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DISCLAIMER

This course covers:

| ecture 1: Foundations of MC Generators
| ecture 2: Parton Showers

| ecture 3: Jets and Confinement

_ecture 4: Physics at Hadron Colliders

Supporting Lecture Notes (~80 pages): “Introduction to QCD”, arXiv:1207.2389

+ MCnet Review: “General-Purpose Event Generators”, Phys.Rept.504(2011)145

It does not cover:

Simulation of BSM physics = Lectures by V Hirschi
Matching and Merging — Lectures by S Hoche
Heavy lons and Cosmic Rays — Lectures by K Werner
Event Generator Tuning — Lecture by H Schulz

+ many other (more specialised) topics such as: heavy quarks, hadron and T
decays, exotic hadrons, lattice QCD, spin/polarisation, low-x, elastic, ...
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http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1101.2599

CONTENTS

1. Foundations of MC Generators
2. Parton Showers
3. Jets and Confinement

4. Physics at Hadron Colliders
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MAKING PREDICTIONS

Scatterlng LHC detector
Experiments: source Cosmic.—Ray detector
(s A Neutrino detector
X-ray telescope
— Integrate differential cross sections over
specific phase-space regions

-
g
e
Predicted number of counts N do s
. . Count(AQ) X dQ_ I
= integral over solid angle Ao df) S

In particle physics:
Integrate over all quantum histories
(+ interferences)
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do/dQ: how hard can it be?

If event generators could talk:

Someone hold my drink while | approximate the amplitude (squared)
for this ...

(to all orders, . integrate it

+ non- over a ~300-
dimensional

phase space

perturbative
effects)

Run: 300571
Event: 905997537
2016-05-31 12:01:03 CEST
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INTERACTIONS IN COLOUR SPACE

A quark-gluon interaction 1%(@”)({%)@']'%]]

(= one term in sum over colours) | .
l)’u — 5zja’u — ngt?jA'u

1 Y
A,
X _%gs &qR Al qu
0 1 O 0
= —3gs (1 00) [1L 0O 1
0 0 O 0
77qu ¢QR gluon (adjoint) colour index € [1,8]

gluon Lorentz-vector index € [0,3]

e
ngt237a5 A,

fermion colour indices € [1,3] / fermion spinor indices € [1,4]

Amplitudes Squared summed over colours = traces over t matrices

— Colour Factors (see literature, or back of these slides)
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INTERACTIONS IN COLOUR SPACE

A gluon-gluon interaction _lFa Fapy
. . 4, M
(no equivalent in QED) | e
FS, = 0,A% — 0, A% + g, [*° AL A
Abgian non—Kbelian

x  —gs f20 [(k3 — k)Pgh”
+ (kg — k1)*g*?

+(k1 — k3)” g™
ifoe = 2Tr{t[t?, t°]}

D.o A, Lt Structure Constants of SU(3)
Ji23 =1 (14)

1
J147 = fose = fos7 = fa45 = 5 (15)

Cp \Qp\.e B, v J156 = faer = *% (16)
— /g':: fXAC fXBD [g"'”" g"n” B Jass = fers8 = \ég (17)
gl-! o g‘ b ] + ( C.~ ) PN Antisymmetric in all indices
(D/})_*_(BI,)_,(CA) All other f;. =0

Amplitudes Squared summed over colours = traces over t matrices

— Colour Factors (see literature, or back of these slides)
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COLOUR VERTICES IN EVENT GENERATORS

MC generators use a simple set of rules for “colour flow”
Based on “Leading Colour” 8 = 3 & 3 & 1 (=valdto-~ 1/N§~ 10%)

LC: represent gluons as outer products of triplet and antitriplet

4 N\ _ )
q — q9 g — qq
e || e
g J _ _ J
/ lllustrations from PDG Review on MC Event Generators

=>» Lecture 2

“Strong Ordering”, + Mass effects: t, b, (c?) quarks, coloured resonances;
Xs(p,), “Coherence”, Spin effects (J cons; polarisation; spin correlations);
"Recoils” [(E,p) cons.] Corrections beyond LC (or LL)
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COLOUR FLOW

Showers (can) generate lots of partons, ©(10-100).

