk) B 1 — cos ;. B 1 — cosB; n 1 1
(pi - pj)(pj - PE) a (1 —cosb;;)(1 —cosbj) N (1 —cosb;;)(1 —cosbr) 2(1—cosb;;) T 2(1 — cosb,i)

Soft Eikonal Facto (write out 4-products) Add and subtract 1/(1-cos8j) and 1/(1-cosBj) to isolate ij and jk collinear pieces

/2” di; 1 — cos 0;; N 1 1 B 1 " cos 0;; — cos O,
o 4m \ (1 —cosb;;)(1 —cosBjr) 1—cosby 1—cosbjr)  2(1—cosb;;) | cos 6;; — cos O]

Take the ij piece and integrate over azimuthal angle d; (using explicit momentum representations)

fl . . 1 ) N l
> Soft radiation X if 8; < 0, ; otherwise 0

averaged over ; 1 —cosb;;
kill radiation outside
Note: Dipole & antenna showers include this ik opening angle

effect point by point in ¢ (without averaging)

Peter Skands % Monash University
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COHERENCE AT WORK IN QCD

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Example: quark-quark scattering in hadron collisions

Consider, for instance, scattering at 45°

2 possible colour flows :

Out 1
a) “forward” colour flow 2|
Q
1
180
Out 2
Out 1
b) “backward” | ‘ ‘
0° 45° 90° 135° 180°
colour flow 6 (gluon, beam)
= < - , o L
igure 4: Angular distribution of the first gluon emission in

qq — qq scattering at 45°, for the two different color flows.

The light (red) histogram shows the emission density for the

Out 2 forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

Another nice physics example is the SM contribution to the Tevatron top-quark forward-backward

) 151
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http://arxiv.org/abs/arXiv:1210.6345

INITIAL-STATE VS FINAL-STATE EVOLUTION

4

\
Virtualities are Virtualities are
Timelike: p?>0 Spacelike: p?<0

Start at Q2 = Qf2
Constrained backwards evolution
towards boundary condition = proton

Start at Q2 = Qf?
“Forwards evolution”

Separation meaningful for collinear radiation, but not for soft ...
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INITIAL-FINAL INTERFERENCE

A tricky aspect for many parton showers. lllustrates that quantum = classical !

Who emitted that gluon?

Real QFT = sum over amplitudes, then square — interference (IF coherence)
Respected by dipole/antenna languages (and by angular ordering, azimuthally
averaged), but not by conventional DGLAP (- all PDFs are "wrong")

Separation meaningful for collinear radiation, but not for soft ...

Peter Skands g Monash University



PERTURBATIVE AMBIGUITIES

The final states generated by a shower algorithm wiill

depend on
| Ordering & Evolution-
1. The choice of perturbative evolution variable(s) tl//.  «— scale choices
2. The choice of phase-space mapping d<I>,[:f]le /d®,,. «——  Recoils, kinematics

3. The choice of radiation functions a;, as a function of the phase-space variables.
\ Non-singular terms,
Reparametrizations,

4. The choice of renormalization scale function up. Subleading Colour

) ) ) Phase-space limits / suppressions for hard
5. Choices of starting and endlng scales. € radiation and choice of hadronization

scale

— gives us additional handles for uncertainty estimates, beyond just uxz

(+ ambiguities can be reduced by including more pQCD — matching!)

LI
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(ADVERTISEMENT: UNCERTAINTIES IN PARTON SHOWERS)

Recently, HERWIG, PYTHIA & SHERPA all published papers on automated
calculations of shower uncertainties (based on tricks with the Sudakov algorithm)

Weight of event={1,0.7,1.2, .} M pp—Z-leptons 7000 GeV
o
| | 1\; P, (Born)
logo (kL jet resolution 3 — 4[GeV]) oS 1 = ATLAS
_ J— T T T T T T 3 - 10 - —— MECs OFF: muR
= 10° 3 Sherpa pp — W {(ev) at LO+PS 73 = o MECs OFF: P(2)
- : : E 102
E 10t £ rew. from CT14 to MMTH2014 E - Example 2.
= : SHERPA: Bothmann, 1073 Renormalisation
-3 10% & dedi d Schénherr, Schumann; -
= : ecicate in arXiv:1605.04692 104k
@0 100fL T rewd: ME E S
—~ F ) 1. . s PYTHIA 8: Mrenna & PS:
"% N rew,j‘ ﬁg’iz(l“ em.) 107°E" arXiv:1605.08352
107 — rewa: + C
< 107¢ | | | | | | 1078 Data from JHEP09(2014)145
< 1.04 - - Pythia 8.219 °
< 1.02 1077 ' -
S 1.00 145
-% 0.98 § g
= 0.96 S
02 04 0.6 08 1.0 1.2 1.4 1.6 1.8 E
10g10(d34/GeV) 0.6 f_I| N Y Y || | N |
See also HERWIG++ : VINCIA: 10 o° p,, [GeV]

Bellm et al., arXiv:1605.08256 Giele, Kosower PS: arXiv:1102.2126

Encouraged to start using those, and provide feedback

L !
Peter Skands '0' Monash University
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http://arxiv.org/abs/arXiv:1605.08256
http://arxiv.org/abs/arXiv:1102.2126

TWO WAYS TO COMPUTE QUANTUM CORRECTIONS

Fixed Order Paradigm: consider a single physical process

Explicit solutions, process-by-process (to some extent automated)
Standard-Model: typically NLO or NNLO
Beyond-SM: typically LO or NLO

Accurate for hard process, to given perturbative order

Limited generality

Event Generators (Showers): consider all physical processes

Universal solutions, applicable to any/all processes

Process-dependence = subleading correction (= matrix-element
corrections)

Maximum generality

Common property of all processes is, e.g., limits in which they factorisel!

