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P.  S k a n d s

QCD Recap

More than just a perturbative expansion in αs

Emergent phenomena

Jets (the QCD fractal) ⟷ amplitude structures (in 

phase space) ⟷ fundamental quantum field 
theory. Precision jet (structure) studies.

Strings (strong gluon fields) ⟷ quantum-classical 
correspondence. String physics. Dynamics of 
hadronization phase transition.

Hadrons (incl excited states) ⟷ Spectroscopy, 
lattice QCD, (rare) decays, mixing, exotic states 
(e.g Ωccc, hadron molecules, …), light nuclei
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Covariant Derivative
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⇒ Feynman rules

Figure 1.1: Feynman rules for QCD.
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QCD lecture 1 (p. 5)
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Interactions in Color Space

Quark-Gluon interactions
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P.  S k a n d s

Interactions in Color Space

Color Factors
All QCD processes have a “color factor”. It counts 
the enhancement from the sum over colors. 
(or suppression if colors have to match)
~ how many “color paths” we can take
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Drell-Yan:
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Interactions in Color Space
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Quick Guide to Color Algebra

Color factors squared produce traces
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The Gluon

Gluon-Gluon Interactions
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QCD Dynamics
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Vacuum Topological Charge, Data courtesy of M. McGuigan BNL-CSC, T. Izubuchi RIKEN-BNL, and S. Tomov University of Tennessee



T h e  S t ro n g  C o u p l i n g

Bjorken  sca l i ng
To f i r s t  approx imat ion , QCD i s 

SC ALE INVARIANT
(a .k . a . con forma l )

A  j e t  i n s ide  a  j e t  i n s ide  a  j e t 
i n s ide  a  j e t  … 

I f  the  s t rong  coup l i ng  d idn ’t 
“ run” , th i s  wou ld  be  abso lu te ly 

t rue  (e . g . , N=4 Supersymmetr i c  Yang -Mi l l s ) 

As  i t  i s , α s on ly  runs  s low ly 
( logar i thmica l l y )  →  c an  s t i l l  g a in 

i n s i gh t  f rom f r ac ta l  ana log y

Note: I use the terms “conformal” and “scale invariant” interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance
But examples of scale-invariant field theories that are not conformal are rare (eg 6D noncritical self-dual string theory)
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cf. equivalent-photon 
approximation

Weiszäcker, Williams 
~ 1934
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(some) Physics
Charges Stopped 

or kicked

Associated field 
(fluctuations) continues

RadiationRadiation

17

The harder they stop, the harder the 
fluctations that continue to become radiation

a.k.a.
Bremsstrahlung

Synchrotron Radiation

cf. equivalent-photon 
approximation

Weiszäcker, Williams 
~ 1934



P.  S k a n d s

Jets ≈  Fractals

18

See: PS, Introduction to QCD, TASI 2012, arXiv:1207.2389

Most bremsstrahlung is driven 
by divergent propagators → 
simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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by divergent propagators → 
simple structure 

Amplitudes factorize in 
singular limits (→ universal 
“conformal” or “fractal” structure)

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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Factorization: Separation of Scales

Factorization of Production and Decay:

= “Narrow-width approximation”
Valid up to corrections Γ/m → breaks down for large Γ
More subtle when colour/charge flows through the diagram

Factorization of Long and Short Distances
Scale of fluctuations inside a hadron 

~ ΛQCD ~ 200 MeV
Scale of hard process ≫ ΛQCD 

→ proton looks “frozen” 
Instantaneous snapshot of long-
wavelength structure, independent of 
nature of hard process

19
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Factorization 2: PDFs
Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

20

Illustration from T. Sjöstrand

Partons within clouds 
of further partons, 
constantly emitted 
and absorbed
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at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

20

Illustration from T. Sjöstrand

→ Lifetime of fluctuations ~ 1/Mh 

Hard incoming probe interacts over much shorter time 
scale ~ 1/Q

On that timescale, partons ~ frozen 
Hard scattering knows nothing of the target hadron apart 
from the fact that it contained the struck parton