Colour Flow used to determine between which partons

confining potentials arise
Example: Z° = gqg

e e e e e e e e e e e - - - < L___I __________ l

System #1 System #2 System #3

Coherence of pQCD cascades — suppression of “overlapping” systems
— Leading-colour approximation pretty good

(LEP measurements in e'e— W W-—hadrons confirm this (at least to order 10% ~ 1/N.2))

Note: (much) more color getting kicked around in hadron collisions.
Signs that LC approximation is breaking down? — Lecture 4
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THE STRONG COUPLING

Bjorken scaling:

To first approximation, QCD is

(a.k.a. conformal)

Jets inside jets inside jets ...

Fluctuations (loops) inside
fluctuations inside fluctuations ...

If the strong coupling didn't
“run”, this would be absolutely
true (e.g., N=4 Supersymmetric Yang-Mills)

Since & only runs slowly
(logarithmically) = can still gain
insight from fractal analogy

(— lecture 2 on showers)

Peter Skands ﬂ@ Monash University

QQ

Landau Pole at
/\QCD~200 MeV

o)

o (Q)

04

03

Oag
0()?

— 6(045)
— —Oég(b() + brag + bQOé + .. )

Asymptotic Freedom

_ 110/1 — 2nf
. 127

1-Loop B function b
coefficient: 0

> 0

for ny <16

April 2012

k

T decays (N3LO)

Lattice QCD (NNLO)
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MANY WAYS TO SKIN A CAT

The strong coupling is (one of) the main perturbative parameter(s)
in event generators. It controls:

~ The overall amount of QCD initial- and final-state radiation e o i

~ Strong-interaction cross sections (and resonance decays) from: PDG?

C e . ? Fi
~ The rate of (mini)jets in the bl

underlying event

data (tuning)?

0.5 3
\ % April 2012
. . e [ © ) (Q) — v T decays (N3LO)

Example (for Final-State Radiation): ° N> ® Lattice QCD (NNLO)

o4 | < ’%: a DIS jets (NLO)

‘ 03& 0 Heavy Quarkonia (NLO)
; : y " . e o e*e jets & shapes (res. NNLO)
SHERPA : uses PDF or PDG value, with “CMW" translation e Z pole fit (N3LO
alphaS(mz) default = 0.118 (pp) or 0.1188 (LEP) pP — jets (NLO)

running order: default = 3-loop (pp) or 2-loop (LEP) Z PYTHIA is ~ 10% higher
CMW scheme translation: default use ~ alphaS(p1/1.6) % than SHERPA due to tuning

— roughly 10% increase in the effective value of & % to LEP 3-jet rate

will undershoot LEP 3-jet rate by ~ 10% (unless combined with NLO 3-jet ME)

8
N

o

PYTHIA : tuning to LEP 3-jet rate; requires ~ 20% increase PYTHIA S
TimeShower:alphaSvalue default = 0.1365 == QCD s(My) = 0.1184 = 0.0007
TimeShower:alphaSorder default =1 10 Q [GeV] 100

TimeShower:alphaSuseCMW default = off

(also note: definitions of
Agrees with LEP 3-jet rate “out of the box"”; but no guarantee tuning is universal. Q=pr not exactly the same)

V.
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USING SCALE VARIATIONS TO ESTIMATE UNCERTAINTIES

Scale variation ~ uncertainty; why?

Scale dependence of calculated orders must be canceled by
contribution from uncalculated ones (+ non-pert)

1 5 b — 11Nc—2nf
1 —|-b() Oés(mz) 1n2—2—|—(9(a2) ! 127

Z

O‘S(QQ) = ozs(m%)

7 a,(QF) — as(Q3) = alboIn(Q3/Q7) + O(al)

— Generates terms of higher order, proportional to what you
already have (|M|?)— a first naive” way to estimate uncertainty

*warning: some believe it is the only way ... but be agnostic! Really a lower limit. There are other things than scale
dependence ...
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WARNING: MULTI-SCALE PROBLEMS

0.004

3

_._G‘S

Example: pp # W + 3 jets pT1 =100
1: MW 7 pT2 = 200

GE) é 2: MW + Sum(|pT]) o.ooz_?/ p13 =300 %

o Ol 3: -"- (quadratically) .

