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Questions
Pileup

How much? In central & fwd acceptance?

Structure: averages + fluctuations, particle composition, lumpiness, …

Scaling to 13 TeV and beyond

Underlying Event ~ “A handful of pileup” ?
Hadronizes with Main Event → “Color reconnections”
Additional “minijets” from multiple parton interactions

Hadronization
Models from the 80ies, mainly constrained in 90ies
Meanwhile, perturbative models have evolved

Dipole/Antenna showers, ME matching, NLO corrections, … 
Precision → re-examine non-perturbative models and constraints
New clean constraints from LHC (& future colliders)?

Hadronization models ⥂ analytical NP corrections?

Uses and Limits of “Tuning”
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From Hard to Soft

Factorization and IR safety
Main tools for jet calculations
Corrections suppressed by powers 
of ΛQCD/QHard 

Soft QCD / Pileup

~ ∞ statistics for min-bias
→ Access tails, limits

Universality: Recycling PU ⬌ MB ⬌ UE
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NO HARD SCALE
Typical Q scales ~ ΛQCD

Extremely sensitive to IR effects 
→ Excellent LAB for studying IR effects

CMS “R
idge”

Track multiplicitie
s

pT spectra

Identified Particles

Correlations

Rapidity Gaps

Color Correlations

Collective Effects?

Central vs Forward

Baryon Transport
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What is Pileup / Min-Bias?
We use Minimum-Bias (MB) data to test soft-QCD models

Pileup = “Zero-bias” 
“Minimum-Bias” typically suppresses diffraction by requiring 
two-armed coincidence, and/or ≥ n particle(s) in central region

→ Pileup contains more diffraction than Min-Bias 
Total diffractive cross section ~ 1/3 σinel

Most diffraction is low-mass → no contribution in central regions
High-mass tails could be relevant in FWD region 
→ direct constraints on diffractive components (→ later)
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Hit Hit

SDMB
Hit

Veto → NSD
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extracted and applied as a function of the T2 track multi-
plicity and affects only the 1h category. The systematic
uncertainty is estimated to be 0.45% which corresponds
to the maximal variation of the background that gives a
compatible fraction of 1h events (trigger and pileup cor-
rected) in the two samples.

Trigger efficiency: This correction is estimated from the
zero-bias triggered events. It is extracted and applied as a
function of the T2 track multiplicity, being significant
for events with only one track and rapidly decreasing to
zero for five or more tracks. The systematic uncertainty is
evaluated comparing the trigger performances with and
without the requirement of having a track pointing to the
vertex and comparing the overall rate correction in the two
samples.

Pileup: This correction factor is determined from the
zero-bias triggered events: the probability to have a bunch
crossing with tracks in T2 is 0.05–0.06 from which the
probability of having n ! 2 inelastic collisions with tracks
in T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation, within the same
data set, of the probability to have a bunch crossing with
tracks in T2 and from the uncertainty due to the T2 event
reconstruction efficiency.

Reconstruction efficiency: This correction is estimated
using Monte Carlo generators (PYTHIA8 [13], QGSJET-
II-03 [14]) tuned with data to reproduce the measured
fraction of 1h events which is equal to 0:216" 0:007.
The systematic uncertainty is assumed to be half of the
correction: as it mainly depends on the fraction of events
with only neutral particles in T2, it accounts for variations
between the different Monte Carlo generators.

T1 only: This correction takes into account the amount
of events with no final state particles in T2 but one or
more tracks in T1. The uncertainty is the precision with
which this correction can be calculated from the zero-bias
sample plus the uncertainty of the T1 reconstruction
efficiency.

Internal gap covering T2: This correction takes into
account the events which could have a rapidity gap fully
covering the T2 ! range and no tracks in T1. It is estimated
from data, measuring the probability of having a gap in T1

and transferring it to the T2 region. The uncertainty takes
into account the different conditions (average charged
multiplicity, pT threshold, gap size, and surrounding
material) between the two detectors.
Central diffraction: This correction takes into account

events with all final state particles outside the T1 and T2
pseudorapidity acceptance and it is determined from simu-
lations based on the PHOJET and MBR event generators
[15,16]. Since the cross section is unknown and the uncer-
tainties are large, no correction is applied to the inelastic
rate but an upper limit of 0.25 mb is taken as an additional
source of systematic uncertainty.
Low mass diffraction: The T2 acceptance edge at j!j ¼

6:5 corresponds approximately to diffractive masses of
3.6 GeV (at 50% efficiency). The contribution of events
with all final state particles at j!j> 6:5 is estimated with
QGSJET-II-03 after tuning the Monte Carlo prediction with

TABLE IV. Summary of the measured cross sections with detailed uncertainty composition.
The " uncertainty follows from the COMPETE preferred-model " extrapolation error of
"0:007. The right-most column gives the full systematic uncertainty, combined in quadrature
and considering the correlations between the contributions.

Systematic uncertainty

Quantity Value el. t-dep el. norm inel " ) full

#tot (mb) 101.7 "1:8 "1:4 "1:9 "0:2 ) "2:9
#inel (mb) 74.7 "1:2 "0:6 "0:9 "0:1 ) "1:7
#el (mb) 27.1 "0:5 "0:7 "1:0 "0:1 ) "1:4
#el=#inel (%) 36.2 "0:2 "0:7 "0:9 ) "1:1
#el=#tot (%) 26.6 "0:1 "0:4 "0:5 ) "0:6

FIG. 1 (color). Compilation [8,20–24] of the total (#tot), in-
elastic (#inel) and elastic (#el) cross-section measurements: the
TOTEM measurements described in this Letter are highlighted.
The continuous black lines (lower for pp, upper for !pp) repre-
sent the best fits of the total cross-section data by the COMPETE
collaboration [19]. The dashed line results from a fit of the
elastic scattering data. The dash-dotted lines refer to the inelastic
cross section and are obtained as the difference between the
continuous and dashed fits.
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PP CROSS SECTIONS
TOTEM, PRL 111 (2013) 1, 012001

�inel(13 TeV) ⇠ 80± 3.5 mb

�
tot

(13 TeV) ⇠ 110± 6 mb

�
tot

(8 TeV) = 101± 2.9 mb
(2.9%)

