
On αs variations in MC 
generators
Peter Skands (CERN TH) 

(from October 1st 2014 → Monash University, Melbourne)

Disclaimer: these slides are rather basic.  
Transcribed from blackboard notes for Collider Cross Talk presentation



Where is αs ?
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What is αs ?
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⇤ ⇠ 200MeV Main Point:
Choose αs(MZ)? 
Choose Λ? 
Choose k in αs(kμ)?

All Equivalent



What is αs ?
Different MC codes use different choices to parametrize

E.g., one code may ask you to specify Λ 

Another may ask you to give the effective value of αs(MZ) 

And/or you may specify a pre-factor, k, in αs(kµ) 

k = 0.38 =) ↵s(kMZ) = 0.14 for ↵(1)
s (MZ) = 0.12

k = 0.69 =) ↵s(kMZ) = 0.127 for ↵(1)
s (MZ) = 0.12

Examples:

αs(MZ)PDG: 0.119!
ME : 0.127!
PS: 0.138

Use eqs on previous slide to translate
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αs(MZ)PDG: 0.119!
ME : 0.127!
PS: 0.1381-Loop vs 2-Loop running

2-loop 
running is 
faster than 

1-loop 
running

Larger Λ(2)  
for given 
αs(MZ)

Smaller  
αs(2)(MZ) 

for given Λ



From MS to MC αs(MZ)PDG: 0.119!
ME : 0.127!
PS: 0.138

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes
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From MS to MC αs(MZ)PDG: 0.119!
ME : 0.127!
PS: 0.138

CMW Nucl Phys B 349 (1991) 635 : Drell-Yan and DIS processes
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1 + z2
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+
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(for z→1: soft gluon limit): Pi(↵s, z) =
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(for nF=5)

Main Point:
Doing an 

uncompensated 
scale variation 
actually ruins 

this resultNote also: used mu2 = pT2 = (1-z)Q2  
Amati, Bassetto, Ciafaloni, Marchesini, Veneziano, 1980
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Figure 7. NLO correction factor for strong p?-ordering, with GGG antennae. Top row: µ
PS

=
p
s

(left), µ
PS

= p? (middle), and µ
PS

= mD (right). Bottom row: using the CMW ⇤
MC

, with µ
PS

= p?
(left) and µ

PS

= 2p? (right). For all plots, ↵s = 0.12, nF = 5, and gluon splittings were evolved in
mqq.
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Figure 7. NLO correction factor for strong p?-ordering, with GGG antennae. Top row: µ
PS

=
p
s

(left), µ
PS

= p? (middle), and µ
PS

= mD (right). Bottom row: using the CMW ⇤
MC

, with µ
PS

= p?
(left) and µ

PS

= 2p? (right). For all plots, ↵s = 0.12, nF = 5, and gluon splittings were evolved in
mqq.
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Z → 3 Jets

Size of NLO “K” factor  
over phase space
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Hartgring,	
  Laenen,	
  Skands,	
  arXiv:1303.4974
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Figure 7. NLO correction factor for strong p?-ordering, with GGG antennae. Top row: µ
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s
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(left) and µ
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= 2p? (right). For all plots, ↵s = 0.12, nF = 5, and gluon splittings were evolved in
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Z → 3 Jets
The “CMW” factor
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Depending on the value of µPS, a corresponding value of n
F

is chosen, as well as of the QCD

scale ⇤
F

. This is often di↵erent from that for a fixed order calculation. To give a specific

example, matrix elements will typically be renormalized at a scale characteristic of the total

CM energy, i.e., µ2
ME = s an event-independent value, while resummation arguments imply

one best chooses a running scale, such as µPS = p?, for shower applications [34, 35], which

can di↵er per event.

Shifting to a di↵erent scale for ↵
s

of a given flavour number is quite straightforward.