Partons within clouds 
of further partons, 
constantly emitted 
and absorbed

For hadron to remain 
intact, virtualities k2 < Mh2

 High-virtuality 
fluctuations suppresed by 

powers of 
↵sM2

h

k2

Mh : mass of hadron
k2 : virtuality of fluctuation
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Factorization Theorem

In DIS, there is a formal proof of factorization 

21

(Collins, Soper, 1987)
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(Collins, Soper, 1987)
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mean Q2>>Mh2)
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X

f

Z
dxi

Z
d�f fi/h(xi, Q

2
F )

d�̂

`i!f (xi,�f , Q
2
F )

dxi d�f

→ We really can write the cross section in 
factorized form :

= PDFs
Assumption:

Q2 = QF2

fi/h

fi/h

�̂
xi

f
Note: Beyond LO, 
f can be more 

than one parton
Surprise Question:
What’s the color
factor for DIS?
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It’s just another crossing

22

(Hadronic Z Decay) (Drell & Yan, 1970)

e+e� ! �⇤/Z ! qq̄ qq̄ ! �⇤/Z ! `+`�

(DIS)
`q

�⇤/Z! `q

In Out In Out In Out

Time

Color Factor:

Tr[�ij ] = NC
1

N2
C

Tr[�ij ] =
1

NC

Color Factor:
1

NC
Tr[�ij ] = 1

Color Factor:
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Factorization

Trivially untrue for QCD
We’re colliding, and observing, hadrons → small scales
We want to consider high-scale processes → large scale 
differences

Why is Fixed Order QCD not enough?
: It requires all resolved scales >> ΛQCD AND no large hierarchies

→ A Priori, no perturbatively calculable 
observables in hadron-hadron collisions

23
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: It requires all resolved scales >> ΛQCD AND no large hierarchies
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Factorization

d⇤
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=

⇥

a,b
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fa(xa, Q
2
i )fb(xb, Q

2
i )

d⇤̂ab�f(xa, xb, f, Q2
i , Q

2
f)

dX̂f

D(X̂f � X, Q2
i , Q

2
f)

20

PDFs: needed to compute 
inclusive cross sections

FFs: needed to compute 
(semi-)exclusive cross sections

Resummed pQCD:  All resolved scales >> ΛQCD AND X Infrared Safe

23

*)pQCD = perturbative QCD
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Monte Carlo GeneratorsMonte Carlo GeneratorsIntroduction to Monte Carlo

24

P. Skands
Event Generator Physics

Lecture 2

Terascale Monte Carlo School
DESY Hamburg 

March 2014
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Recall: Scattering Experiments

25

In particle physics: 
Integrate over all quantum histories

(+ interferences)

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1

Predicted number of counts 
= integral over solid angle

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1

→ Integrate differential cross sections 
over specific phase-space regions

LHC detector
Cosmic-Ray detector

Neutrino detector
X-ray telescope

…

source

Complicated integrands?
→ Numerical approaches

High-dimensional phase spaces?
→ Monte Carlo



P.  S k a n d s

Recall: Scattering Experiments

25

In particle physics: 
Integrate over all quantum histories

(+ interferences)

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1

Predicted number of counts 
= integral over solid angle

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1

→ Integrate differential cross sections 
over specific phase-space regions

LHC detector
Cosmic-Ray detector

Neutrino detector
X-ray telescope

…

source

Complicated integrands?
→ Numerical approaches

High-dimensional phase spaces?
→ Monte Carlo



P.  S k a n d s

Why Numerical?

26

Part of Z → 4 jets … 

Note that application of the Finite-operator in the above expression yields only the O(ε0)-

terms of the antenna functions. These antenna functions contain higher powers in ε as

well, and these are relevant to the integrated antennae listed below.