�el(8 TeV) = 27.1± 1.4 mb
(5.1%)

�inel(8 TeV) = 74.7± 1.7 mb
(2.3%)

Pileup rate ∝ �
tot

(s) = �
el

(s) + �
inel

(s) / s0.08 or ln

2

(s) ?
Donnachie-Landshoff Froissart-Martin Bound

total

inelastic

elastic

PYTHIA: 100 mb

PYTHIA: 78 mb

(PYTHIA versions: 6.4.28 & 8.1.80)

PYTHIA: 73 mb

PYTHIA: 20 mb

PYTHIA: 93 mb

PYTHIA elastic 
is too low
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What Cross Section?
Total Inelastic

Fraction with one charged particle in |η|<1

ALICE def : SD has MX<200

Ambiguous Theory Definition

Ambiguous Theory Definition

Ambiguous Theory Definition
Observed fraction corrected to total

σINEL @ 30 TeV:
~ 90 mb

σINEL @ 100 TeV:
~ 108 mb

σSD: a few mb larger than at 7 TeV
σDD ~ just over 10 mb

σINEL @ 13 TeV ~ 80 mb�inel(13 TeV) ⇠ 80± 3.5 mb

The Inelastic Cross Section

First try: decompose
+ Parametrizations of diffractive components: dM2/M2

6

�inel = �sd + �dd + �cd + �nd

and ⌅el = ⌅2
tot/16⇤Bel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4s� � 4.2 , (115)

with s given in units of GeV and Bel in GeV�2. The constants bA,B are bp = 2.3, b⇥,⇤,⌃,⌅ =
1.4, bJ/⇧ = 0.23. The increase of the slope parameter with c.m. energy is faster than
the logarithmically one conventionally assumed; that way the ratio ⌅el/⌅tot remains well-
behaved at large energies.

The di�ractive cross sections are given by

d⌅sd(XB)(s)

dt dM2
=

g3IP

16⇤
⇥AIP ⇥2

BIP

1

M2
exp(Bsd(XB)t) Fsd ,

d⌅sd(AX)(s)

dt dM2
=

g3IP

16⇤
⇥2

AIP ⇥BIP
1

M2
exp(Bsd(AX)t) Fsd ,

d⌅dd(s)

dt dM2
1 dM2

2

=
g2
3IP

16⇤
⇥AIP ⇥BIP

1

M2
1

1

M2
2

exp(Bddt) Fdd . (116)

The couplings ⇥AIP are related to the pomeron term XABs� of the total cross section
parameterization, eq. (112). Picking a reference scale

⇤
sref = 20 GeV, the couplings are

given by ⇥AIP⇥BIP = XAB s�
ref . The triple-pomeron coupling is determined from single-

di�ractive data to be g3IP ⇥ 0.318 mb1/2; within the context of the formulae in this
section.

The spectrum of di�ractive masses M is taken to begin 0.28 GeV ⇥ 2m⇥ above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM2/M2 form is modified by the mass-dependence in the di�ractive slopes and in the Fsd

and Fdd factors (see below).
The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2�⇥ ln
�

s

M2

⇥
,

Bsd(AX)(s) = 2bA + 2�⇥ ln
�

s

M2

⇥
,

Bdd(s) = 2�⇥ ln

⇤

e4 +
ss0

M2
1 M2

2

⌅

. (117)

Here �⇥ = 0.25 GeV�2 and conventionally s0 is picked as s0 = 1/�⇥. The term e4 in Bdd is
added by hand to avoid a breakdown of the standard expression for large values of M2

1 M2
2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV�2

is still explicitly required for Bsd, which comes into play e.g. for a J/⇧ state (as part of a
VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of
the scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

(1)/s (= m2
A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1� (µ1 + µ2 + µ3 + µ4) + (µ1 � µ2)(µ3 � µ4) ,

C2 =
⇧

(1� µ1 � µ2)2 � 4µ1µ2

⇧
(1� µ3 � µ4)2 � 4µ3µ4 ,

C3 = (µ3 � µ1)(µ4 � µ2) + (µ1 + µ4 � µ2 � µ3)(µ1µ4 � µ2µ3) , (118)

one has tmin < t < tmax with

tmin = �s

2
(C1 + C2) ,

tmax = �s

2
(C1 � C2) = �s

2

4C3

C1 + C2
=

s2C3

tmin
. (119)

113

+ Integrate and 
solve for σnd

log10(
p
s/GeV)

Note problem of 
principle: Q.M. 

requires 
distinguishable 

final states

PYTHIA:
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Models of Soft QCD - Disclaimer

May not always reflect “best” TH understanding
Not just a matter of cranking perturbative orders 
Harder due to requirement of fully differential 
dynamical modeling (event generators), not just 
cross section formulae

May not always reflect “best” EXP constraints
Not just a matter of “tuning”
(+ tunnel vision: exp comparisons for searches or EW 
measurements rarely formulated as QCD constraints)

Modeling: identify “new” physics + build and 
constrain models (beyond perturbative leading-twist)

Few people working on soft QCD models → long 
cycles
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Dynamical Models of Soft QCD
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Regge Theory

E.g.,  QGSJET, SIBYLL

+ “Mixed”
E.g.,  PHOJET, EPOS,

SHERPA-KMR

See e.g. Reviews by MCnet [arXiv:1101.2599] and KMR [arXiv:1102.2844]

Optical Theorem
+ Eikonal multi-Pomeron exchanges

σtot,inel ∝ log2(s)

Cut Pomerons → Flux Tubes (strings)
Uncut Pomerons → Elastic (& eikonalization)

Cuts unify treatment of all soft processes
EL, SD, DD, … , ND

(Perturbative contributions added above Q0) 

A Parton Based

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed E

T

distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ! 2 scattering almost go on shell at low p?,
causing the di↵erential cross sections to become very large, behaving roughly as

d�
2!2

/ dt

t2
⇠ dp2

?
p4

?
. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �

2!2

but only once in �
tot

, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�
2!2

(p?min

) = hni(p?min

) �
tot

, (1.14)

with hni(p?min

) giving the average of a Poisson distribution in the number of parton-parton
interactions above p?min

per hadron-hadron collision,

P
n

(p?min

) = (hni(p?min

))n

exp (�hni(p?min

))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min

! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of hni above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min