Translating from a shower scale µPS to a matrix-element scale µME amounts to replacing, for

an antenna function
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A further aspect is that shower Monte Carlos normally switch to 4-flavour (3-flavour)

running for scales µ < m
b

(µ < m
c

), matching the ↵
s

value across the thresholds to obtain a

continuous running. For a consistent treatment, such thresholds must be taken into account

when translating ↵
s

from the shower scale to the matrix-element one. At one-loop order

(which is all that is relevant for the NLO expansion), this can be done by inserting an

additional term for each flavour threshold in the region [µPS, µME],
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with mthres the flavour threshold. Physically, eq. (3.51) expresses running with n
F

flavours

all the way from µPS to µME. The correction term, eq. (3.52), expresses that the number of

flavours was e↵ectively lower below each flavour threshold passed on the way. Note that this

can also be used to account for a larger number of flavours in the shower calculation, e.g., at

scales µPS > m
t

, with the sign change of the correction then automatically reflected by the

logarithm.

For coherent parton-shower models, the arguments presented in [35] also motivate a

change to a “Monte Carlo” scheme for ↵
s

, in which ⇤QCD is rescaled, for each n
F

, by the

so-called CMW factor ⇠ 1.5 (with some mild flavour dependence), relative to its MS value.

If the shower model being matched employs this scheme, then a further rescaling of the

renormalization-scale argument, µPS ! µPS/kCMW, should be used in eq. (3.51), with
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for N
C

= 3. The translation of renormalization scale (and scheme) yields then an additional

term to be added to the definition of V3 in eq. (3.32),

V3µ = � ↵
s

2⇡

11N
C

� 2n
F

6
ln

✓
µ2
ME

µ2
PS

◆
= � ↵

s

2⇡

�0
2

ln

✓
µ2
ME

µ2
PS

◆
, (3.54)

– 29 –

: Constant shift by
Size of NLO “K” factor over phase space

soft soft

Hartgring,	
  Laenen,	
  Skands,	
  arXiv:1303.4974

Catani,	
  Marchesini,	
  Webber,	
  NPB349	
  (1991)	
  635
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Beware: choosing a larger central scale 
→ a seemingly smaller scale variation!

Λ3 = 0.37 Λ4 = 0.33 Λ5 = 0.261 Loop:
2 Loop:

αs(MZ)=0.14
αs(MZ)=0.12 Λ3 = 0.37 Λ4 = 0.32 Λ5 = 0.23

(In all cases, 5-flavor running is still used above mt)



Variations in e+e- μR by factor 2 in either direction

See mcplots.cern.ch

1-T y23 y56
3j 4j

3-jet observable 6-jet observable

Durham kT Durham kTThrust

Event Shape

Pythia 6 “Perugia 2012 : Variations”

∝αs1 ∝αs4

(with central choice μR=pT, and αs(MZ)(1) ~ 0.14)

Beware! αs pileup → Factor 2 looks 
pretty extreme?

Skands,	
  	
  arXiv:1005.3457

Karneyeu	
  et	
  al,	
  	
  arXiv:1306.3436

http://mcplots.cern.ch


Variations in pp

See mcplots.cern.ch

μR by factor 2 in either direction
(with central choice μR=pT, and αs(MZ)(1) ~ 0.14)Pythia 6 “Perugia 2012 : Variations”

pTZ pTjet

Z W Jets

Jet  
Shape

1/σ dσ/dpT dσ/dpT

→ Factor 2 looks 
reasonable?

“normalized” “dimensionful”

Karneyeu	
  et	
  al,	
  	
  arXiv:1306.3436

Skands,	
  	
  arXiv:1005.3457

http://mcplots.cern.ch


Matrix Element Matching
↵ME
s ! Real

↵PS
s ! Virtual

Different Codes?  
Different Parameters?