The integrated antennae are defined in (2.35). They read:

A1
3(s123) = (s123)

−2ε

[

− 1

4ε4
− 31

12ε3
+

1

ε2

(
−53

8
+

11π2

24

)
+

1

ε

(
−647

24
+

22π2

9
+

23

3
ζ3

)

+

(
−5231

48
+

17π2

2
+

689

18
ζ3 −

41π4

480

)
+ O(ε)

]

, (5.18)

Ã1
3(s123) = (s123)

−2ε

[
1

ε2

(
−5

8
+

π2

6

)
+

1

ε

(
−19

4
+

π2

4
+ 7ζ3

)

+

(
−105

4
+

27π2

16
+

27

2
ζ3 +

7π4

90

)
+ O(ε)

]

, (5.19)

Â1
3(s123) = (s123)

−2ε

[
1

3ε3
+

1

2ε2
+

1

ε

(
19

12
− 7π2

36

)

+

(
109

24
− 7π2

24
− 25

9
ζ3

)
+ O(ε)

]

, (5.20)

with

Poles
(
A1

3(s123)
)

= −A1
2(s123)

(
2I(1)

qq̄ (ε, s123) + A0
3(s123)

)
+

2b0

ε
(s123)

−ε I
(1)
qq̄ (ε, s123)

−H
(2)
V,A(ε, s123) + S

(2)
V (ε, s123) , (5.21)

Finite
(
A1

3(s123)
)

= −6581

48
+

787π2

96
+

17π4

360
+

143

3
ζ3 , (5.22)

Poles
(
Ã1

3(s123)
)

= −A1
2(s123)

(
2I(1)

qq̄ (ε, s123) + A0
3(s123)

)
− H

(2)

V,Ã
(ε, s123) , (5.23)

Finite
(
Ã1

3(s123)
)

= −845

8
+

217π2

32
+

9π4

40
+

75

2
ζ3 , (5.24)

Poles
(
Â1

3(s123)
)

=
2b0,F

ε
(s123)

−ε I
(1)
qq̄ (ε, s123) − H

(2)

V,Â
(s123) , (5.25)

Finite
(
Â1

3(ε, s123)
)

=
109

24
− 8

3
ζ3 . (5.26)

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-

gluon-gluon-antiquark at leading and subleading colour, A0
4 and Ã0

4 and quark-antiquark-

quark-antiquark for non-identical quark flavours B0
4 as well as the identical-flavour-only

contribution C0
4 . The quark-antiquark-quark-antiquark final state with identical quark

flavours is thus described by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the qggq̄ final state are:

A0
4(1q, 3g, 4g, 2q̄) = a0

4(1, 3, 4, 2) + a0
4(2, 4, 3, 1) , (5.27)

Ã0
4(1q, 3g, 4g, 2q̄) = ã0

4(1, 3, 4, 2) + ã0
4(2, 4, 3, 1) + ã0

4(1, 4, 3, 2) + ã0
4(2, 3, 4, 1) , (5.28)

– 33 –

where the sub-antennae are given by
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. (5.30)

In A0
4 the gluonic emissions are colour-ordered, while in Ã0

4 the gluons are photon-like,

implying no ordering. Because of colour-ordering, A0
4 can be used with a single ordered

phase space mapping. In contrast, Ã0
4 can not be used with a unique ordered phase space

mapping. The above decomposition into ã0
4 yields however ordered terms, since the com-

bination ã0
4(1, 3, 4, 2) + ã0

4(2, 4, 3, 1) contains only single emission singularities in 1/s13 and

1/s24, corresponding to the ordered (1, 3, 4, 2) phase space mapping. On the other hand

ã0
4(1, 4, 3, 2) + ã0

4(2, 3, 4, 1) contains only single emission singularities in 1/s14 and 1/s23,

corresponding to the ordered (1, 4, 3, 2) phase space mapping. Since the decomposition of

Ã0
4 is symmetric, all four ã0

4 yield identical integrals if integrated over the tripole phase

space. It should be noted that it is not possible to analytically integrate an individual

ã0
4 over the tripole phase space using the reduction and integration techniques described

in [31], since the extra polynomial denominators present there enlarge the set of basis in-

tegrals considerably. When the four ã0
4 are added together these polynomial denominators

cancel, and the tripole integrals can be carried out.

The integrals of these antenna functions are according to (2.23):

A0
4(s1234) = (s1234)

−2ε

[
3

4ε4
+

65
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+

1
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+

(
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373π4

1440
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]

, (5.31)

Ã0
4(s1234) = 2 (s1234)
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+

3

2ε3
+
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]

,

(5.32)
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Note that application of the Finite-operator in the above expression yields only the O(ε0)-

terms of the antenna functions. These antenna functions contain higher powers in ε as

well, and these are relevant to the integrated antennae listed below.