⇡ ~/r
p

⇡ 0.3 GeV ⇡ ⇤
QCD

, but empirically this appears to be far too low. In current
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+ Unitarity & Saturation

→ Multi-parton interactions (MPI)
+ Parton Showers & Hadronization
Regulate dσ at low pT0  ~ few GeV

Screening/Saturation → energy-dependent pT0

Total cross sections from Regge Theory 
(e.g., Donnachie-Landshoff + Parametrizations)

E.g.,  PYTHIA,
HERWIG, SHERPA

B

⊗ PDFs

Froissart-Martin Bound

         PYTHIA,

http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1101.2599
http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1102.2844
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Parton-Based Models
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⊗ PDFs

Main applications: Central Jets/EWK/top/
Higgs/New Physics 

Gluon PDF 
x*f(x)

Q2 = 1 GeV2 Warning: 
NLO PDFs < 0

100 500 1000 5000 1¥104 5¥1041¥105
1

2
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7

ECM [GeV]

p T
0 [G

eV
]

pT0 scale vs CM energy
Range for Pythia 6
Perugia 2012 tunes

100 TeV

30 TeV

7 TeV

0.9 TeV

Poor Man’s Saturation

High Q2 
and 

finite x

Extrapolation to soft scales delicate.
Impressive successes with MPI-based 
models but still far from a solved problem

Form of PDFs at small x and Q2

Form and Ecm dependence of pT0 regulator
Modeling of the diffractive component
Proton transverse mass distribution
Colour Reconnections, Collective Effects

Saturation

See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617   +   PYTHIA “Perugia Tunes”: PS, PRD82 (2010) 074018 + arXiv:1308.2813

See talk on UE
by W. Waalewijn

http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1102.2844
http://arxiv.org/abs/arXiv:1005.3457
http://arxiv.org/abs/arXiv:1005.3457
http://arxiv.org/abs/arXiv:1308.2813
http://arxiv.org/abs/arXiv:1308.2813
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Data from ALICE EPJ C68 (2010) 345, Plot from  arXiv:1308.2813

Central Charged-Track Multiplicity

Tevatron tunes were ~ 10-20% low 
on MB and UE

A SENSITIVE E-SCALING PROBE: 
Relative increase in the central charged-track 

multiplicity from 0.9 to 2.36 and 7 TeV 

See also energy-scaling tuning study, Schulz & PS, EPJ C71 (2011) 1644

Min/Max
Range

Discovery at LHC
Min-Bias & UE are 10-20% larger than we thought

Scale a bit faster with energy
→ Be sure to use up-to-date (LHC) tunes

PY8 Monash 2013

Pre-LHC

Post-LHC

Representative plot.
Several MB/UE 

models/tunes and 
observables show 
same behavior.

http://arxiv.org/abs/arXiv:1308.2813
http://arxiv.org/abs/arXiv:1308.2813
http://arxiv.org/abs/arXiv:1103.3649
http://arxiv.org/abs/arXiv:1103.3649
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Sum(ET)
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Plots from mcplots.cern.ch

Central
|η|<0.8

Forward
4<|η|<4.8

PY8 doing better 
than PY6

pre-LHC

post-LHC

http://mcplots.cern.ch
http://mcplots.cern.ch
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The Forward Region
More sensitive to low x & diffraction

12

2C: an older Tevatron tune
4C: the current LHC tune (Default in Pythia 8.1)

Monash 2013: a new LEP + LHC tune (Default from Pythia 8.2?) 
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Hadron i za t i on
co lo r  f l ow,  co lo r  reconnec t i ons ,  pa r t i c l e  spec t ra
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Rapidity

Multiplicity ∝ NMPI

Color Connections

14

Leading NC: each parton-parton 
interaction scatters ‘new’ colors

→ incoherent addition of colors

  1 or 2 strings per MPI

Quite clean, factorized picture

WRONG!
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Color Reconnections?

15

Rapidity

Multiplicity ∝ NMPI
<

E.g.,
Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364)
Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)
… 

Hydro?Coherence

Coherence

NC=3: Colors add coherently

+ collective effects?

Better theory models needed

Study: coherence and/or finite-NC effects 

String formation at finite NC

In context of multi-parton interactions 

LEP constraints?

Additional collectivity? (a la HI? BE?)
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Signs of collectivity?

16
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Figure 16

In the bottom two panes of fig. 15, we focus on the forward region (with physical event selections).
In particular, we see that the NNPDF set generates a broader rapidity spectrum, so that while the
activity in the central region (top pane) is reduced slightly, the activity in the very forward region
increases, and comes into better agreement with the TOTEM measurement [?], covering the range
5.3 < |⌘| < 6.4. The bottom right-hand pane shows the forward energy flow measured by CMS [?],
in the intermediate region 3.23 < |⌘| < 4.65. The dependence on ⌘ is a bit steeper in the Monash
tune than in the previous one, and more similar to that seen in the data.

For the UE at LHC, what matters most is that we describe the PTSUM density for charged particles
above 500 MeV (all others go helix), but also the neutral component summed over all pT. Therefore,
both the 500 MeV and 100 MeV ones are relevant. The track densities less so, but perhaps still have
a look. Also, it would be nice to include RMS measurement, to ensure that the fluctuations are not
wrongly estimated. (That is probably connected with the mass profile.)

3.3 Identified Particles at LHC

Note: thanks to L. de Nooij for emphasizing to us the importance of the ALICE K

⇤ and � measure-
ments [31].

4 Energy Scaling

Though energy scaling these days mostly refers to the scaling of pp collisions, an important first step is
to consider the scaling of observables in ee collisions. This scaling contains information on the relative
contributions of perturbative and non-perturbative fragmentation. Thus, at low ee energies, the non-
perturbative components of the fragmentation model dominate, while perturbative bremsstrahlung
increases in importance towards higher ee energies. In fig. 21, we consider the scaling of the average
charged-particle multiplicity and that of charged Kaons and Lambda baryons from CM energies of
14 GeV to 200 GeV, obtained from measurements available at HEPDATA. Below the Z pole, the
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no color reconnections
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Figure 19: K0

S rapidity and p? spectrum at 7 TeV.
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Figure 20: ⇤0 rapidity and p? spectrum at 7 TeV.
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2) Baryons by coalescence?

