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MOTIVATION

Motivation: not a priori to do N(N)LL evolution, nor do we

at this point claim that we do.

Wanted to see if we could use experience with tree- and one-

loop matrix-element corrections in showers = derive &
implement a set of self-consistent 2"-order corrections to our

shower kernels

To be used all throughout the shower.

Expect this = N(N)LL evolution for some set of observables but not
the focus of our work so far.

Many (interesting) questions remaining

Initial-State Radiation (interface with PDFs), radiation in
resonance decays, heavy quarks, QED radiation, merging with

fixed order
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MATRIX-ELEMENT CORRECTIONS

Matrix-Element Corrections

Regard shower as generating approximate
weighting of (all) n-parton phase space(s) ~ sums
over radiation functions times Sudakov factors

Captures universal leading singular structures, but
not subleading or process-dependent terms —
impose M.E. corrections order by order.

Used extensively in PYTHIA to correct first e I e
emission in all SM decays, most BSM ones, Sjostrand & Miu PLB449 (1999) 313-320

. Sjostrand & Norrbin Nucl.Phys. B603 (2001) 297
and for colourless boson production + ISR

Is the basis for the real corrections in POWHEG

One-loop, 0 emissions: Nason (POWHEG), JHEP 0411 (2004) 040

. . .. . Tree-level, 1:N emissions: Giele, Kosower, PZS, PRD84 (2011) 054003
Generallsed to mU|t|p|e emissions In Vl NClA One-loop, 0:1 emission: Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

Shower contains correct singularities for all single-
unresolved limits «— Corrections nonsingular @ NLO

True for any (coherent) shower model.
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(COHERENCE : DGLAP VS ANTENNAE)

DGLAP Antenna
2 2 HI IK KL 2
= —e=——0— 0 N
4_
! ! f
g splitting kernel gi splitting kernel gk-gL antenna
DGLAP: based on collinear limits Antenna evolution: each LC-connected
Each parton treated as an ~2independent|y parton pair ~ radiating dipole-antenna
radiating monopole, P(z)/Q Splittings fundamentally 2—3 instead of
Misses Soft_hmrt Coherence, already at 1*—’2 Gustafson & Petterson: NPB306 (1988) 746-758

leading (dipole) level o
g (dipole) o Antenna Factorisation of:
Ang. ord. (or vetos) = correct soft limit when

summed over azimuth Phase Space: Lorentz-invariant on-shell
(But phase-space distributions of emitted gluons 2—3 phase-space maps exact over all of
still not point-by-point correct) ohase space, not just limits.

rix-Elemen rrection nr r ) . .
Mat he ent co gcts S cd estore Amplitudes: Correct in collinear and soft
exact coherence point-by-point, up to limits (to all orders): [N ELEIL

order applied Collinear limits — F’(z)/Q2

Soft limits = eikonal factors

Point-by-point coherence (at LC; higher colour
) 2
multipoles suppressed by 1/N¢)

2813

E.g., a DGLAP shower could be improved by
"dipole corrections” at all orders (but we have
dipole showers)

512523

Complete set of NNLO final-state antenna functions:
Gehrmann-de Ridder, Gehrmann, Glover JHEP 0509 (2005) 056
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THE MULTIPLE-EMISSION PHASE SPACE

Antenna phase-space maps obey exact nesting

Ordering/partitioning function

dCI)n+1 p— d(I),n X d(IDant (one clustering) o (global or sector)
ant
L. Generalisation to many possible clusterings: d(I)n_|_1 — E fz d(I)ant,idCI)n
1=1

Sector showers: fi = partition of unity (x strong-ordering)
~ WINNER-TAKES-ALL JET ALGORITHMS Lopez-Villarejo & PZS: JHEP 1111 (2011) 150
Global showers: fi = multiple cover (x strong-ordering)

ANTENNA FUNCTIONS SUM TO TOTAL SINGULARITIES
mi12M23

In(p.)4 pL= —

— Can cover all of phase
15t emission
space; but do we? at pr

—>  In(pw)

Inaccessible to 2@
emission
(not strongly ordered)

For a general shower ordering
variable, the 2—4 (and higher)
phase spaces exhibit regions with
all fi = 0 (no ordered paths) —
inaccessible

No leading logs

Y

Yy = 1n(m12/m23)

(a) Strong Ordering

L
Peter Skands gﬁ@ Monash University



HOW BIG ARE THESE REGIONS?

