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P.  S k a n d s

• Many interesting dynamical phenomena under active investigation 
(e.g., higher-order quantum corrections, hadronization, electroweak 
physics, diffraction, hadron structure, …)  

• Strong indications from both theory and experiment, that the 
mathematical structure of the Standard Model is incomplete 

• New physics, where art thou? (So far, physics at LHC looks ~ SM) 

• We are now going into an era of high statistics and high precision

What’s the aim?
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Theory Exper iment

Adjus t  th i s  to  agree wi th  th i s
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Event Structure at Colliders

Dominated by QCD  
More than just a perturbative expansion in αs 

Emergent phenomena: 

Jets (the QCD fractal) ⟷ amplitude structures ⟷ 
fundamental quantum field theory. Precision jet 
(structure) studies, jet vetoes. 

Strings (strong gluon fields) ⟷ quantum-classical 
correspondence. String physics. Dynamics of 
hadronization phase transition. Colour correlations. 

Hadrons ⟷ Spectroscopy (incl excited and exotic states), 
lattice QCD, (rare) decays, mixing. Identified 
particles: rates, spectra (FFs), correlations. Hadron 
beams → PDFs, MPI, diffraction, … 
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See eg TASI lectures, e-Print: arXiv:1207.2389

http://arxiv.org/abs/arXiv:1207.2389
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General-Purpose Event Generators
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Improve lowest-order perturbation theory,  
by including the ‘most significant’ corrections 

→ complete events (can evaluate any observable you want) 

Calculate Everything ≈ solve QCD → requires compromise!

The Workhorses
PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String. 
HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering. 
SHERPA : Begun in 2000. Originated in “matching” of matrix elements to showers: CKKW-L. 
+ MORE SPECIALIZED: ALPGEN, MADGRAPH, HELAC, ARIADNE, VINCIA, WHIZARD, (a)MC@NLO, POWHEG, HEJ, PHOJET, 
EPOS, QGSJET, SIBYLL, DPMJET, LDCMC, DIPSY, HIJING, CASCADE, BLACKHAT, GOSAM, NJETS, … 

Reality is more complicated



P.  S k a n d s

PYTHIA

5

PYTHIA anno 1978 
(then called JETSET)

LU TP 78-18!
November, 1978!
!
A Monte Carlo Program for Quark Jet 
Generation!
!
T. Sjöstrand, B. Söderberg!
!
A Monte Carlo computer program is 
presented, that simulates the 
fragmentation of a fast parton into a 
jet of mesons. It uses an iterative 
scaling scheme and is compatible with 
the jet model of Field and Feynman.

Note:  
Field-Feynman was an early fragmentation model 
Now superseded by the String (in PYTHIA) and 

Cluster (in HERWIG & SHERPA) models.
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LU TP 07-28 (CPC 178 (2008) 852)!
October, 2007!
!
A Brief Introduction to PYTHIA 8.1!
!
T. Sjöstrand, S. Mrenna, P. Skands!
!
The Pythia program is a standard tool 
for the generation of high-energy 
collisions, comprising a coherent set 
of physics models for the evolution 
from a few-body hard process to a 
complex multihadronic final state. It 
contains a library of hard processes 
and models for initial- and final-state 
parton showers, multiple parton-parton 
interactions, beam remnants, string 
fragmentation and particle decays. It 
also has a set of utilities and 
interfaces to external programs. […]
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PYTHIA anno 2014 
(now called PYTHIA 8)

~ 100,000 lines of C++

• Hard Processes (internal, inter-
faced, or via Les Houches events) 

• BSM (internal or via interfaces) 

• PDFs (internal or via interfaces) 
• Showers (internal or inherited) 
• Multiple parton interactions 
• Beam Remnants 
• String Fragmentation 
• Decays (internal or via interfaces) 
• Examples and Tutorial 
• Online HTML / PHP Manual 
• Utilities and interfaces to 

external programs 

What a modern MC generator has inside:

PYTHIA
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Divide and Conquer
Factorization → Split the problem into many (nested) pieces
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Pevent = Phard ⌦ Pdec ⌦ PISR ⌦ PFSR ⌦ PMPI ⌦ PHad ⌦ . . .