<
p

T
>

nCharged

Λ0
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Gluon Splitting

Less singular than gluon emission: single log

→ Less precise, from parton-shower viewpoint
Massive quarks → not even singular

Predictions for g→cc,bb differ greatly between models
Non-singular terms, evolution variable, renormalization scale

Beware: overpredicted if (c,b) treated massless

17

P (g ! qq̄) / 1

m2
qq̄

Strong interest in constraints from 
double-tagged heavy-flavor jets

At the theory level we will 
learn more from NLO 
corrections to gluon-
splitting processes



Tun ing
means  d i f f e ren t  th ings  to  d i f f e ren t  peop le
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Example: Value of Strong Coupling
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αs(MZ) = 0.12
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1 − T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.

– 3 –
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PYTHIA 8 (hadronization on) vs LEP: Thrust
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αs(MZ) = 0.14

+ IR regularization → Impact on non-perturbative parameters!
1-loop running, MC 1-loop running, MC
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Sneak Preview:

VINCIA: Multijet NLO Corrections
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Figure 15. L3 light-flavour event shapes: Thrust, C, and D.

The three main event-shape variables that were used to determine the value of ↵
s

(M
Z

)

are shown in figure 15, with upper panes showing the distributions themselves (data and MC)

and lower panes showing the ratios of MC/data, with one- and two-sigma uncertainties on

the data shown by darker (green) and lighter (yellow) shaded bands, respectively. The Thrust

(left) and C-parameter (middle) distributions both have perturbative expansions that start

at O(↵
s

) and hence they are both explicitly sensitive to the corrections considered in this

paper. The expansion of the D parameter (right) begins at O(↵2
s

). It is sensitive to the NLO

3-jet corrections mainly via unitarity, since all 4-jet events begin their lives as 3-jet events in

our framework. It also represents an important cross-check on the value extracted from the

other two variables.

For a pedagogical description of the variables, see [63]. Pencil-like 2-jet configurations are

to the left (near zero) for all three observables. This region is particularly sensitive to non-

perturbative hadronization corrections. More spherical events, with several hard perturbative

emissions, are towards the right (near 0.5 for Thrust and 1.0 for C and D). The maximal ⌧ =

1�T for a 3-particle configuration is ⌧ = 1/3 (corresponding to the Mercedes configuration),

beyond which only 4-particle (and higher) states can contribute. This causes a noticeable

change in slope in the distribution at that point, see the left pane of figure 15. The same thing

happens for the C parameter at C = 3/4, in the middle pane of figure 15. The D parameter

is sensitive to the smallest of the eigenvalues of the sphericity tensor, and is therefore zero for

any purely planar event, causing it to be sensitive only to 4- and higher-particle configurations

over its entire range.

Both the new NLO tune (solid blue line with filled-dot symbols) and the old LO one

(dashed magenta line with open-triangle symbols) reproduce all three event shapes very well.

With the NLO corrections switched o↵ (solid red line with open-circle symbols), the new tune

produces a somewhat too soft spectrum, consistent with its low value of ↵
s

(M
Z

) not being

– 59 –

First LEP tune with NLO 3-jet corrections
LO tune: αs(MZ) = 0.139 (1-loop running, MC)

NLO tune: αs(MZ) = 0.122 (2-loop running, MSbar→MC)

      Hartgring, Laenen, Skands, arXiv:1303.4974

HADRON 
COLLISIONS

http://arxiv.org/abs/arXiv:1303.4974
http://arxiv.org/abs/arXiv:1303.4974
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Soft QCD Models: Outlook
HERWIG++  and SHERPA are developing diffractive 
models + investigating color reconnections

EPOS uses collective effects (hydro) also in pp
Impressive successes for identified-particle spectra (→?)

PYTHIA 8 (by now generally superior to PYTHIA 6)

New “Monash 2013” tune (LEP+MB+UE+DY) (from v.8.185) 
New model of colour reconnections to be developed over next 
half year (with J.R. Christiansen) → “Monash 2014”?
Hard diffraction included in PYTHIA 8 (not 6), but diffraction 
generally still poorly understood
VINCIA for hadron colliders also to be ready in 2014

PHOJET, SIBYLL, QGSJET (pomeron-based)

Personal (biased?) view: Problems with soft-to-hard transition 

Tuning: LO vs NLO & universality needs better understanding
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Observable Wishlist

Gluon Splitting: double-tagged (cc and bb) 
jets 

Interplay with boosted H→bb, Z→bb
Do double-tagging algorithms exist? How 
difficult/complicated would they be to develop?
Can dependence on mQQ be measured?

Underlying event in top
Charged-track multiplicity in top events

Dependence on pT and m
Underlying event away from boosted tops
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Observable Wihslist

MB and UE tails (more/less central)

Rapidity Gaps: CR vs Diffraction
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•Explicit tables of data & MC points
•Run cards for each generator
•Link to experimental reference paper
•Steering file for plotting program
• (Will also add link to RIVET analysis)

http://mcplots.cern.ch
http://mcplots.cern.ch
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Test4Theory - LHC@home
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New 
Users/Day

May June July Aug Sep

July 4th 
2012

The	
  LHC@home	
  2.0	
  project	
  Test4Theory	
  allows	
  users	
  to	
  par8cipate	
  in	
  running	
  simula8ons	
  of	
  high-­‐
energy	
  par8cle	
  physics	
  using	
  their	
  home	
  computers.

The	
  results	
  are	
  submiJed	
  to	
  a	
  database	
  which	
  is	
  used	
  as	
  a	
  common	
  resource	
  by	
  both	
  
experimental	
  and	
  theore8cal	
  scien8sts	
  working	
  on	
  the	
  Large	
  Hadron	
  Collider	
  at	
  CERN.