“6" 4. Geometric mean pT (~shower) 00T

5: Arithmetic mean pT b | | |
0.01 -

B W + 3 jets (20, 30, 60) o 1.5
ooosl- g i/ / . 72 /

: pT1 =20 ittt t@tunspuuua
0.006— pTZ = 30 // | 1 ? ° * Cegtral Choice
0.004— p13 =60 y. 0009 o

— O s — Wiggo+ 3 jets (100, 200, 300)
o.oozZ 9997 __',_,ia/ 0'0025;_ —* mW’' =800

n 0.002F— oT1=100

If you have multiple QCD scales p12=200 777

Y. 7

— variation of pg by factor 2 in each e 2elld 2

direction not exhaustive! | | | | |

Also consider functional dependence on ) .

each scale (+ N™WLO — some compensation) // 5 Z 7

C 1 Ll | C
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BEYOND FIXED ORDER

QCD is more than just a perturbative expansion in O

(and Perturbation theory is more than Feynman diagrams)

Jets «— amplitude structures «— fundamental
quantum field theory / gauge theory. Precision jet

(structure) studies.

Strings (strong gluon fields) «— quantum-classical

correspondence. String physics. Dynamics of
confinement / hadronisation phase transition.[EXESHEES

® Hadrons «— Spectroscopy (incl excited and exotic states),
[ lattice QCD, (rare) decays, mixing, light nuclei.
Hadron beams = MPI, diffraction, ...

Peter Skands g Monash University




HARD-PROCESS CROSS SECTIONS

Factorisation = Fixed-order cross sections still useful.

In DIS, there is a formal proof (Collins, Soper, 1987)
Scattered
Deep Inelastic Lepton / Lepton
. >
2
Scattering (DIS) iy E—
" " A > f Scattered LO, fcan be
(By “deep”, we T o Quark

mean Q?>>M?)

Ji/n ==

— We really can write the cross section in factorised form :

dé‘ei_)f(ilj' (I)f QQ)
rr/dx [0 gntan @) T

Sum over D ¢ f%/h Differential partonic
Initial (i) = Final-state = PDFs Hard-scattering
and final (f) phase space  Assumption: Matrix Element(s)
parton flavors Q2 = Qf?
Peter Skands Monash University




A PROPOS FACTORISATION

Why do we need PDFs, parton showers / jets, etc.?

Why are Fixed-Order QCD matrix elements not enough?

F.O. QCD requires Large scales = &, small enough to be perturbative
(-» cannot be used to address intrinsically soft physics such as minimum-bias or
diffraction, but still OK tfor high-scale/hard processes)

F.O. QCD requires No scale hierarchies => & In(Q//Q;) small
In the presence of scale hierarchies, propagator singularities integrate to
logarithms (tomorrow's lecture) which ruin fixed-order expansion.

But!!! we collide - and observe - hadrons, with non-perturbative
structure, that participate in hard processes, whose scales are
hierarchically greater than mp.q ~ 1 GeV.

— A Priori, no perturbatively calculable observables in QCD
Peter Skands gf Monash University A




FACTORISATION = WE CAN STILL CALCULATE!

Why is Fixed Order QCD not enough?

: It requires all resolved scales >> Aacp AND no large hierarchies

PDFs: connect incoming hadrons with the high-scale process
Fragmentation Functions: connect high-scale process with final-state hadrons

(each is a non-perturbative function modulated by initial- and final-state radiation)

daab—>f<xaaxbaf Q Qf)

dX ZZ fa T, QF) folxs, QF) X, D(X; — X,Q}, Q)
PDFs: needed to compute inclusive FFs: needed to compute
cross sections (semi-)exclusive cross sections

’ In MCs: made exclusive as initial-state radiation + In MCs: resonance decays, final-state
il non-perturbative hadron (beam-remnant) structure radiation, hadronisation, hadron decays

(+ multiple parton-parton interactions) (+ final-state interactions?)

Resummed pQCD: All resolved scales >> Aqcp AND X Infrared Safe

pQCD = perturbative QCD

Will take a closer look at both PDFs and final-state aspects (jets and showers) in the next lectures

L
Peter Skands g Monash University A
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ORGANISING THE CALCULATION

Divide and Conquer — Split the problem into many (nested) pieces

+ Quantum mechanics = Probabilities @ Random Numbers

7Devent — 7Dhaer Y 7Ddec X 7DISR X 7DFSR Y 7Dl\/IPI Y 7DHa,d Q...