Hard Process & Decays:  
Use (N)LO matrix elements 
→ Sets “hard” resolution scale for process: QMAX 

Initial- & Final-State Radiation (ISR & FSR):  
Altarelli-Parisi equations → differential evolution, dP/dQ2, as 
function of resolution scale; run from QMAX to ~ 1 GeV  

MPI (Multi-Parton Interactions) 
Additional (soft) parton-parton interactions: LO matrix elements 
→ Additional (soft) “Underlying-Event” activity  

Hadronization 
Non-perturbative model of color-singlet parton systems → hadrons

+ Quantum mechanics → Probabilities → Random Numbers (MC)



cf. equivalent-photon 
approximation


Weiszäcker, Williams 
~ 1934Bremsstrahlung
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a.k.a. Initial- and Final-state radiation
a.k.a. Parton Showers
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Weiszäcker, Williams 
~ 1934Bremsstrahlung
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Accelerated 
Charges

Associated field 
(fluctuations) continues

RadiationRadiation

The harder they get kicked, the harder the 
fluctations that continue to become strahlung

a.k.a. Initial- and Final-state radiation
a.k.a. Parton Showers
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Jets ≈  Fractals

Most bremsstrahlung is 
driven by divergent 
propagators → simple 
structure  

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389
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Can apply this many times 
→ nested factorizations 
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http://arxiv.org/abs/arXiv:1207.2389
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Factorization

Factorization of Production and Decay: 
!

= “Narrow-width approximation” 
Valid up to corrections Γ/m → breaks down for large Γ 
More subtle when colour/charge flows through the diagram 

Factorization of Long and Short Distances 
Scale of fluctuations inside a hadron  

~ ΛQCD ~ 200 MeV 
Scale of hard process ≫ ΛQCD  

→ proton looks “frozen”  
Instantaneous snapshot of long-
wavelength structure, independent of 
nature of hard process
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Singularities: mandated by gauge theory 
Non-singular terms: process-dependent 

|M(H0 ! qigj q̄k)|2

|M(H0 ! qI q̄K)|2 = g2s 2CF
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Bootstrapped Perturbation Theory

12

Start from an arbitrary lowest-order process (green = QFT amplitude squared) 

Parton showers generate the bremsstrahlung terms of the rest of the 
perturbative series (approximate infinite-order resummation)
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But ≠ full QCD! Only LL Approximation
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Th is  ta lk  i s  not  about  mat r ix-e lement  matching.  
That said, PYTHIA 8 contains a large number of implementations of matching 

schemes, based on “UserHooks” and Les Houches event files [ask S. Prestel]
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UserHooks gives further possibilities to control event generation / implement new schemes	

Can also implement own processes, decays, or shower model(s) (e.g., VINCIA plug-in)
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Slicing: the “MLM” & “CKKW-L” prescriptions 

!

!

!

Examples
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P. Skands Introduction to QCD
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events

— 47 —

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)

ALPGEN 
HERWIG 
MADGRAPH 
SHERPA 
… 

Image Credits: istockphoto
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Slicing: the “MLM” & “CKKW-L” prescriptions 

!

!

!

Corrected Showers:  
the “GKS” prescription 

Reinterpret higher- 
order matrix elements  
as radiation functions 

Unitarity + Speed 
+ systematic uncertainties

Examples
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— 47 —

(Mangano, 2002)(CKKW & Lönnblad, 2001) (+many more recent; see Alwall et al., EPJC53(2008)473)
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Virtues:  
No “matching scale” 

No negative-weight events 
Can be very fast

VINCIA

LO: Giele, Kosower, Skands, PRD84(2011)054003           NLO: Hartgring, Laenen, Skands, arXiv:1303.4974
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +

correctionz }| {
(Exact � Approximate)

= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Figure 24: Slicing, with up to two additional emissions beyond the basic process. The showers
off F and F + 1 are set to zero above a specific “matching scale”. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)

region by definition includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

showerz }| {
Approximate +
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= Approximate + non-singular
! Approximate . (68)