New:	
  Ci#zen	
  Cyberlab	
  (funds	
  from	
  EU)
Develop	
  an	
  app	
  that	
  lets	
  ci8zen	
  scien8sts	
  learn	
  
about,	
  interact	
  with,	
  and	
  op4mize	
  high-­‐energy	
  
physics	
  simula4ons,	
  by	
  comparing	
  them	
  to	
  real	
  
data

http://lhcathome.cern.ch/test4theory

http://lhcathome2.cern.ch/test4theory
http://lhcathome2.cern.ch/test4theory
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://lhcathome2.cern.ch/high-energy-physics-simulations
http://mcplots.cern.ch/
http://mcplots.cern.ch/
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://lhcathome.web.cern.ch/test4theory
http://lhcathome.web.cern.ch/test4theory
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Multiple Interactions
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Bahr, Butterworth, Seymour: arXiv:0806.2949 [hep-ph]  
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Leading-Order pQCD

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

hni < 1 (2)

hni > 1 (2)

Parton-Parton Cross Section Hadron-Hadron Cross Section

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as

d�2�2 ⇧
dt

t2
⇥ dp2

⇥
p4
⇥

. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�2�2(p⇥min) = ⌥n�(p⇥min) �tot , (1.14)

with ⌥n�(p⇥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⇥min per hadron-hadron collision,

Pn(p⇥min) = (⌥n�(p⇥min))
n exp (�⌥n�(p⇥min))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
p⇥min ⇤ �/rp ⇤ 0.3 GeV ⇤ �QCD, but empirically this appears to be far too low. In current
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QF Q2⇥

Lesson from bremsstrahlung in pQCD: 
divergences → fixed-order breaks down

Perturbation theory still ok, with 
resummation (unitarity)

→ Resum dijets?
Yes → MPI!
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Earliest MC model (“old” PYTHIA 6 model)
Sjöstrand, van Zijl PRD36 (1987) 2019
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Naively
Interactions independent (naive factorization) → Poisson

How many?

28

σint(p⊥min) =
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dx1 dx2 dp2
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Half a solution to σint(p⊥min) > σtot: many interactions per event
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If interactions occur independently
then Poissonian statistics
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but energy–momentum conservation
⇒ large n suppressed
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1: A Simple Model

29

Parton-Parton Cross Section Hadron-Hadron Cross Section

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�2�2(p⇥min) = ⌥n�(p⇥min) �tot , (1.14)

with ⌥n�(p⇥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⇥min per hadron-hadron collision,
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
p⇥min ⇤ �/rp ⇤ 0.3 GeV ⇤ �QCD, but empirically this appears to be far too low. In current
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1. Choose pTmin cutoff 
= main tuning parameter

2. Interpret <n>(pTmin) as mean of Poisson distribution
Equivalent to assuming all parton-parton interactions equivalent and 
independent ~ each take an instantaneous “snapshot” of the proton

3. Generate n parton-parton interactions (pQCD 2→2)
Veto if total beam momentum exceeded → overall (E,p) cons

4. Add impact-parameter dependence → <n> = <n>(b)
Assume factorization of transverse and longitudinal d.o.f., → PDFs : f(x,b) = f(x)g(b)
b distribution ∝ EM form factor → JIMMY model
Constant of proportionality = second main tuning parameter

5. Add separate class of “soft” (zero-pT) interactions representing 
interactions with  pT < pTmin and require σsoft + σhard = σtot
→ Herwig++ model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

Ordinary CTEQ, MSTW, NNPDF, …

Bähr et al, arXiv:0905.4671

Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637
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2: Interleaved Evolution
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  Underlying Event 
(note: interactions correllated in colour: 

hadronization not independent) 

Sjöstrand & PS : JHEP03(2004)053, EPJC39(2005)129 

multiparton 
PDFs derived 
from sum rules 

Beam remnants 
Fermi motion /  
primordial kT 

Fixed order 
matrix elements 

Parton Showers 
(matched to  
further Matrix  
Elements) 

perturbative  
“intertwining”? 

“New” Pythia model 

Sjöstrand & Skands, JHEP 0403 (2004) 053; EPJ C39 (2005) 129

(B)SM
2→2

Also available for Pomeron-Proton collisions since Pythia 8.165
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extracted and applied as a function of the T2 track multi-
plicity and affects only the 1h category. The systematic
uncertainty is estimated to be 0.45% which corresponds
to the maximal variation of the background that gives a
compatible fraction of 1h events (trigger and pileup cor-
rected) in the two samples.

Trigger efficiency: This correction is estimated from the
zero-bias triggered events. It is extracted and applied as a
function of the T2 track multiplicity, being significant
for events with only one track and rapidly decreasing to
zero for five or more tracks. The systematic uncertainty is
evaluated comparing the trigger performances with and
without the requirement of having a track pointing to the
vertex and comparing the overall rate correction in the two
samples.

Pileup: This correction factor is determined from the
zero-bias triggered events: the probability to have a bunch
crossing with tracks in T2 is 0.05–0.06 from which the
probability of having n ! 2 inelastic collisions with tracks
in T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation, within the same
data set, of the probability to have a bunch crossing with
tracks in T2 and from the uncertainty due to the T2 event
reconstruction efficiency.

Reconstruction efficiency: This correction is estimated
using Monte Carlo generators (PYTHIA8 [13], QGSJET-
II-03 [14]) tuned with data to reproduce the measured
fraction of 1h events which is equal to 0:216" 0:007.
The systematic uncertainty is assumed to be half of the
correction: as it mainly depends on the fraction of events
with only neutral particles in T2, it accounts for variations
between the different Monte Carlo generators.

T1 only: This correction takes into account the amount
of events with no final state particles in T2 but one or
more tracks in T1. The uncertainty is the precision with
which this correction can be calculated from the zero-bias
sample plus the uncertainty of the T1 reconstruction
efficiency.

Internal gap covering T2: This correction takes into
account the events which could have a rapidity gap fully
covering the T2 ! range and no tracks in T1. It is estimated
from data, measuring the probability of having a gap in T1

and transferring it to the T2 region. The uncertainty takes
into account the different conditions (average charged
multiplicity, pT threshold, gap size, and surrounding
material) between the two detectors.
Central diffraction: This correction takes into account

events with all final state particles outside the T1 and T2
pseudorapidity acceptance and it is determined from simu-
lations based on the PHOJET and MBR event generators
[15,16]. Since the cross section is unknown and the uncer-
tainties are large, no correction is applied to the inelastic
rate but an upper limit of 0.25 mb is taken as an additional
source of systematic uncertainty.
Low mass diffraction: The T2 acceptance edge at j!j ¼

6:5 corresponds approximately to diffractive masses of
3.6 GeV (at 50% efficiency). The contribution of events
with all final state particles at j!j> 6:5 is estimated with
QGSJET-II-03 after tuning the Monte Carlo prediction with

TABLE IV. Summary of the measured cross sections with detailed uncertainty composition.
The " uncertainty follows from the COMPETE preferred-model " extrapolation error of
"0:007. The right-most column gives the full systematic uncertainty, combined in quadrature
and considering the correlations between the contributions.