Cooper	
  et	
  al.,	
  	
  arXiv:1109.5295

Much effort has gone into ensuring that the behaviour across the boundary between the two regions be as
smooth as possible. CKKW showed [22] that it is possible to remove any dependence on this “matching
scale” at NLL precision by careful choices of all ingredients in the matching; technical details of the im-
plementation are important, and the dependence on the unphysical matching scale may be larger than NLL
unless the implementation matches the theoretical algorithm precisely [23–25].

Especially when two different computer codes are used for matrix elements and showering, respectively (as
when AlpGen or MadGraph [26] is combined with Pythia 6 or Herwig), inconsistent parameter sets between
the two codes can jeopardise the consistency of the calculation and lead to unexpected results, as will be
illustrated in the following sections.

To give a very simple theoretical example, suppose a matched matrix-element generator (MG) uses a differ-
ent definition of a

s

than the parton-shower generator (SG). Suppressing parton luminosity factors to avoid
clutter, the real corrections, integrated over the hard part of phase space, for some arbitrary final state F , will
then have the form
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where we have factored out the coupling corresponding to the “+1” parton and suppressed the dependence
on any other couplings that may be present in |M
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A B C

LMG L 1
2 L L

LSG L L 1
2 L

Table 1: The three cases, A, B, and C discussed in the text, for an arbitrary reference L value.

which is of next-to-leading logarithmic order (unless LMG ⇠LSG, in which case it vanishes). Similarly, even
if both matrix-element and shower codes are using the same LQCD, but they use different running orders,
then there will be an O(a3

s

ln(p

2
T/L2)) mismatch, which may also become large if pT � L.

To be more concrete, let us consider a specific example. Compare A) a matched MG+SG calculation which
uses the same LQCD value on both sides of the matching to B) a calculation in which the value used on the
MG side is reduced to half its previous value but the SG one remains the same, as summarised by the two
first columns of tab. 1. Going from case A to B, the following changes result:

1. The number of (F +1) states added by the MG decreases, due to the lowering of the LQCD value on
the MG side, while the number of surviving F states remains constant, since the shower Sudakov is
not modified. The total estimated cross section therefore decreases.

2. At the differential level, the smaller number of (F +1) states combined with the unchanging number
of F states implies smaller absolute jet cross sections and smaller fractions sjet/stot.

Similarly we may consider what happens if C) we reduce the LQCD value on the SG side instead, as sum-
marised in the last column of tab. 1. Going from case A to C, the following changes result:

1. The number of (F + 1) states added by the MG remains constant, while the number of surviving
F states increases, since the SG is generating fewer branchings. The total estimated cross section
therefore increases.

2. Since the number of (F +1) states is constant, while the shower is made less active, the final jets will
actually be narrower, which increases the rate of reconstructed jets at any given fixed pT value.

3. Since both the total cross section increases and the number of reconstructed additional jets also in-
creases, jet fractions can either increase or decrease.

In particular, note the somewhat counter-intuitive effect that decreasing the shower a
s

value actually in-

creases the jet rates in a matched calculation, while it normally decreases them in a standalone shower
calculation.

Since, as was discussed above, inconsistencies among the choices on the two sides can lead to differences at
the NLL level, it is obviously important to ensure that they are consistent within a reasonable margin. This
is particularly true in the context of event-generator tuning, in which specifically the NLL components of
the shower description are sought to be optimized with respect to measured data, and hence changes at this
level could effectively destroy the tuning.

Finally, we remind the reader that a change in LQCD can be interpreted as a change in the opposite direction
of the renormalization scale argument (for constant LQCD), modulo small flavour threshold effects that we
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Different running orders:

(so using same αs(MZ)  is better than using same Λ since shower anyway takes over at low scales)

Different Λ values 



Figure 10: Comparison of the integral jet shapes as measured by ATLAS [47] with the predictions
of the Pythia standalone (left) and AlpGen + Pythia (right) using Perugia 2011, Perugia 2011 radHi
and Perugia 2011 radLo tunes. The comparisons are performed for the jets with |y| < 2.8 and E