The integrated antennae are defined in (2.35). They read:

A1
3(s123) = (s123)
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[

− 1

4ε4
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+
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(
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+
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+
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+
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, (5.18)

Ã1
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, (5.19)
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, (5.20)

with
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(
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)
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3(s123)
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= −6581

48
+

787π2

96
+

17π4
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ζ3 , (5.22)

Poles
(
Ã1

3(s123)
)

= −A1
2(s123)

(
2I(1)

qq̄ (ε, s123) + A0
3(s123)

)
− H
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(
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)
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ζ3 , (5.24)

Poles
(
Â1

3(s123)
)

=
2b0,F

ε
(s123)
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qq̄ (ε, s123) − H

(2)

V,Â
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)

=
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3
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5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-

gluon-gluon-antiquark at leading and subleading colour, A0
4 and Ã0

4 and quark-antiquark-

quark-antiquark for non-identical quark flavours B0
4 as well as the identical-flavour-only

contribution C0
4 . The quark-antiquark-quark-antiquark final state with identical quark

flavours is thus described by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the qggq̄ final state are:

A0
4(1q, 3g, 4g, 2q̄) = a0

4(1, 3, 4, 2) + a0
4(2, 4, 3, 1) , (5.27)

Ã0
4(1q, 3g, 4g, 2q̄) = ã0

4(1, 3, 4, 2) + ã0
4(2, 4, 3, 1) + ã0

4(1, 4, 3, 2) + ã0
4(2, 3, 4, 1) , (5.28)

– 33 –

where the sub-antennae are given by
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ã0
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where the sub-antennae are given by
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+
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In A0
4 the gluonic emissions are colour-ordered, while in Ã0

4 the gluons are photon-like,

implying no ordering. Because of colour-ordering, A0
4 can be used with a single ordered

phase space mapping. In contrast, Ã0
4 can not be used with a unique ordered phase space

mapping. The above decomposition into ã0
4 yields however ordered terms, since the com-

bination ã0
4(1, 3, 4, 2) + ã0

4(2, 4, 3, 1) contains only single emission singularities in 1/s13 and

1/s24, corresponding to the ordered (1, 3, 4, 2) phase space mapping. On the other hand

ã0
4(1, 4, 3, 2) + ã0

4(2, 3, 4, 1) contains only single emission singularities in 1/s14 and 1/s23,

corresponding to the ordered (1, 4, 3, 2) phase space mapping. Since the decomposition of

Ã0
4 is symmetric, all four ã0

4 yield identical integrals if integrated over the tripole phase

space. It should be noted that it is not possible to analytically integrate an individual

ã0
4 over the tripole phase space using the reduction and integration techniques described

in [31], since the extra polynomial denominators present there enlarge the set of basis in-

tegrals considerably. When the four ã0
4 are added together these polynomial denominators

cancel, and the tripole integrals can be carried out.

The integrals of these antenna functions are according to (2.23):
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+
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+
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, (5.31)
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,

(5.32)
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Note that application of the Finite-operator in the above expression yields only the O(ε0)-

terms of the antenna functions. These antenna functions contain higher powers in ε as

well, and these are relevant to the integrated antennae listed below.

The integrated antennae are defined in (2.35). They read:

A1
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Â1
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with
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Ã1

3(s123)
)

= −845

8
+

217π2

32
+

9π4

40
+

75

2
ζ3 , (5.24)

Poles
(
Â1
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=
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5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-

gluon-gluon-antiquark at leading and subleading colour, A0
4 and Ã0

4 and quark-antiquark-

quark-antiquark for non-identical quark flavours B0
4 as well as the identical-flavour-only

contribution C0
4 . The quark-antiquark-quark-antiquark final state with identical quark

flavours is thus described by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the qggq̄ final state are:

A0
4(1q, 3g, 4g, 2q̄) = a0

4(1, 3, 4, 2) + a0
4(2, 4, 3, 1) , (5.27)