This type of strategy is illustrated in figure 24.
As emphasized above, since this strategy is discontinuous across phase space, a main point

here is to ensure that the behavior across the matching scale be as smooth as possible. CKKW
showed [114] that it is possible to remove any dependence on the matching scale through
NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(↵s) terms in eq. (67)) are important, and the dependence
on the unphysical matching scale may be larger than NLL unless the implementation matches
the theoretical algorithm precisely [115, 116, 120]. Furthermore, since the Sudakov factors
are generally computed using showers (MLM, L-CKKW) or a shower-like formalism (CKKW),
while the real corrections are computed using matrix elements, care must be taken not to (re-
)introduce differences that could break the detailed real-virtual balance that ensures unitarity
among the singular parts, see e.g., [119].

It is advisable not to choose the matching scale too low. This is again essentially due
to the approximate scale invariance of QCD imploring us to write the matching scale as a
ratio, rather than as an absolute number. If one uses a very low matching scale, the higher-
multiplicity matrix elements will already be quite singular, leading to very large LO cross
sections before matching. After matching, these large cross sections are tamed by the Sudakov
factors produced by the matching scheme, and hence the final cross sections may still look
reasonable. But the higher-multiplicity matrix elements in general contain subleading singu-
larity structures, beyond those accounted for by the shower, and hence the delicate line of
detailed balance that ensures unitarity has most assuredly been overstepped. We therefore
recommend not to take the matching scale lower than about an order of magnitude below the
characteristic scale of the hard process.

One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of
the n-parton correction terms, with each such sample a priori consisting of weighted events
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Comparison : A Tale of Two Paradigms

Standard Paradigm: consider a single physical 
system; a single physical process 

Explicit solutions (to given perturbative order) 
Standard-Model: typically NLO or NNLO 
Beyond-SM: typically LO or NLO 

Limited generality 

Shower Paradigm: consider all possible physical 
processes (within perturbative QFT) 

Approximate solutions 
Process-dependence = subleading correction (→ matching)  

Maximum generality  
Emphasis is on universalities; physics 
Common property of all processes is, for instance, limits in 
which they factorize!
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LO: Leading Order (Born)	

NLO = Next-to-LO, … 
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→ how do coloured partons (quarks and gluons) 
turn into colourless hadrons …
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Qhard 1 GeV

… the fragmentation of a 
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How about I just call it a hadron?

It showers 
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Qhard
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Q = QF = Qhard
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… the fragmentation of a 
fast parton into a jet …



P.  S k a n d s

Q

From Partons to Pions

19

How about I just call it a hadron?
→ “Local Parton-Hadron Duality”

It showers 
(perturbative 

bremsstrahlung)

Qhard

Fast: It starts at a high 
factorization scale 

Q = QF = Qhard

It ends up  
at a low effective 
factorization scale  

Q ~ mρ ~ 1 GeV

1 GeV

… the fragmentation of a 
fast parton into a jet …
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Parton → Hadrons?

Early models: “Independent Fragmentation”  
Local Parton Hadron Duality (LPHD) can give useful results 
for inclusive quantities in collinear fragmentation 
Motivates a simple model: 
!

But …  
The point of confinement is that partons are coloured  
Hadronization = the process of colour neutralization 

→ Unphysical to think about independent fragmentation of 
a single parton into hadrons 
→ Too naive to see LPHD (inclusive) as a justification for 
Independent Fragmentation (exclusive) 
→ More physics needed
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Colour Neutralization

A physical hadronization model  
Should involve at least 2 partons, with opposite color 
charges (e.g., R and anti-R) 
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Illustrations by  
T. Sjöstrand

(simplified colour representation)

Lund Model 
+ string breaks via 
Quantum Tunneling

P / exp

 
�m2

q � p2?
/⇡

!