Flat scans of N-parton phase space (RAMBO)

g 1 I I E I
®© . . o .
& Z— 4 Z— 5 . F /— 6 .
% Vincia 1.025 + MadGraph 4.426 Vincia 1.025 + MadGraph 4.426 " Vincia 1.025 + MadGraph 4.426
a'0"F Matched to Z— 3 latched to Z—3 E=Matched to Z—3
s f Stroﬁ Ordering

y 4] L

&
o
L

Total sizeof = 7

4
g
— T T 117111

underﬂow bin

trjOrdenng ;

underflow bin

|

N I
| -
. .'I

10

dead Z0Nne e ; o ° Iogm(PS/ME) e ° |og10(P§/'|§/|E)
~ 2% of PS — — | _
S 6 Z—qggq <R,> ANT = DEF —
R | Sum (shower-paths) R R . :'?‘St:’g) ]
N = 20810 (LO,LC) | Il — ]
|MN ’ 3 S 2—4 Double-differential —
2 E: distribution in pt1 & pr2/pT ]
PS = shower expanded to & B
tree level, summed Qo = 91 GeV o!;é .
over all ordered paths pr1 = 5 GeV 1) ]
ME = LO matrix element pro = 8 GeV -2 :% : =
(MADGRAPH @ Unordered with pr; << Qg - = . *—
|eading Co|our) 1 DOUble Unresolved 17 -4 __l eSOf.t.. | 1st Braq?;ling I Ha.lrd—> l _:
°5 -4 -3 -1 0
In[4p$1/m§]

Peter Skands

Monash University

iele, Kosower, PZS: PRD84 (2011) 054003

-



THE SOLUTION THAT WORKED AT LO

Wanted starting point for (LO) matrix-element corrections over
all of phase space (good approx = small corrections)

Allow newly created antennae to evolve over their full phase spaces,
with suppressed (beyond-LL) probability: smooth ordering

Giele, Kosower, PZS: PRD84 (2011) 054003

b pin—l — 1forpi, <Pl
imp — 5 5 — 1/2for pyn ~pLn
— O0for pipn>pLna

In(p,) 4

By I
/L

Figures from Fischer, Prestel, Ritzmann, PZS:
EPJC76 (2016) 11, 589 '

instead of strong ordering
(analogous to POWHEG hfact)

: 1
eik
Ay sy ™ Pimp 2

1 1/p3, ordered
5 x
Pln— Pin

1/p* ~ unordered

Leading Logs unchanged

Fischer, Prestel, Ritzmann, PZS: EPJC76 (2016) 11, 589

(b) Smooth Ordering

2
m 1 d 2 2 1 2 2 9
—In A / 5 %ln [m_z] ~ <—ln2 {Q_QJ-} + In {Q_;-} In [%})
1+ %lf ‘' q1 2 Py i Q1
€L

Note: this conclusion appears to differ from that of Bellm et al., Eur.Phys.J. C76 (2016) no.1
My interpretation is that, in the context of a partonic angular ordering, they neglect the additional rapidity range from the extra origami folds
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SMOOTH ORDERING: AN EXCELLENT APPROXIMATION

(at tree level)
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Even after three sequential shower emissions, the smooth shower approximation

is still a very close approximation to the matrix element over all of phase space
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(WHY IT WORKS?)