Ã0
4(1q, 3g, 4g, 2q̄) = ã0

4(1, 3, 4, 2) + ã0
4(2, 4, 3, 1) + ã0

4(1, 4, 3, 2) + ã0
4(2, 3, 4, 1) , (5.28)

– 33 –

where the sub-antennae are given by
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where the sub-antennae are given by

a0
4(1, 3, 4, 2) =

1
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{
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]

+
1

2s13s24s134s234

[
3s12s

2
34 − 4s2

12s34 + 2s3
12 − s3

34

]

+
1

s13s24s134

[
3s12s23 − 3s12s34 + 4s2

12 − s23s34 + s2
23 + s2

34

]

+
3

2s13s24
[2s12 + s14 + s23] +

1

s13s34
[4s12 + 3s23 + 2s24]

+
1

s13s2
134

[s12s34 + s23s34 + s24s34]

+
1

s13s134s234

[
3s12s24 + 6s12s34 − 4s2

12 − 3s24s34 − s2
24 − 3s2

34

]

+
1

s13s134
[−6s12 − 3s23 − s24 + 2s34]

+
1

s24s34s134

[
2s12s14 + 2s12s23 + 2s2

12 + 2s14s23 + s2
14 + s2

23

]

+
1

s24s134
[−4s12 − s14 − s23 + s34] +

1

s2
34

[s12 + 2s13 − 2s14 − s34]

+
1

s2
34s

2
134

[
2s12s

2
14 + 2s2

14s23 + 2s2
14s24

]
− 2s12s14s24

s2
34s134s234

+
1

s2
34s134

[
−2s12s14 − 4s14s24 + 2s2

14

]

+
1

s34s134s234

[
−2s12s14 − 4s2

12 + 2s14s24 − s2
14 − s2

24

]

+
1

s34s134
[−8s12 − 2s23 − 2s24] +

1

s2
134

[s12 + s23 + s24]

+
3

2s134s234
[2s12 + s14 − s24 − s34] +

1

2s134
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ã0
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+
1

s13s134
[−s23 − s24 + 2s34] +

1

s13s234(s13 + s23)

[
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]

+
1
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+
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+
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1

s134
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}

. (5.30)

In A0
4 the gluonic emissions are colour-ordered, while in Ã0

4 the gluons are photon-like,

implying no ordering. Because of colour-ordering, A0
4 can be used with a single ordered

phase space mapping. In contrast, Ã0
4 can not be used with a unique ordered phase space

mapping. The above decomposition into ã0
4 yields however ordered terms, since the com-

bination ã0
4(1, 3, 4, 2) + ã0

4(2, 4, 3, 1) contains only single emission singularities in 1/s13 and

1/s24, corresponding to the ordered (1, 3, 4, 2) phase space mapping. On the other hand

ã0
4(1, 4, 3, 2) + ã0

4(2, 3, 4, 1) contains only single emission singularities in 1/s14 and 1/s23,

corresponding to the ordered (1, 4, 3, 2) phase space mapping. Since the decomposition of

Ã0
4 is symmetric, all four ã0

4 yield identical integrals if integrated over the tripole phase

space. It should be noted that it is not possible to analytically integrate an individual

ã0
4 over the tripole phase space using the reduction and integration techniques described

in [31], since the extra polynomial denominators present there enlarge the set of basis in-

tegrals considerably. When the four ã0
4 are added together these polynomial denominators

cancel, and the tripole integrals can be carried out.

The integrals of these antenna functions are according to (2.23):

A0
4(s1234) = (s1234)

−2ε

[
3

4ε4
+

65

24ε3
+

1

ε2
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4
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)

+

(
1076717
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18
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373π4

1440

)
+ O(ε)

]

, (5.31)

Ã0
4(s1234) = 2 (s1234)

−2ε

[
1

2ε4
+

3

2ε3
+

1

ε2

(
13

2
− 3π2

4

)

+
1

ε

(
845
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− 9π2
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− 40

3
ζ3

)
+

(
6921

64
− 473π2

48
− 40ζ3 +

17π4

144

)
+ O(ε)

]

,

(5.32)
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This is one of the simplest 
processes … computed at 
lowest order in the theory.