→ Gaussian pT spectrum (string tension = tuning parameter)	

→ Heavier quarks suppressed. Prob(q=d,u,s,c) ≈ 1 : 1 : 0.2 : 10-11 

~ Force required to lift a 16-ton truck

Lattice QCD 
Linear potential (without string breaks)
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B

⇤
/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D

⇤
/D, the

effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K

⇤
/K and ⇢/⇡, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p

2
? and m

2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z

(1� z)

a
exp

✓
�b (m

2
h + p

2
?h)

z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q

0
q̄ breakup vertices, or equivalently

� = (⌧)

2, is also obtained, with dP/d� / �

a
exp(�b�) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10

�23
s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent d

¯

d pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the ¯

d from the breakup to form a
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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Iterate String → Hadron + String’ 

Causality + Left-Right Symmmetry: 

… the fragmentation of a 
fast parton into a jet …

cuto↵ Q
had

, may be larger than the purely non-perturbative /⇡ above, to account for e↵ects
of additional unresolved soft-gluon radiation below Q

had

. In principle, the magnitude of this
additional component should scale with the cuto↵, but in practice it is up to the user to
enforce this by retuning the relevant parameter when changing the hadronization scale.

Since quark masses are di�cult to define for light quarks, the value of the strangeness
suppression is determined from experimental observables, such as the K/⇡ and K⇤/⇢ ratios.
The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g ! ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.

Baryon production can also be incorporated, by allowing string breaks to produce pairs
of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are di�cult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/⇡ ratio, and since the perturbative shower splittings do not produce
diquarks, the e↵ective value for this parameter is mildly correlated with the amount of g ! qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄0 from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z
(1� z)a exp

✓
�b (m2

h

+ p2

?h

)

z

◆
, (1.11)

1
The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1

multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the

lightest spin-1/2 and -3/2 multiplets are included.
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Lund Symmetric String Fragmentation Function

The Lund 
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10% agreement is great 
for (N)LO + LL 
!
MB/UE/Soft: larger 
uncertainties since driven 
by non-factorizable and 
non-perturbative physics  
!
Complicated dynamics: 
“If a model is simple, it is 
wrong” (T. Sjöstrand)
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In particular in light of possible interplays with LHC measurements 

!
Test drive the new NNPDF 2.3 LO PDF set (with αs (mZ) = 0.13) for pp & ppbar 

Update min-bias and UE tuning + energy scaling → 2013 
Follow “Perugia” tunes for PYTHIA 6: use same αs for ISR and FSR 
Use the PDF value of αs  for both hard processes and MPI

Aims for the Monash 2013 Tune

In Pythia 8.185  
Tune:ee = 7; Tune:pp = 14 

+ complete writeup (Apr 22 2014): arXiv:1404.5630
Monash University 
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PYTHIA 6.4 (warning: no longer actively developed)
Default: still rather old Q2-ordered tune ~ Tevatron Tune A  

Most recent: Perugia 2012 set of pT-ordered tunes (370 - 382) + Innsbruck (IBK) Tunes (G. Rudolph)

Perugia Tunes: e-Print: arXiv:1005.3457  
(+ 2011 & 2012 updates added as appendices)

Tune:ee = 7 
Tune:pp = 14

Set M13 Tune:

in PYTHIA 8

http://arxiv.org/abs/arXiv:1005.3457
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Figure 11: The inclusive D

⇤ spectrum in hadronic Z decays [55]. Left: Monash 2013 tune com-
pared with default PYTHIA 8 and the Fischer tune. Right: comparison with HERWIG (dashed) and
SHERPA (dotted), from MCPLOTS [25]. Note that the plot in the left-hand pane is normalized to
unity, while the one in the right-hand pane is normalized to the number of hadronic Z decays.

Monash tune gives a significant improvement in the soft region of the jet-broadening parameters in
b-tagged events, while no significant changes are observed for the other event shapes. These small
improvements are presumably a direct consequence of the softening of the b fragmentation function;
it is now less likely to find an isolated ultra-hard B hadron.