The antenna factorisations are on shell

n on-shell partons = n+1 on-shell partons

In the first 2— 3 branching, final-leg virtualities assumed ~ O

Strong Ordering:

these virtualities /

small compared to these virtualities <:

Any 2—4 Feynman diagrams we draw will involve intermediate

on shell

755 propagators with virtualities of order the last pt° scales
)

Cannot be neglected in unordered part of phase space

: 1 Ppp(n = n+1) 1
. £ — —
Interpretation: off-shell effect 2 D 1y O )
Good agreement with ME = good starting point for 2—4
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SOMETHING ROTTEN?

Smooth ordering: nice tree-level expansions (small ME
corrections) @ good 2—4 starting point

But we worried the Sudakov factors were “wrong” = not good
starting point for 2—3 virtual corrections? Not good exponentiation?

Q A
NE For unordered branchings
(e.g., double-unresolved)
effective 2—4 Sudakov factor
effectively = LL Sudakov for
VS intermediate (unphysical) 3-
parton point
Q
Hartgring, Laenen, PZS, JHEP 1310 (2013) 127
| | >

0 1 ) n

FE
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DIRECT 24

Li & PZS: PLB771 (2017) 59

Redefine the shower resolution scale

For unordered 2—4 paths: scale of 2" branching defines resolution

The intermediate on-shell 3-parton state is merely a convenient stepping stone
in phase space but is in reality highly off shell © integrate out

New: Direct 2—4 Sudakov | Interchange order of integrations

(no on-shell intermediate state) N Qy_3 <> Q34
- -

Unordered phase space: Q4 > Q3

Q5 05 X .
fo dQ; f dQ; ©(Q; - 03) f(03.03) =/

Q2
Originally, the 3—4 phase space//Q'% 0] Now the
is nested inside the 2—3 one f in f dQ% f(Q%, QZ) , intermediate
02 0 (Uunordered) scale is

/integrated over for
/ each value of Q4

/

for a generic integrand, f, with the result:

| | | 2 ": 2
0 1 2 >n 2 2 X ¢Q4 2
Mo-a(Q5. Q) =exp| = ) | d0] [* dO3
sea.b 0? 0 ) Product of
Figure 1: Illustration of scales and Sudakov factors in strongly o I3 o ‘,.»","'2_’3 functions
ordered (ACD), smoothly (un)ordered (ACB), and direct 2 — di, dis -2 |J3J4] Ay Ry ng Sﬂ]
. . — 9
4 (AB) branching processes, as a function of the number of L 5 Alen?)2m2m? Jo 27 3
emitted partons, 7. (11)
Jacobian for dLIPS = dQ3dQ4dT3dT, 2—4 MEC

L
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DIRECT 2—4 VS ITERATED 2-3

Split the 2—4 phase space into non-overlapping sectors

Fully unordered (inacessible to iterated 2—3)
= add new “direct” 2—4 branchings without risk of double-counting

Rest of phase space (accessible to at least one ordered 2— 3 path)

Unitarity (Sudakov exponentials and virtual corrections): want to sum inclusively
over the “least resolved” degree of freedom

Classity according to what a jet algorithm (with shower evolution parameter as
clustering measure) would do. E.g., for a (colour-connected) double-emission:

A jet clustering algorithm (ARCLUS) would

1
grab the smallest of these pr values, and
m12Ma23 cluster
2 Di2= -
129 If the resulting path is ordered: populate
| azma by iterated 2— 3 (with 2—’4 I\/IE(F factors)
3 pi3= — If unordered, keep clustering; direct 2—n

Clustering terminates when we reach a Q, > min(pr2,pT3....)
4 = defines pOiﬂt as 2—2+m  (NB:so far we only do 2—3 and 2—41)
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PHASE-SPACE DISTRIBUTIONS

Test of dy : qg — qggg

using d4
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Test of ff : gg — ggqaq

H gggg <R >

.00
using f .

Ordered | 2nd Branching | Unordered
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Li & PZS: PLB771 (2017) 59

Actual shower runs:
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Figure 3: Top left: the ratio of sequential clustering scales Q4/Qj5 for a strongly ordered 2 — 3 shower, for Z — ¢gggg (on log-log
axes). Top right: closeup of the region around O,/0z ~ 1, with 2—4 branchings included. Bottom row: the same for H — gggg. .