Hard Process & Decays:
zg} - - 4{: Use process-specific (N)LO matrix elements (e.g., gg — H° — vv)
— Sets “hard” resolution scale for process: Quax

ISR & FSR (Initial- & Final-State Radiation):
mém? Driven by differential (e.g., DGLAP) evolution equations, dP/dQ?, as

function of resolution scale; from Qumax to Quap ~ 1 GeV

Zg MPI| (Multi-Parton Interactions)
Protons contain lots of partons — can have additional (soft) parton-

parton interactions = Additional (soft) “Underlying-Event” activity

Hadronisation
Non-perturbative modeling of partons = hadrons transition

Peter Skands a Monash University
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THE MAIN WORKHORSES

PYTHIA (begun 1978)

Originated in hadronisation studies: Lund String mode|

Still significant emphasis on soft/non-perturbative physics

HERWIG (begun 1984)
N NEW Originated in coherence studies: angular-ordered showers

"I Cluster hadronisation as simple complement

SHERPA (begun ~2000)
Originated in ME/PS matching (CKKW-L)

Own variant of cluster hadronisation

+ Many more specialised:

Matrix-Element Generators, Matching/Merging Packages, Resummation packages,

Alternative QCD showers, Soft-QCD MCs, Cosmic-Ray MCs, Heavy-lon MCs, Neutrino
MCs, Hadronic interaction MCs (GEANT/FLUKA,; for energies below Ecy ~ 10 GeV),

(BSM) Model Generators, Decay Packages, ...

Peter Skands g Monash University A



—+ MONTE CARLO

MC: any technique that makes use of random sampling (to provide numerical estimates)

[
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| |
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—+ MONTE CARLO

MC: any technique that makes use of random sampling (to provide numerical estimates)

Prescribed for cases of complicated integrands/boundaries in high dimensions

Example: Integrate f(x) fa [~
Compute area of box (you can do it!)
Throw random (x,y) points uniformly inside box
It y < (x) : accept (blue); else reject (red)
After Nyt throws, you have an estimate

xmax

(x)dx ~ Apox Nblue/Ntot

Lmin

Central limit theorem => converges to Apjue

.A_
- \ O
4 g . - m —— vore -~ ampy g YR RNr o
"-7-: W :‘- ’ i—m3 %t - MY AL 'r"Ll! ----- !‘!0 5
e\ i, = W e Bt el kb o) |/ pee ] ~
i AT - - & . ' I
of

Recap Convergence: Monte Carlo: {A} converges to B
N if n exists for which

Calculus: {A} converges to B the probability for A, - B| <&,
if n exists for which |A;>,- B| <g, forany e >0  is > P, for any P[0<P<1] for any ¢ > 0

“This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is
the reason why this technique was named after the world's most famous gambling casino.”  [F James, MC theory and practice]

Peter Skands W Monash Universit
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—+ MONTE CARLO

MC: any technique that makes use of random sampling (to provide numerical estimates)

Prescribed for cases of complicated integrands/boundaries in high dimensions

Example: Integrate f(x) frn

Could also have used standard 1D num. int. A
(e.g., "Fixed-Grid": Trapezoidal rule, Simpson’s rule ...)
— typically faster convergence in 1D

but few general optimised methods in 2D; none
beyond 3D & convergence rate becomes worse ...

The convergence rate of MC remains the stochastic
1/v/n independent of dimension™ | =

*) You still need to worry about variance; physics has lots of peaked/singular functions = adaptive samplin (or stratification)
s )’ phy p g P P 9
R \y:'_-;:-.»'\\ 8 ) wm P ———— ‘ . ”1?’!"11 e

X

Numerical Integratlon Relatlve Uncertalnty , One D|men5|on D Dimensions

Neval / bIN
(after n function evaluations) eval Conv. Rate Conv. Rate

Trapezoidal Rule (2-point)
Simpson’s Rule (3-point) 1/n* 1/n4/D

Monte Carlo 1/n1/2 1/n1/2

+ optimisations (stratification, adaptation), iterative solutions (Markov-Chain Monte Carlo)

Peter Skands @ Monash University A




JUSTIFICATION:

MC CAN PROVIDE PERFECT ACCURACY, WITH STOCHASTIC PRECISION

1. Law of large numbers (MC is accurate)

For a function, f, of random variables, x;,
For infinite n:

n b .
1 1 Monte Carlo is
lim = f(z;) = f(a)da -
n—0o0 N, 4 1 b—aJ, a consistent
1— )
Monte Carlo Estimate The Integral estimator

(note: in real world, we only deal with approximations to Nature's f(x) = less than perfect accuracy)