We round off the discussion of heavy-quark fragmentation by noting that a similarly comprehen-
sive study of charm-quark fragmentation would be desirable. However, charm-quark tagged multi-
plicity and event-shape data is not available to our knowledge, and most of the D meson spectra on
HEPDATA concern only specific decay chains (hence depend on the decay modeling), and/or are lim-
ited to restricted fiducial regions (limiting their generality). Experimentally, the cleanest measurement
is obtained from D

⇤ decays, and an inclusive momentum spectrum for D⇤ mesons has been measured
by ALEPH [55]. From this distribution, shown in fig. 11, we determine a value for r

c

of:

StringZ:rFactC = 1.32

We note that the low-x part of the D

⇤ spectrum originates from g ! cc̄ shower splittings, while
the high-x tail represents prompt D⇤ production from leading charm in Z ! cc̄ (see [55] for a nice
figure illustrating this). The intermediate range contains a large component of feed-down from b ! c

decays, hence this distribution is also indirectly sensitive to the b-quark sector. The previous default
tune had a harder spectrum for both b- and c-fragmentation, leading to an overestimate of the high-x
part of the D

⇤ distribution. The undershooting at low x

D

⇤ values, which remains unchanged in the
Monash tune, most likely indicates an underproduction of g ! cc̄ branchings in the shower. We note
that such an underproduction may also be reflected in the LHC data on D

⇤ production, see e.g. [65].
We return to this issue in the discussion of identified particles at LHC, section 3.5.
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Figure 11: The inclusive D

⇤ spectrum in hadronic Z decays [55]. Left: Monash 2013 tune com-
pared with default PYTHIA 8 and the Fischer tune. Right: comparison with HERWIG (dashed) and
SHERPA (dotted), from MCPLOTS [25]. Note that the plot in the left-hand pane is normalized to
unity, while the one in the right-hand pane is normalized to the number of hadronic Z decays.

Monash tune gives a significant improvement in the soft region of the jet-broadening parameters in
b-tagged events, while no significant changes are observed for the other event shapes. These small
improvements are presumably a direct consequence of the softening of the b fragmentation function;
it is now less likely to find an isolated ultra-hard B hadron.

We round off the discussion of heavy-quark fragmentation by noting that a similarly comprehen-
sive study of charm-quark fragmentation would be desirable. However, charm-quark tagged multi-
plicity and event-shape data is not available to our knowledge, and most of the D meson spectra on
HEPDATA concern only specific decay chains (hence depend on the decay modeling), and/or are lim-
ited to restricted fiducial regions (limiting their generality). Experimentally, the cleanest measurement
is obtained from D

⇤ decays, and an inclusive momentum spectrum for D⇤ mesons has been measured
by ALEPH [55]. From this distribution, shown in fig. 11, we determine a value for r

c

of:

StringZ:rFactC = 1.32

We note that the low-x part of the D

⇤ spectrum originates from g ! cc̄ shower splittings, while
the high-x tail represents prompt D⇤ production from leading charm in Z ! cc̄ (see [55] for a nice
figure illustrating this). The intermediate range contains a large component of feed-down from b ! c

decays, hence this distribution is also indirectly sensitive to the b-quark sector. The previous default
tune had a harder spectrum for both b- and c-fragmentation, leading to an overestimate of the high-x
part of the D

⇤ distribution. The undershooting at low x

D

⇤ values, which remains unchanged in the
Monash tune, most likely indicates an underproduction of g ! cc̄ branchings in the shower. We note
that such an underproduction may also be reflected in the LHC data on D

⇤ production, see e.g. [65].
We return to this issue in the discussion of identified particles at LHC, section 3.5.
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Summary

QCD phenomenology is witnessing a rapid evolution: 
Driven by demand of high precision for LHC environment 

Exploring physics: infinite-order structure of quantum field 
theory. Universalities vs process-dependence. 

Emergent QCD phenomena: Jets, Strings, Hadrons 

Non-perturbative QCD is still hard 
Lund string model remains best bet, but ~ 30 years old 

Lots of input from LHC to spur model building. Aims for run 2? 

“Solving the LHC” is both interesting and rewarding 
New ideas evolving on both perturbative and non-perturbative 
sides → many opportunities for theory-experiment interplay 

Key to high precision → max information about the Terascale
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What’s the evolution kernel?