Systematic uncertainty

Quantity Value el. t-dep el. norm inel " ) full

#tot (mb) 101.7 "1:8 "1:4 "1:9 "0:2 ) "2:9
#inel (mb) 74.7 "1:2 "0:6 "0:9 "0:1 ) "1:7
#el (mb) 27.1 "0:5 "0:7 "1:0 "0:1 ) "1:4
#el=#inel (%) 36.2 "0:2 "0:7 "0:9 ) "1:1
#el=#tot (%) 26.6 "0:1 "0:4 "0:5 ) "0:6

FIG. 1 (color). Compilation [8,20–24] of the total (#tot), in-
elastic (#inel) and elastic (#el) cross-section measurements: the
TOTEM measurements described in this Letter are highlighted.
The continuous black lines (lower for pp, upper for !pp) repre-
sent the best fits of the total cross-section data by the COMPETE
collaboration [19]. The dashed line results from a fit of the
elastic scattering data. The dash-dotted lines refer to the inelastic
cross section and are obtained as the difference between the
continuous and dashed fits.
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PP CROSS SECTIONS
TOTEM, PRL 111 (2013) 1, 012001

�inel(13 TeV) ⇠ 80± 3.5 mb

�
tot

(13 TeV) ⇠ 110± 6 mb

�
tot

(8 TeV) = 101± 2.9 mb
(2.9%)

�el(8 TeV) = 27.1± 1.4 mb
(5.1%)

�inel(8 TeV) = 74.7± 1.7 mb
(2.3%)

Pileup rate ∝ �
tot

(s) = �
el

(s) + �
inel

(s) / s0.08 or ln

2

(s) ?
Donnachie-Landshoff Froissart-Martin Bound

total

inelastic

elastic

PYTHIA: 100 mb

PYTHIA: 78 mb

(PYTHIA versions: 6.4.28 & 8.1.80)

PYTHIA: 73 mb

PYTHIA: 20 mb

PYTHIA: 93 mb

PYTHIA elastic 
is too low

PY
TH

IA
PY

TH
IA

PHOJET elastic 
is too large



P.  S k a n d s

Scaling of Multiplicities

32

 (GeV)s
10 210 310 410

=0η|η
/d

ch
dN

0

1

2

3

4

5

6

7

8

SIBYLL 2.1
QGSJET 01
QGSJET II
EPOS 1.99

CMS (p-p NSD)
ALICE (p-p NSD)

 MB)pCDF (p-
 NSD)pUA1 (p-
 NSD)pUA5 (p-

 (GeV)s
10 210 310 410

=0η|η
/d

ch
dN

0

1

2

3

4

5

6

7

8
SIBYLL 2.1
QGSJET 01
QGSJET II
EPOS 1.99

ALICE (p-p INEL)

 INEL)pUA5 (p-
ISR (p-p INEL)

Figure 5: Collision-energy dependence of the midrapidity charged hadron invariant yields in non single-diffractive (NSD, left panel) and inelastic
(right panel) p-p and p-  p collisions compared to the predictions of qgsjet01 and II, sibyll, and epos.

In the case of the pythia and phojet simulations we have computed 〈p⊥〉 as done by CMS [38], i.e. by fitting the
midrapidity p⊥-differential charged hadron spectra with the Tsallis function [99], and averaging the p⊥ over that func-
tion. For the RFT models we simply average the p⊥ of all the charged particles in the central η range. Applying the
NSD or full-inelastic selections does not change drastically the values of 〈p⊥〉 which differ only by ∼ 5%. Also, the
exact pseudorapidity coverage of the measurement around midrapidity (e.g. |∆η| < 1 or |∆η| < 2.5) does not change
much the associated mean p⊥ values (∼ -4%) although an extension to full rapidities would decrease its value by about
12%.

The energy dependence of the average transverse momentum of charged hadrons measured from the ISR collider
up to LHC energies is compared to the predictions of pythia and phojet (left panel) and of cosmic ray models (right
panel) in Fig. 6. The phojet and epos results are globally in good agreement with the

√
s-dependence of the average

p⊥ seen in the data. The Atlas-CSC pythia tune and sibyll predict a slower rate of increase at LHC energies. On the
contrary, the rate of the increase predicted by pythia Perugia-0 and by qgsjetII is compatible with the data but their
absolute scale is higher by roughly 10% and 20% respectively. The pythia 8 and qgsjet01 predictions miss the shape
and absolute magnitude of 〈p⊥〉 (

√
s). It is interesting to notice that the Atlas-CSC pythia tune which reproduced well

the pseudorapidity distribution (Fig. 2) predicts a too low value for the average p⊥, while the Perugia-0 tune which
has a too low multiplicity shows a too large 〈p⊥〉.

4.3. Multiplicity probability distributions
The multiplicity distribution P(Nch), i.e. the probability to produce Nch charged hadrons in an event, is of special