2. Central limit theorem (MC precision is stochastic: 1/4/n)

r

U

|
The sum of n independent random variables (of finite

expectations and variances) is asymptotically Gaussian

(no matter how the individual random variables are distributed)

Peter Skands

For finite n:

The Monte Carlo estimate is Gauss distributed around the true

value = with 1/{n precision [HRe RN ele Y/ G CIaU TR ECh e Ide E1e

g

Variance V = (zo — 1) 2 f( )2d — Qf( ) d 2
% Monash University I ./.7:1 [ m] i [/Tl - x] A
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PEAKED FUNCTIONS

Functions: Breit-Wigner
I ' I ! I ' l ' |

fmax Precision on integral
T | dominated by the
points with f = fax
x (i.e., peak regions)
© 0.50

— slow convergence
it high, narrow peaks

% i 20% ; 2
0.00 |
2 1 0 1 2
(E-MV/T

Variance V = (x5 — x7) /1112 [f(:c)]Qdm - [/1112 f(x) d:ztf

.
Peter Skands % Monash University




STRATIFIED SAMPLING

Functions: Breit-Wigner

LA B S S I — — Make it twice as

c ikely to throw points
1o 7 inthe peak
Choose:
| 0,1] — Region A
| For: 1,2] — Region B
£ 6*Rq €[2,4] — Region C
L A B D E 3= 4,5] — Region D
0.50 = . : o " 0: 5,6] — Region E
E 8 : .0 ] '
: g g {  — faster convergence
16.7% 16/7% 533.3% 16.7% 16.7% for same number
S T 1 of function evaluations
0.00 '
2 1 0 1 2
(E-MV/T"
Peter Skands @ Monash University




(ADAPTIVE SAMPLING)

Functions: Breit-Wigner
I ' I ' I ' I ' [

1.00 -

o/ O max

0.50 [~

0.00 —
(E-MV/T

Peter Skands g Monash University

— Can even design
algorithms that
do this automatically

as they run
(not covered here)

— Adaptive sampling




IMPORTANCE SAMPLING

Functions: Breit-Wigner

T T — or throw points

according to some

smooth peaked

function for which you

' ) have, or can construct, a
random number

l - generator (here: Gauss)

1.00 - -

o/G,. ..
*

0.501 T

Any MC generator contains

' ] LOTS of examples of this.

(+ some generic algorithms though generally never
- as good as dedicated ones: e.g., VEGAS algorithm)

0.00 —et 1V
2 -1 0 1 2

(E-MY/T

Note: if several peaks: do multi-channel importance sampling (~ competing random processes)

Peter Skands % Monash University
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WHY DOES THIS WORK?

1) You are inputting knowledge: obviously need to know

where the peaks are to begin with ... (say you know, e.g., the
location and width of a resonance or singularity)

2) Stratified sampling increases efficiency by combining n-

point quadrature with the MC method, with further gains
from adaptation

3) Importance sampling:
f( ) Effectively does tlat MC with
changed integration variables
[ s 1G(a)

N g( ) : Fast convergence if

f(x)/g(x) =
Flat sampling in x = Flat sampling in G( )

Peter Skands % Monash University
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NUMBER OF PEDESTRIANS (IN LUND)
WHO WILL GET HIT BY A CAR THIS WEEK

Complicated Function:

Time-dependent

Traffic density during day, week-days vs week-ends
(I.E., NON-TRIVIAL TIME EVOLUTION OF SYSTEM)

No two pedestrians are the same

Need to compute probability for each and sum
(SIMULATES HAVING SEVERAL DISTINCT TYPES OF “EVOLVERS")

(Multiple outcomes (ignored for today):)
Hit = keep walking, or go to hospital?
Multiple hits = Product of single hits, or more complicated?

-



MONTE CARLO APPROACH

Approximate Traffic

Simple overestimate:
highest recorded density

of most careless drivers,

driving at highest recorded speed

Approximate Pedestrian

by most completely reckless and accident-prone person (e.g,
MCnet student wandering the streets lost in thought after these lectures ...)