T

ranges of 110-160 GeV (top) and 210-260 GeV (bottom).
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Figure 5: Comparison of AlpGen + Pythia (E
T

>20 GeV) jet multiplicity (left) and leading jet
transverse energy (right) distributions in W+jets electron channel events. The samples are gen-
erated using different AlpGen and Pythia parameter settings as follows: for the central sample
labeled as p2011 AlpGen with xlclu set to 0.26 and Perugia 2011 is used, for the samples labeled
as L Alp. " (L Alp. #) the ktfac parameter of the AlpGen generator is varied so that the LQCD
value used by AlpGen generator is increased (decreased) by a factor of 2 with respect to the cen-
tral value. For the samples labeled as L PS ", L Alp. " (L PS #, L Alp. #) ktfac parameter of
AlpGen and the LQCD in the Pythia shower are modified to consistently vary the LQCDin the ME
and PS upwards and downwards by factors of 2.

change only in the ME calculation is due to the interplay between the radiation produced by PS and the250

matching algorithm, as detailed in Section 2.1.251

4 Comparisons with Data252

In this section we demonstrate that the new LQCD-consistent tuning of AlpGen + Pythia introduced in Sec-253

tion 3.1 compares well with recent Tevatron and LHC measurements, and that, with the arrival of improved254

precision measurements, there should be room for further tuning of these predictions.255

4.1 Z/W+jets production256

The figures that follow show comparisons of AlpGen + Pythia Monte Carlo predictions to measurements257

of both Z+jets and W+jets processes from CDF [39, 33, 40] and ATLAS [41]2. These cross-section mea-258

surements are corrected for all known detector effects to particle levelx and compared to Monte Carlo259

2Measurements of these processes at the Tevatron have also been performed by D0 [42, 43, 44].
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Multi-Scale Exercise
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Figure 5: Illustration of the running of ↵s at 1- (open circles) and 2-loop order (filled circles),
starting from the same value of ↵s(MZ) = 0.12.

follows from expanding an arbitrary product of individual ↵s factors around an arbitrary scale
µ, using equation (25),

↵s(µ1)↵s(µ2) · · · ↵s(µn) =
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◆
, (26)

whereby the specific single-scale choice µn
= µ1µ2 · · · µn (the geometric mean) can be seen to

push the difference between the two sides of the equation one order higher than would be the
case for any other combination of scales8.

The appearance of the number of flavors, nf , in b0 implies that the slope of the running
depends on the number of contributing flavors. Since full QCD is best approximated by nf = 3

below the charm threshold, by nf = 4 from there to the b threshold, and by nf = 5 above
that, it is therefore important to be aware that the running changes slope across quark flavor
thresholds. Likewise, it would change across the threshold for top or for any colored new-
physics particles that might exist, with a magnitude depending on the particles’ color and spin
quantum numbers.

The negative overall sign of equation (22), combined with the fact that b0 > 0 (for nf 
16), leads to the famous result9 that the QCD coupling effectively decreases with energy, called

8In a fixed-order calculation, the individual scales µi, would correspond, e.g., to the n hardest scales appearing
in an infrared safe sequential clustering algorithm applied to the given momentum configuration.

9 Perhaps the highest pinnacle of fame for equation (22) was reached when the sign of it featured in an episode
of the TV series “Big Bang Theory”.
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If needed, can convert from multi-scale to single-scale

by taking geometric mean of scales

Warning: fixed order misses Sudakovs: partially compensated for by large scale choices? 
(must break down eventually; Sudakovs generate double logs, scale variations only single)
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Example: W+3

pT1 = 20 
pT2 = 30 
pT3 = 60

pT1 = 100 
pT2 = 200 
pT3 = 300

mW = 800 
pT1 = 100 
pT2 = 200 
pT3 = 300
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1: MW!
2: MW + Sum(|pT|)!
3: -“- (quadratically)!
4: Geometric mean pT (~PS)!
5: Arithmetic mean pT