Details of trial functions etc, see Li & PZS: PLB771 (2017) 59
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VIRTUAL CORRECTIONS

Disclaimer

No established literature for antenna-evolved fragmentation functions

Known results (e.g., one-loop antenna functions) available mainly in context of
F.O. subtraction terms, not diff. egs. / exponentation / resummation

= Had to (re)invent much of what follows as we went along

Clustering sequence = series of on-shell representations of the momentum
flow; terminates when representation consistent with ordering (allowing to sum
over unresolved degrees of freedom below that scale)

Sudakov factor for an antenna  A(Qg, Q%) = Ar3(Q5, OF)Ar4(0%, OF)
Clustering corresponding to Q?s: Ordered  Unordered

(but next one up is ordered)

=> Starting from Q, (with inclusive sum over all unresolved 2—3 and 2—4
branchings below it), evolve to given Q: exclusive above Q, inclusive below

Todolefine one-loop MEC: compare expansions of shower Sudakov factors to
2""-order antenna functions

Peter Skands % Monash University
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VIRTUAL MECS @ SECOND ORDER

Proof of concept case: second-order correction to g-gbar
antenna emitting a gluon Hartgring, Laenen, PZS: JHEP 1310 (2013) 127

Ak.a. ete = 3 jets at O(d)
(at that time, we used smooth ordering for double-real; now direct 2—4)

Matching equation for one-loop virtual:

Exclusive 3-jet cross section above Qq, for Qg = 0 (in dim.reg.)

(Could stop at hadronisation scale = power corrections in Qpag)

All-orders shower answer

2 7] O(a?) 2Re | MO M4*
Mzﬁqq\ Ag(QQ)(l+‘gqq)A2_>3(Q%,Q2)A3_>4(Q2,0) =7 | MY <1+ MM

| M3[?
< O <
3.% 5% & P %
S %, b, 708 9, S, % 9 %, : 2
P T S S S N O %S, Fixed-Order O(xé)
.70 % o)
‘9’%%@ 6/\%/7 Ss \S‘S/OO s @bj( 1:? % N % ®o,c§”?‘/,'7 b ‘% %, o, (in dim. reg.)
20, %, 1, <, N %o, % PN lo 73 % -
), @J/b/_ 755 0, Z‘GQ/ 4@\/0/7 8 O @,}OQ;/@ O S }O@O’o, (renormalised at p = ume)
. Y .
7 s ey, %, o 02406 %% 0 %
f@,;- LY, x5 6.9 4 /29/; %, Co,,
5 9, 9, S c4. NG N
<//7 . (//“ (@) 6/ : “ C4 .
O Uk k- 7 0.9, %,
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— DIFFERENTIAL “K-FACTOR"” FOR 2—=3 BRANCHINGS

Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

Solve for V3

i ‘ 0(a?) ORe [MOML*
‘MZ_)QQ‘ Ag(QQ) (1 -+ V3qq) AQ—)S(Q%, Q2)A3_>4(Q27 O) — ‘Mg‘z 1 + |: 3 3 }

02
Poles —— ‘M3 ‘
Cancel if Q is IR safe — Poles
Non-divergent NLO correction cot dF’afrjtial cancellations
— positive-definite NLO antenna © define LL evolution so as to Double Logs

ave no (resummable) logsleft =~ > Single Logs

(B-dependent logs)
Can do some Sudakov integrals analytically + transcendentality-0

But not all = split into analytic and numerical parts

Use that smooth-ordering already gave a good approximation,
which can be integrated fairly easily

E.g.: Az, =1-— Z / dP,nta3—4 f2 + O(a?)
ord
k

/ /
acl.2 A2 5303 34 T Ay _,303_oy

A
ordering boundary ~ complicated 2—4 ME-correction factor

+ Z /dq)anta3—>4pimp Difference done numerically;

1,2 . . . . .
gt Doable analytically; (slow but can be parametrised in terms of two invariants)

contains all single-unresolved poles

L . .
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— DIFFERENTIAL “K-FACTOR"” FOR 2—=3 BRANCHINGS