This extreme guess will be the equivalent of a

simple area (~integral) we can calculate:

Peter Skands % Monash University
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HIT GENERATOR

O'H: we gO ce basically a special application of

importance sampling; transforming a
uniform distribution to a non-uniform one

Throw random accidents according to:

Solve for t(R)
Uniformly t Nped
distributed __ — / 2 / / /
R [at [ @Y ailaet) gl t) pelas )
number € [0,1] to Area i—1 Pedestrian-Car Density of Density of
interaction  Pedestrian i Cars

Too

Difficult

to : starting time Sum over
Pedestrians

t : time of accident

Larger trial area with simple
boundary (in this case, circle)

_ 5 Simple
Rtria| — (ttrial — tO) (WTmaX) Cmax Nped Pemax P
Solve for Hit rf‘jje ftor most  Rush-hour Overestimate
accident-prone :
teriaReial) edestrialr? with density
P of cars

worst driver

(Also generate trial x, e.g., uniformly in circular area around Lund)

(Also generate trial i; a random pedestrian gets hit)

(note: this generator is unordered; not asking whether that pedestrian was already hit earlier...)

Peter Skands % Monash University
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ACCEPT OR REJECT TRIAL

Now you have a trial. Veto the trial it generated x is outside desired
physical boundary. If inside, accept trial hit (i,x,t) with probability

(exactly equivalent to when we coloured points blue [accept] or red [reject] )

a;(x,t) pi(x,t) pe(,1)

O{IIIELX pcmax

Prob(accept) =

Using the following:
p. : actual density of cars at location x at time t
p; : actual density of student i at location x at time t
&; : The actual "hit rate” (OK, not really known, but could fit to past data: “tuning”)

— True number = number of accepted hits

(caveat: we didn't really treat multiple hits ...

— Sudakovs & Markov Chains; tomorrow)

L
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SUMMARY: HOW WE DO MONTE CARLO

Take your system

Generate a “trial” (event/decay/interaction/...)

Not easy to generate random numbers distributed according to
exactly the right distribution?

May have complicated dynamics, interactions ...

— use a simpler “trial” overestimating distribution

Flat with some stratification

Or importance sample with simple overestimating

function (for which you can ~ easily generate
random numbers)

Peter Skands @0@ Monash University



SUMMARY: HOW WE DO MONTE CARLO

Take your system

“ Generate a “trial” (event/decay/interaction/...)

Accept trial with probability f(x)/g(x)
f(x) contains all the complicated dynamics

g(x) is the simple trial function
It accept: replace with new system state

It reject: keep previous system state

no dependence on g(x) in
final result - only affects
convergence rate

k— And keep going: generate next trial ...

)
Peter Skands %ﬂ Monash University



Take your system

o Generate a “trial” (event/decay/intera

Accept trial with probability f(x)/g(x)

f(x) contains all the complicated dynamic

g(x) is the simple trial function
It accept: replace with new system stat

It reject: keep previous system state

no dependence on
final result - only a
convergence rate

- CERTTTIE
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SUMMARY: USING RANDOM NUMBERS TO MAKE DECISIONS

A Psychological Tip

Whenever you're called on to make up your mind,
and you're hampered by not having any,

the best way to solve the dilemma, you'll find,

is simply by spinning a penny.

PSYKOLOGISK
HUSRAD

No -- not so that chance shall decide the affair
while you're passively standing there moping;
but the moment the penny is up in the air,
you suddenly know what you're hoping.

[Piet Hein, Danish scientist, poet & friend of Niels Bohr]




Extra Slides



IF YOU WANT TO PLAY WITH RANDOM NUMBERS

| will not tell you how to write a Random-number generator. (For
that, see the references in the writeup.)

Instead, | assume that you can write a computer code and link to
a random-number generator, from a library

E.g., ROOT includes one that you can use if you like.
PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under “"Random Numbers”:

Random numbers R uniformly distributed in 0 < R < 1 are obtained with

Pythia8::Rndm::flat();

+ Other methods for exp, x*exp, 1D Gauss, 2D Gauss.

Peter Skands % Monash University
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RANDOM NUMBERS AND MONTE CARLO

[Example 1: simple function (=constant); complicated boundary)

Now get a few
friends, some
balls, and throw
random shots

inside the circle

(PS: be careful to make
your shots truly random)

Count how many
shots hit the shape
inside and how
many miss

Peter Skands

Y Monash University
>4

Assume you know the

__— area of this shape:

nR?2

(an overestimate)

\_

~
Earliest

Example of
MC
calculation:
Buffon's
Needle
(1777)
to calculate
T

G. Leclerc, Comte de Buffon (1707-1788)
J

é; ~ Nhit/Nmiss X T[RZ

-



INTERACTIONS IN COLOUR SPACE

Colour Factors

Processes involving coloured particles have a “colour tfactor”.