interest because it provides extra differential constraints on the internal details of the hadronic interaction models.
The low multiplicity part is mostly dominated by the contributions from diffraction (and from single-cut Pomeron
exchanges in the RFT approaches), whereas the tail of the distribution gives information on the relative contribution
of multiparton scatterings (multi-Pomeron exchanges). The ALICE experiment has measured multiplicity distribu-
tions within |η| < 1 using different triggers (inelastic, ‘Inel>0’ with at least one particle measured in the considered
η range, and NSD) at 900 GeV, 2.36 TeV and 7 TeV [36, 37]. Such different triggers affect significantly the first
few bins of the distributions, where their maxima lie. The CMS collaboration has provided a higher statistics set of
results [100] but applying a NSD trigger and, thus, with large uncertainties (up to 40%) in the low multiplicity part
of the distributions. In Figs. 7 and 8, we show the P(Nch) probabilities for the ALICE ‘Inel>0’ selection at the three
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Historically, Monte Carlo (MC) event generators of high-energy hadronic collisions have evolved either starting
up from the RFT approach, exemplified e.g. in the original Dual Parton Model (DPM) [67], extended with a leading-
logarithmic pQCD description for high-p⊥ production (based on cut-Pomerons) – such as in the phojet [57, 58],
qgsjet01 and II [49, 51, 52, 53], sibyll [54, 55, 56], neXus [68, 69], epos [62] and dpmjet [60, 61] cases – or they
started from a purely collinear-factorized framework – such as in e.g. general-purpose MCs like pythia [46] – com-
plemented with an add-on model for truly soft [70] and diffractive [71] scatterings. Thus, on the one hand, the RFT
approaches try to extend a consistent framework based on Pomeron degrees of freedom to the hard regime. On the
other, the collider MCs contain a description based on partonic degrees of freedom (with scattering cross sections
dumped in the infrared, below a “tunable” semihard scale) with soft and diffractive scatterings incorporated in a more
or less ad hoc way. In both approaches the final non-perturbative transition of partons to hadrons is modeled based
on the ideas of the Lund string fragmentation model [72]. At increasingly higher

√
s, in both frameworks one has to

account for multiple scattering processes between the colliding hadrons, namely one has to include multi-Pomeron
exchanges and/or multiple hard scattering processes.

In the RFT framework, the single Pomeron (P) exchange amplitude is characterized by a power-like energy de-
pendence, f P(s, t) ∝ sαP(0), with the Pomeron intercept αP(0) ∼ 1.1 leading to a corresponding energy rise of the total
cross section σtot =

1
2s Im f P(s, 0), which asymptotically violates the so-called Froissart bound (σtot < c log2 s) [73].

Accounting for eikonal multi-Pomeron exchanges, the cross sections are unitarized, i.e. σtot,inel ∝ log2 s, although due
to the Abramovskii-Gribov-Kancheli (AGK) cancellations [74] such multi-Pomeron configurations give zero contri-
bution to inclusive particle spectra. Thus, the total soft charged particle density produced at midrapidity follows the
energy-dependence defined by a single Pomeron exchange contribution:

dNch(s, η)
dη

∣

∣

∣

∣

∣

η=0
∝

Im f P(s, 0)
s σinel

pp (s)
∼

s∆P

log2 s
, with ∆P ≡ αP(0) − 1 ∼ 0.1. (1)

In pure DGLAP-based models, the central pseudo-rapidity particle density is proportional to the inclusive jet cross
section which is given by the convolution of parton distributions functions (PDFs) and parton-parton scattering cross
sections:

σ
jet
pp(s,Q2

0) =

∫

dx1 dx2

∫

dp2
⊥

∑

i, j=q,  q,g
fi/p(x1, p2

⊥) f j/p(x2, p2
⊥) ×

dσi j(x1x2s, p2
⊥)

dp2
⊥

Θ(s − 4p2
⊥) . (2)

The hard cross section is divergent in the limit p⊥ → 0 and one needs to introduce a p⊥-cutoff Q0 to indicate the
regime of validity of the perturbative approximation. At increasingly larger c.m. energies, one needs to account
for multi-parton scatterings and saturation effects. On the one hand, the cross section predicted by the regularized
processes exceeds the total inelastic cross section, indicating that several (or multiple) hard scatterings occur per
collision. On the other, for decreasing but still perturbative p⊥ values, the integrals receive major contributions from
the region of low parton fractional momenta (x = pparton/phadron), where the dominant gluon distribution rises roughly as
fg/p(x, p2

⊥) ∼ x−∆hard with ∆hard ) 0.3. After integrating above the p⊥-cutoff Q0, one obtains an energy-dependence of
the corresponding hard central charged hadron densities of the type

dNch(s, η)
dη

∣

∣

∣

∣

∣

η=0
∼
σ

jet
pp(s,Q2

0)
σinel
pp (s)

∼
s∆hard

Q2
0 log2 s

, with ∆hard ≈ 0.3. (3)

Clearly, the fast growth of the gluon densities at low x results in the hard part of the particle density (∝ s∆hard , ∆hard ∼
0.3) to rise with energy much faster than for soft processes (∝ s∆P , ∆P ∼ 0.1). However, at sufficiently small x, the
number of gluons is so large that new parton multiscattering phenomena have to be accounted for. First, non-linear
(gg fusion) effects become important in the PDFs themselves, saturating their growth as x → 0 [75]. The strength
of these effects is controlled by the “saturation scale” Q2

sat at which parton branching and fusion processes start to
compensate each other. Second, the probability to have simultaneous scatterings of the constituents of the colliding
hadrons also increases leading to multiple parton interactions (MPI) in a single collision. In many MC generators one
effectively mimics saturation effects by introducing some energy dependence to the infrared p⊥-cutoff: Q2

0 = Q
2
0(s).

5

D. d’Enterria et al. [arXiv:1101.5596], From soft models based on Regge Theory, expect:

NSD

A

EPOS too low
(but there is coming 
a new version which 
fits LHC better, 
worth trying out)

QGSJET too 
agressive? Would 
predict very high 
densities

Will keep these models in mind 
but will base main extrapolations 
on PYTHIA Perugia tunes 
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Figure 19: K0

S rapidity and p? spectrum at 7 TeV.
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Figure 20: ⇤0 rapidity and p? spectrum at 7 TeV.
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Figure 19: K0

S rapidity and p? spectrum at 7 TeV.
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Figure 20: ⇤0 rapidity and p? spectrum at 7 TeV.
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+ NEW! full MPI + showers for       system (→ UE in Diffraction)
+ NEW! Central Diffraction (→ fully contained gap-X-gap events)
+ NEW! Alternative Min-Bias Rockefeller (MBR) Model

Diffraction (in PYTHIA 8)

35

PYTHIA 8 Status
Diffraction

! Comparisons to PYTHIA 6 and PHOJET have been made
e.g. p⊥ distribution of single diffractive events
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SD

and ⌅el = ⌅2
tot/16⇤Bel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4s� � 4.2 , (115)

with s given in units of GeV and Bel in GeV�2. The constants bA,B are bp = 2.3, b⇥,⇤,⌃,⌅ =
1.4, bJ/⇧ = 0.23. The increase of the slope parameter with c.m. energy is faster than
the logarithmically one conventionally assumed; that way the ratio ⌅el/⌅tot remains well-
behaved at large energies.