DGLAP splitting functions 
Can be derived from collinear limit of MEs (pb+pc)

2 → 0 
+ evolution equation from invariance with respect to QF → RGE

29

DGLAP 
(E.g., PYTHIA)

10.1.1 The evolution equations

In the shower formulation, the kinematics of each branching is given in terms of two
variables, Q2 and z. Somewhat di⇥erent interpretations may be given to these variables,
and indeed this is one main area where the various programs on the market di⇥er. Q2

has dimensions of squared mass, and is related to the mass or transverse momentum scale
of the branching. z gives the sharing of the a energy and momentum between the two
daughters, with parton b taking a fraction z and parton c a fraction 1� z. To specify the
kinematics, an azimuthal angle ⇧ of the b around the a direction is needed in addition;
in the simple discussions ⇧ is chosen to be isotropically distributed, although options for
non-isotropic distributions currently are the defaults.

The probability for a parton to branch is given by the evolution equations (also called
DGLAP or Altarelli–Parisi [Gri72, Alt77]). It is convenient to introduce

t = ln(Q2/�2) ⇤ dt = d ln(Q2) =
dQ2

Q2
, (162)

where � is the QCD � scale in �s. Of course, this choice is more directed towards the
QCD parts of the shower, but it can be used just as well for the QED ones. In terms of
the two variables t and z, the di⇥erential probability dP for parton a to branch is now

dPa =
�

b,c

�abc

2⌅
Pa�bc(z) dt dz . (163)

Here the sum is supposed to run over all allowed branchings, for a quark q ⇥ qg and
q⇥ q⇥, and so on. The �abc factor is �em for QED branchings and �s for QCD ones (to
be evaluated at some suitable scale, see below).

The splitting kernels Pa�bc(z) are

Pq�qg(z) = CF
1 + z2

1� z
,

Pg�gg(z) = NC
(1� z(1� z))2

z(1� z)
,

Pg�qq(z) = TR (z2 + (1� z)2) ,

Pq�q�(z) = e2
q

1 + z2

1� z
,

P⇥�⇥�(z) = e2
⇥

1 + z2

1� z
, (164)

with CF = 4/3, NC = 3, TR = nf/2 (i.e. TR receives a contribution of 1/2 for each
allowed qq flavour), and e2

q and e2
⇥ the squared electric charge (4/9 for u-type quarks, 1/9

for d-type ones, and 1 for leptons).
Persons familiar with analytical calculations may wonder why the ‘+ prescriptions’

and ⇤(1� z) terms of the splitting kernels in eq. (164) are missing. These complications
fulfil the task of ensuring flavour and energy conservation in the analytical equations. The
corresponding problem is solved trivially in Monte Carlo programs, where the shower evo-
lution is traced in detail, and flavour and four-momentum are conserved at each branching.
The legacy left is the need to introduce a cut-o⇥ on the allowed range of z in splittings, so
as to avoid the singular regions corresponding to excessive production of very soft gluons.

Also note that Pg�gg(z) is given here with a factor NC in front, while it is sometimes
shown with 2NC . The confusion arises because the final state contains two identical par-
tons. With the normalization above, Pa�bc(z) is interpreted as the branching probability
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a

c
b

pb = z pa

pc = (1-z) pa

Note: there exist now also alternatives to AP kernels (with same collinear limits!): dipoles, antennae, … 

dt =
dQ2

Q2
= d lnQ2

… with Q2 some measure of “hardness” 
= event/jet resolution 

measuring parton virtualities / formation time / …
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Coherence

30

Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand

More interference effects can be included by matching to full matrix elements

→ an example of an interference effect that can be treated probabilistically
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Coherence

QED: Chudakov effect (mid-fifties)
e+

e−cosmic ray γ atom

emulsion plate reduced
ionization

normal
ionization

QCD: colour coherence for soft gluon emission

+

2

=

2

solved by • requiring emission angles to be decreasing
or • requiring transverse momenta to be decreasing

Illustration by T. Sjöstrand

Approximations to 
Coherence: 

Angular Ordering (HERWIG) 

Angular Vetos (PYTHIA) 

Coherent Dipoles/Antennae 
(ARIADNE, Catani-Seymour, VINCIA)

More interference effects can be included by matching to full matrix elements

→ an example of an interference effect that can be treated probabilistically
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.