It counts the enhancement from the sum over colours.

(average over incoming colours = can also give suppression)

rd "Dm‘::at;;:

S MpP=

colours

L
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INTERACTIONS IN COLOUR SPACE

Colour Factors

I/

Processes involving coloured particles have a “colour tfactor”.

It counts the enhancement from the sum over colours.

(average over incoming colours = can also give suppression)

2 ﬁ@.ﬁ&:}t

S MpP=

colours

i, € {R,G,B)

.
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INTERACTIONS IN COLOUR SPACE

Colour Factors

Processes involving coloured particles have a “colour tfactor”.

It counts the enhancement from the sum over colours.

(average over incoming colours = can also give suppression)

‘br@.i.tmﬁ(am

Z \M|2

colours

qgj X 52] Jt N2
Tr[d;; Ni%
1/Ne

i, € {R,G,B)

.
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CROSSINGS

ete” = ~v*/Z = qq

(Hadronic Z Decay)

In Out

Time
>

Color Factor:

TI‘[(;Z']'] — NC

Peter Skands

qq — )2 — 0t
(Drell & Yan, 1970)

In Out

Color Factor:

1 1

N% I'[ ]] NC

L
K Monash University

lq 72>Z lq

(DIS)

-/
b,

—-

Color Factor:

1
T
No

0i5] = 1




INTERACTIONS IN COLOUR SPACE

Colour Factors

Processes involving coloured particles have a “colour tfactor”.

It counts the enhancement from the sum over colours.

(average over incoming colours = can also give suppression)

S MpP=

colours

|
N |
—
~
S,
——
|
I

Peter Skands @ Monash University
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QUICK GUIDE TO COLOUR ALGEBRA

Colour factors squared produce traces

Trace Example Diagram
Relation
A B
Tr(t"tP) = Tro"B, Tr=3
« TrR(N-1)/Nc
i N2—1 4 m
ZA tabtbc = Crdac, CfF= SNC — § a__ _°
. A B
ZC,D fACDfBCD — CAOAB , CA — Nc — 3
b a
) y S 1 P >
At = ~0pcd b ab0cd (Fierz) 3 =5 YA N
e 2 2Nc )= -
/ \ c d
Tr Tr/Nc¢

(from ESHEP lectures by G. Salam)
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SCALING VIOLATION

Real QCD isn't conformal

The coupling runs logarithmically with the energy scale

O
@ogs =Blas) Bl =—ailo+basthal+.),

%
X
i
b HCa=2np 17C% — 5Cany —3Cpny 153 — 19n; /@0‘3’%@
’ 127 2472 2472 o5l 0

=

L2

R i[RIyl  in the ulfraviolet

LU ENE RN EI =0 in the infrared
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Multi-Scale Exercise

Skands, TASI Lectures, arXiv:1207.2389

It needed, can convert from multi-scale to single-scale

2

as(pr)as(pz) - - as(pn) = f[lozs(u) (1 + bo s In <M—2) + 0(@4?))

H;

o™ (1) (1 + by s In ( p ) + O(a§)>

Hips -

by taking geometric mean of scales



Phase Space Generation

O

=

2M

e Phase space:

dMp(M) =

T

i / ‘M‘Q dMn(v/s)

/ M2 dny, (M)

 Two-body easy:

Introduction to Event Generators

dMo(M) =

d>p;
U Gonee)

| (2mya5® (

1 2p dS2
8 M 47

22

T
po— Y pz)

=1

Bryan Webber, MCnet School, 2014



e Other cases by recursive subdivision:

(M—m) 5
ANy (M) = —/ dml. Mo (M) dn, 1 (ma)

* Or by ‘democratic’ algorithms: RAMBO, MAMBO
Can be better, but matrix elements rarely flat.

Introduction to Event Generators 23 Bryan Webber, MCnet School, 2014



Particle Decays

/

e Simplest example Y

e.g. top quark decay: \

|M\2_1( ST )2 Pt - Pe Pb - Pv
2\sin20,) (m?2, — M32,)2 42, M2,
— M|<d 11

OM 12873 / MI"dmiy ( M 2) am 4

Breit-Wigner peak of W very strong - must be removed by
importance sampling:

M2
m%v — arctan ( IV’VW Mo )

Introduction to Event Generators 24 Bryan Webber, MCnet School, 2014