The di�ractive cross sections are given by

d⌅sd(XB)(s)

dt dM2
=

g3IP

16⇤
⇥AIP ⇥2

BIP

1

M2
exp(Bsd(XB)t) Fsd ,

d⌅sd(AX)(s)

dt dM2
=

g3IP

16⇤
⇥2

AIP ⇥BIP
1

M2
exp(Bsd(AX)t) Fsd ,

d⌅dd(s)

dt dM2
1 dM2

2

=
g2
3IP

16⇤
⇥AIP ⇥BIP

1

M2
1

1

M2
2

exp(Bddt) Fdd . (116)

The couplings ⇥AIP are related to the pomeron term XABs� of the total cross section
parameterization, eq. (112). Picking a reference scale

⇤
sref = 20 GeV, the couplings are

given by ⇥AIP⇥BIP = XAB s�
ref . The triple-pomeron coupling is determined from single-

di�ractive data to be g3IP ⇥ 0.318 mb1/2; within the context of the formulae in this
section.

The spectrum of di�ractive masses M is taken to begin 0.28 GeV ⇥ 2m⇥ above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM2/M2 form is modified by the mass-dependence in the di�ractive slopes and in the Fsd

and Fdd factors (see below).
The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2�⇥ ln
�

s

M2

⇥
,

Bsd(AX)(s) = 2bA + 2�⇥ ln
�

s

M2

⇥
,

Bdd(s) = 2�⇥ ln

⇤

e4 +
ss0

M2
1 M2

2

⌅

. (117)

Here �⇥ = 0.25 GeV�2 and conventionally s0 is picked as s0 = 1/�⇥. The term e4 in Bdd is
added by hand to avoid a breakdown of the standard expression for large values of M2

1 M2
2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV�2

is still explicitly required for Bsd, which comes into play e.g. for a J/⇧ state (as part of a
VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of
the scaled variables µ1 = m2

A/s, µ2 = m2
B/s, µ3 = M2

(1)/s (= m2
A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1� (µ1 + µ2 + µ3 + µ4) + (µ1 � µ2)(µ3 � µ4) ,

C2 =
⇧

(1� µ1 � µ2)2 � 4µ1µ2

⇧
(1� µ3 � µ4)2 � 4µ3µ4 ,

C3 = (µ3 � µ1)(µ4 � µ2) + (µ1 + µ4 � µ2 � µ3)(µ1µ4 � µ2µ3) , (118)

one has tmin < t < tmax with

tmin = �s

2
(C1 + C2) ,

tmax = �s

2
(C1 � C2) = �s

2

4C3

C1 + C2
=

s2C3

tmin
. (119)
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Diffractive Cross Section Formulæ:

4) Choice between 5 Pomeron PDFs.
Free parameter needed to fix

4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of .5) Framework needs testing and tuning, e.g. of σIPp.

Diffraction
Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

p
p

IP

p

Used e.g. in
POMPYT
POMWIG
PHOJET

1) σSD and σDD taken from existing parametrization or set by user.
2) Shape of Pomeron distribution inside a proton, fIP/p(xIP, t)
gives diffractive mass spectrum and scattering p⊥ of proton.
3) At low masses retain old framework, with longitudinal string(s).
Above 10 GeV begin smooth transition to IPp handled with full pp
machinery: multiple interactions, parton showers, beam remnants, . . . .
4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of σIPp.

Navin, arXiv:1005.3894

PY6
No diffr jets

PYTHIA8 & PHOJET

include diffr jets

+ Recently Central Diffraction!

PYTHIA 8 Status
Diffraction

! New framework for high-mass diffractive events (with Sparsh Navin)
! Follows the approach of Pompyt (P. Bruni, A. Edin and G. Ingelman)
! Total diffractive cross sections parameterised as before

! Introduce pomeron flux fIP/p(xIP, t)

xIP =
EIP
Ep

, t = (pi − p′

i )
2
, M2

X = xIPs

! Factorise proton-pomeron hard scattering

fp1/p(x1,Q2) fp2/IP(x2,Q2)
dσ̂
dt̂

pi

pj

p
′

i

xg

x
LRG

X

! Existing PYTHIA machinery used to simulate interaction
! Initialise MPI framework for a set of different diffractive
mass values; interpolate in between

Richard Corke (Lund University) January 2010 14 / 18

Partonic Substructure in Pomeron:

Follows the  Ingelman-
Schlein approach of 

Pompyt

PYTHIA 8

MX > 10 GeV

MX ≤ 10 GeV

Represent MX as longitudinal string → Fragment
→ Typical string-fragmentation spectrum

(and for all masses in PYTHIA 6)
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pPom = xPom Pp

p’

SD DIJETS
* Mass Spectrum (how high can you go?)
* Underlying Event in SD DIJET events 
* Dijet Decorrelation ∆φjj

* SD FOUR JETS (MPI in diffraction!)

SD: Identified Particles
* Λ and KS

* Other identified particles?
* Compare to minimum bias
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(Some) Opportunities with ALFA + ATLAS
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* Mass Spectrum (how high can you go?)
* Mass2 = xPom1 xPom2 s
* Rapidity of system → xPom1 / xPom2

CD JETS
* Underlying Event
* Dijet Decorrelation, ∆φjj
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(Some) Opportunities with ALFA + ATLAS
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Wait … is this Crazy?
Best tuning result (and default in PYTHIA)

Obtained with αs(MZ) ≈ 0.14 
                              ≠ World Average = 0.1176 ± 0.0020

Value of αs depends on the order and scheme
MC ≈ Leading Order + LL resummation
Other LO extractions of αs ≈ 0.13 - 0.14 
Effective scheme interpreted as “CMW” → 0.13; 
2-loop running → 0.127; NLO → 0.12 ?

Not so crazy
Tune/measure even pQCD parameters with the actual generator. 
Sanity check = consistency with other determinations at a 
similar formal order, within the uncertainty at that order 
(including a CMW-like scheme redefinition to go to ‘MC scheme’)
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Improve → Matching at LO and NLO