certainty due to the shower function and in particu-
lar higher-order terms in the shower. The di↵er-
ence shown here is illustrative only; a more ex-
tensive exploration of possible antenna variations
would be required before taking the spread as a
quantitative estimate of the uncertainty. We may
nonetheless observe that the Pythia 8 reference
calculation di↵ers from the Vincia one (with de-
fault antenna) by roughly the same amount in the
peak region as does the enhanced Vincia predic-
tion. This illustrates a tradeo↵ between a more ac-
tive recoil strategy (Pythia) and a more active radi-
ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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Coherence at Work
Example: quark-quark scattering in hadron collisions   

Consider one specific phase-space point (eg scattering at 45o)  
2 possible colour flows: a and b

31

a) “forward” 
colour flow

b) “backward” 
colour flow

Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

http://arxiv.org/abs/arXiv:1210.6345
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plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
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ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
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gular distribution of the first emitted gluon for the
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ation pattern (enhanced Vincia), which will be in-
teresting to study more closely. At large pT , all
three curves are close to each other; the transverse
momentum here is dominated by the recoil against
hard lone-gluon emission. This region would be
described well by fixed-order calculations.

For initial–final configurations, coherence is par-
ticularly important, and can lead to sizable asym-
metries (see, e.g., [26]). An illustration of the e↵ect
is given in fig. 3, which shows qq ! qq scatter-
ing with two di↵erent color-flow assignments: for-
ward (left) and backward (right). In both cases,
the starting scale of the shower evolution would
be p̂T , the transverse-momentum scale character-
izing the hard scattering. Coherence, however, im-

Figure 3: Di↵erent color flows and corresponding emission
patterns in qq ! qq scattering. The straight (black) lines are
quarks with arrows denoting the direction of motion in the ini-
tial or final states, and the curved (colored) lines indicating the
color flow. The beam axis is horizontal, and the vertical axis
is transverse to the beam. The initial-state momenta would be
reversed in a Feynman diagram, so that the gluon emissions
symbolically indicated by curly lines would be inside the cor-
responding color antennæ. Forward flow is shown on the left,
and backward flow on the right.
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Figure 4: Angular distribution of the first gluon emission in
qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color

7

Coherence at Work
Example: quark-quark scattering in hadron collisions   

Consider one specific phase-space point (eg scattering at 45o)  
2 possible colour flows: a and b
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a) “forward” 
colour flow

b) “backward” 
colour flow
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Figure 2: The Drell-Yan pT spectrum. The dashed red curve
shows the value computed using Vincia with default antennæ
functions, while the dotted green curve shows the Vincia pre-
dicted with an enhanced antenna function. The solid blue
curve gives the Pythia 8 prediction. The inset shows the high-
pT tail.
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qq ! qq scattering at 45�, for the two di↵erent color flows.
The light (red) histogram shows the emission density for the
forward flow, and the dark (blue) histogram shows the emis-
sion density for the backward flow.

plies that radiation should be directed primarily in-
side the color antenna, so that in the forward flow
it would be directed towards large rapidity, and
strongly suppressed at right angles to the beam di-
rection. In the backward flow, conversely, radiation
at right angles to the beam should be unsuppressed.
The two radiation patterns are illustrated schemat-
ically by the gluons in fig. 3. The intrinsic coher-
ence of the antenna formalism accounts for this ef-
fect automatically. That Vincia reproduces this fea-
ture is demonstrated in fig. 4, which shows the an-
gular distribution of the first emitted gluon for the
forward and backward color flows, respectively, for
a scattering angle of 45� and p̂T = 100 GeV. The
distributions clearly show that the backward color
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Example taken from: Ritzmann, Kosower, PS, PLB718 (2013) 1345

Another good recent example is the SM contribution to the Tevatron top-quark forward-
backward asymmetry from coherent showers, see: PS, Webber, Winter, JHEP 1207 (2012) 151

http://arxiv.org/abs/arXiv:1210.6345


P.  S k a n d s

Initial-State vs Final-State Evolution
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p2 = t < 0

ISR:FSR:

p2  > 0

Virtualities are 
Timelike: p2>0

Virtualities are 
Spacelike: p2<0

Start at Q2 = QF2 
“Forwards evolution”

Start at Q2 = QF2 
Constrained backwards evolution 
towards boundary condition = proton

Separation meaningful for collinear radiation, but not for soft …