Solve for V3

2 : 0(a?)
Mz g AYQD) (14 V47) D2oa(Q3, Q%) Mg a(@%,0) =5 [MEP {1+

Hartgring, Laenen, PZS, JHEP 1310 (2013) 127

2Re | M3JM3*|

M3
Poles — : 3
Cancel if Qs IR safe — Poles
Non-divergent NLO correction Partial cancellations
— positive-definite NLO antenna SPZ]\JE/: ﬁeﬂ(ne LL evolution so as to Double Logs
. . Q‘E‘:Z‘pT‘ (s}r;r;g) o R ‘QE‘:Z‘pT‘(s‘tro‘ng‘) o P Q‘E‘:Z‘pT‘ (strong) | O ‘r‘eS‘Ummable) ,Ogs left —> Slngle LOgS
: ] I ] e — ] (B-dependent logs)
Hﬁ ,f> |
ol _of M _of ] + transcendentality-0
: | AP /7 :
, i | [ Evolution-Variable dependence:
] ' “CMW” factor ~or \‘ \‘ ] \ 1211923
8: X 8‘/ i 8: N 3 | QE — pJ_ -
_:8‘ —‘6‘ —‘4‘ —‘2 0 _—8‘ ‘ ‘—‘6‘ ‘ ‘—‘4‘ ‘ ‘—‘2‘ “ (‘)7 _:8 ‘—‘6‘ ‘ ‘—‘4‘ ‘ ‘—‘2 B 6 m123
In(y;;) In(y;;) In(y;)
(a) pps = /s (b) ups = p1 (c) pps = mp

Qg=mp (strong)

Qg=mp (strong)

In(y;)

Peter Skands

/ Qr = mp = min(myz, Mo3)

(B-dependent shower term):

ay/qql —
9/99 |y p=pps

as 1INg — 2np . [ 12
<1 + = o ( ,ul\Q/IE + O(az) a9/QQ|uR=uME
PS

2m 6

In(yy)
(c) pps = mp

@ Monash University

-



ADDING QC

Differential NLO K-Factors for 2—3 kernels

1.0 ' T T T ] (— 1.0 T T T T N —
- V] for a Vj for o | —1045
0l (with as(mz)/2m) — 0.20 0 (with as(mZz)/2m) 1 o
i : | — o35
— oy 0.15 r ]
QQ — QGQ o5 | QG — QGG
§ x; L i 0.25
(new treatment) T ]
' N B From X deca
0.05
From Z decay ol - X Y
0 ] 0.05
. 0.0} , i
1.0 0.0 0.2 0.4 0.6 0.8 1.0
vij yij
1-0 T T T T ] — 1-0 LT T T T T ] —
Vj for 8 | 025 V} for 3
osl (with as(mz)/277) ' (with as(mz)/2r) | =12
1.0
0.6 0.15 —
I M/
GG — GGG " QG — QQQ
0.4
- 0.05 Note: large corrections
0.6
From H decay ol forg—qq
. 04 (leading pole only 1/yjy)
0.0 .
0.0 0.2 0.4 0.6 0.8 1.0
yij yij
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SECOND-ORDER ANTENNA EVOLUTION EQUATION

Li & PZS: PLB771 (2017) 59

Putting 2—3 and 2—4 together = evolution equation for
dipole-antenna at O(x?):

dN(Q;, 0)
terated 2-3 with (finite) i qu)a“t o0 - @
terate — o Wit inite —)3—4 antenna function
| — 1’ .o - (i )3—4 antenna funct
Oﬂe—|OOp correction (1 + =2 4 Z qu)ant R2—>4 S3 ) A(Q%a QZ)
: seab O (2—»)3—»4 MEC
Direct 2—4 (as sum over — fd (OO Dy) AR OP)
II " my_n + (D;H6Q _Q (D4 R2—>4S3S, Q aQ ]
and b SprathS) sca.b unord t 2—>4asexp|icitproduct3x I\/IECO