Accurate in strongly ordered (soft/collinear) limits (=bulk of radiation)

Peter Skands g Monash University




PDG: 0.119
(YME : IQA1R77 |

From MS to MC  BeEE

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

A
/ 1+ 22 2 A2)
g + Z g
Plag,z) = —C | (_>
( S ) 9 F 1 — - | - .
Eg Analytic resummation (in Mellin space): General Structure
- 1 ZN_l 1T de JforDIS_ _
R dz /—J_Aas + B(ag
BW = —3Cp/2
Alas) :A(l)%—FA@) (%)QJF 1 o 1;/ 1
49 = jcr (Ca (g - §7°) - g ) = yCrKeme
Ci—= (1+ K &s
Replace Pias,2) = 2 ( oMW 52)

(for z—1: soft gluon limit): 1 —z



PDG: 0.119
ME : 0.127

From M to MC I

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes

A1)
/1 2
Qg + Z
Plag,z) = —C <
(@, 2) o M1 -z
Replace C
(for z—1: soft gluon limit): Pi(&s’ Z) ~
_ (MS)
aMC) — (MS) (1 + Konvw &s ) Main Point:
2 Doing an
ted
Kenw uNcompensa
Anc = Aggexp ( An > ~ 1.57Ayg scale variation
0 (for nF=5)

actually ruins
Note also: used mu? = pt? = (1-2)Q?

this result

Amati, Bassetto, Ciafaloni, Marchesini, Veneziano, 1980



JACK OF ALL ORDERS, MASTER OF NONE?

Nice to have all-orders solution

But it is only exact in the singular (soft & collinear) limits

— gets the bulk of bremsstrahlung corrections right, but fails equally
spectacularly: for hard wide-angle radiation: visible, extra jets

... which is exactly where fixed-order calculations work!

F @ LOXLL

2

[

¢ (loops)

| ©

(2)

09

So combine them!

F+1 @ LOXLL F&F+1 @ LOXLL

2| o

D

+

(1)

¢ (loops)
p—
oq

(@)
—~
=)
=

0

Peter Skands

— Matching Lectures by Stefan Hoche |
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Z — 3 Jets

Size of NLO “K" tactor
over phase space

0p=2pr (strong)

C i
\\

Hartgring, Laenen, Skands, arXiv:1303.4974

)
et Sij
5\(\0 yz] M2
YA
o000 ]
S Sk
O . _— Y
k
. Qe=2pr(strong)
7 x hard
2L i
 «——collinear
i
—6- _ i
, /soft collinear
_8*\ | | | | | | | l | | 172 ]
—8 —6 —4 2 0
In(y;;)
(b) UPS = DI




Hartgring, Laenen, Skands, arXiv:1303.4974

Z — 3 Jets Size of NLO “K" factor over phase space

The "CMW" factor

: Constant shift by

(1513 np =6 5
67 — 312 — 10np/3 1.569 np =5 s L0
k = —_—
CMW eXp( 2(33 — 2np) ) 1.618 np = 4 or 9 (kCMW) ~ 0.07
1.661 neg — 3

Catani, Marchesini, Webber, NPB349 \

QE—2PT (strong)

QE—2PT (strong)

In(yy;)

ups = p, with CMW



0.8

f o(Q)
% —— 0¥ MZ2)=0.12 (incl var)
0.6 —s— o®(M2)=0.12 (CMW)
% --3%-- o'\M2)=0.14
0.4 A/,
l,,i’i Beware: choosing a larger central scale
»14,%‘ . .
N .’i_,q_.@ ., — a seemingly smaller scale variation!
0.2— - “;5-:#,,%5:;:'; ' -
| = Sk X - % ‘s 8
O_ 1 1 1 1 I 1 1 1 1 I 1 1 I 1 1 1 E
— =W Ve X"X‘X—x- o
1? ? V0= VA % ><_i((_.):/x_x-x_x_X'X*‘><‘9<'9<-><—><—><-><-><—><—><—>e—>e-><—-><
o = /]
0.9 | .
08 : ] i ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ]
0 1 2 3 4

Log10(u) [GeV]

12 N3=037 N=032 ANA5=0.23
14 N3=0.37 NAN=0.33 As=0.26

(In all cases, 5-flavor running is still used above mt)




DGLAP for Parton Density

[dfbxt Z/

b X
acPa—>bc(_

x/

)|

— Sudakov for

ISR

4 )
r tmax dx aabc t/ ZL’
Az, tuas, ) = xPY =), 4 Z/ ' Fate ;)}
4 t e aa,bc t/ /fa .fC t/>
p— — dt /d a—> C Y
exp <\ /t Z z be( xfb(x )
\_

J

Peter Skands
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THE SHOWER OPERATOR

H = Hard process

dog :/dCIDH ’M[(j([))jz 0(O —O(ptn))

Born 90

Born {p}: partons

But instead of evaluating O directly on the Born final state,
first insert a showering operator

{p}: partons

Born dog 0
S — / dq)H ‘MJ(L[) |2 8({]?}]{, O) S : showering operator

+ shower dO

Unitarity: to first order, S does nothing

S(irtu,0) =0(0 = O@pin)) + Olas)
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THE SHOWER OPERATOR ‘

To ALL Orders
(Markov Chain)

S({prx, 0) = Altsiart, thaa)0(O—=O({p}x))

“Nothing Happens” — "“Evaluate Observable”

thad A (1
- oD {p} x11,0)
tstart dt

“Something Happens” —  “Continue Shower”

All-orders Probability that nothing happens

2 qp (Exponentiation)
A(tla t2) = XD (—/ dt —) Analogous to nuclear decay
t1

dt N(t) = N(O) exp(-ct)
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