Only generates double-unresolved singularities, not single-unresolved

Note: the equation is formally identical to:

sz (Q()a Q ) —
dd; /‘- But on this form, the
de()z 5(Q% — 0°(D3)) (613 + a3)A(QO, 0°) oole cancellation
dDy happens between the
5 qu)z 5(Q° - Q°(@4)) dy AQ5. 0%, (3) two integrals
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FURTHER DETAILS & OUTLOOK

Further details

Since antenna functions are defined from specific physical matrix elements
(GGG used Z, H, and X decays), the corrections eftectively include nonsingular
terms for those processes

Will probably use variations to estimate effects = uncertainty bands
MECs (or merging) at given order could be used to cancel them
VINCIA 2 used a mixed evolution, with gluon emissions ordered in pt and

g—qq splittings ordered in m,

Large log corrections at NLO — reverting to single evolution measure

When can others play with it?
Old NLO gg — gqgg corrections already implemented in VINCIA 1

New paradigm; currently writing up longer paper with details and preparing
for new code release, with Hai Tao Li. Expect (at least) a month or two.

Note: still only for (massless) final-state evolution.

Big projects in their own right: ISR and radiation in resonance decays (+QED)
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SUMMARY

nd .
GGG: full set of 2 "-order antenna functions (summed over colours and permutations)
Gehrmann-de Ridder, Gehrmann, Glover JHEP 0509 (2005) 056

We use: QQ : NgA%, NCnFA%, NgA4, NongpBy, |
G- N2ZDL N lA)l N 2 E’l NZD. N > (NB:‘GGG also provide
QG : N D3, NenpDg, nriNctvg,Nglig, INolJ4, INCNF L4 subleading-colour and -flavour

antenna functions; so far ignored)

GG : N2F}, NenpFi npNeGE, n2GL, NZF,, NenpGy, n%H,

(Colour-ordered sub-antenna functions defined using 2—3 as partitioning functions)
Direct 2—4 branchings interleaved with iterated ME-corrected 2—3 ones

2—4 resolved in Q; = Min(Pras, Prap)
Based on eikonal x P;,,, x eikonal integrated over intermediate (unphysical) Q; scale

Two trial channels, one for each path; overlap with iterated 2—3 removed by vetos

lterated 2— 3 resolved in Q; (as before, with veto if colour neighbour has lower
scale and is unordered), with differential second-order (NLO) “K-factor” correction

(For default shower parameters, the NLO correction is well-controlled; can become large if
using “wrong” renormalisation scales, evolution measures, etc.)

All radiation functions positive-definite
2—4 from tree-level positivity (and no overlap); 2—3 since written explicitly as [ 1 + O(«,) ]

New evolution paradigm beyond LL looking promising so far.
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2—4 TRIAL GENERATION

1 24 _ 2 23 53 In particular, the trial function for sector A (B) is
5 % (O3 Pimpli (QF) - -
(1672)2 trial (16 2)2 Airial (&3 implya (824 independent of momentum pg (p3) which makes it

) 178 easy to translate the 2 — 4 phase spaces defined in
- C (%) . (15) eq. (6) to shower variables. Technically, we gen-
(Q% + Q?L)QézL erate these phase spaces by oversampling, vetoing
configurations which do not fall in the appropriate
. . sector.
Solution for constant trial & , o a
w2 02 Accept ratio:  p2-4 _ s 4
rial @ m trial — A 2 254
A, ,0H)=CI In =2 In -
"0 00 =CL 8n* 0> Q;0? Xs Airial

= Q° = m’exp (— \/lnz(Q(Z)/mz) + 2fR/CAY%)

where fR = —4-7'('2 In R/(ln(2)CI[) . (Same lzeta as in GKY)

Solution for tirst-order running e A2 (kﬁmz]_”&éﬁeﬁw N
s (also used as overestimate AT |
for 2-loop running): where
In k;m? [4A> , Ink2m? /4N’
' inggan [_f S kﬁQ3/4A2} |
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