Now compute and add the 
quantum corrections  … 

+ Additional Subleading Terms … 
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Part of Z → 4 jets … 

Note that application of the Finite-operator in the above expression yields only the O(ε0)-

terms of the antenna functions. These antenna functions contain higher powers in ε as

well, and these are relevant to the integrated antennae listed below.

The integrated antennae are defined in (2.35). They read:

A1
3(s123) = (s123)

−2ε

[
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(
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+
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+
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]

, (5.18)

Ã1
3(s123) = (s123)
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, (5.19)

Â1
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]

, (5.20)

with

Poles
(
A1

3(s123)
)

= −A1
2(s123)

(
2I(1)

qq̄ (ε, s123) + A0
3(s123)

)
+

2b0

ε
(s123)

−ε I
(1)
qq̄ (ε, s123)

−H
(2)
V,A(ε, s123) + S

(2)
V (ε, s123) , (5.21)

Finite
(
A1

3(s123)
)

= −6581

48
+

787π2

96
+

17π4

360
+
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3
ζ3 , (5.22)

Poles
(
Ã1

3(s123)
)

= −A1
2(s123)

(
2I(1)

qq̄ (ε, s123) + A0
3(s123)

)
− H

(2)
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(ε, s123) , (5.23)

Finite
(
Ã1

3(s123)
)

= −845
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+

217π2

32
+

9π4
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+
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2
ζ3 , (5.24)

Poles
(
Â1

3(s123)
)

=
2b0,F

ε
(s123)

−ε I
(1)
qq̄ (ε, s123) − H

(2)

V,Â
(s123) , (5.25)

Finite
(
Â1

3(ε, s123)
)

=
109

24
− 8

3
ζ3 . (5.26)

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-

gluon-gluon-antiquark at leading and subleading colour, A0
4 and Ã0

4 and quark-antiquark-

quark-antiquark for non-identical quark flavours B0
4 as well as the identical-flavour-only

contribution C0
4 . The quark-antiquark-quark-antiquark final state with identical quark

flavours is thus described by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the qggq̄ final state are:

A0
4(1q, 3g, 4g, 2q̄) = a0

4(1, 3, 4, 2) + a0
4(2, 4, 3, 1) , (5.27)

Ã0
4(1q, 3g, 4g, 2q̄) = ã0

4(1, 3, 4, 2) + ã0
4(2, 4, 3, 1) + ã0

4(1, 4, 3, 2) + ã0
4(2, 3, 4, 1) , (5.28)
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where the sub-antennae are given by
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ã0
4(1, 3, 4, 2) =

1

s1234

{
1

s13s24s134s234

[
3

2
s12s

2
34 − 2s2

12s34 + s3
12 −

1

2
s3
34

]

+
1

s13s24s134

[
3s12s23 − 3s12s34 + 4s2

12 − s23s34 + s2
23 + s2

34

]

+
s3
12

s13s24(s13 + s23)(s14 + s24)
+

1

s13s24(s13 + s23)

[
1

2
s12s14 + s2

12

]

+
1

s13s24(s14 + s24)

[
1

2
s12s23 + s2

12

]
+

1

s13s24

[
3s12 +

3

2
s14 +

3

2
s23

]

+
1

s13s2
134

[s12s34 + s23s34 + s24s34] +
2s3

12

s13s134s234(s13 + s23)

+
1

s13s134s234

[
3s12s34 − s24s34 − 2s2

34

]

+
1

s13s134(s13 + s23)

[
s12s24 + s12s34 + 2s2

12

]

– 34 –

where the sub-antennae are given by
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In A0
4 the gluonic emissions are colour-ordered, while in Ã0

4 the gluons are photon-like,

implying no ordering. Because of colour-ordering, A0
4 can be used with a single ordered

phase space mapping. In contrast, Ã0
4 can not be used with a unique ordered phase space

mapping. The above decomposition into ã0
4 yields however ordered terms, since the com-

bination ã0
4(1, 3, 4, 2) + ã0

4(2, 4, 3, 1) contains only single emission singularities in 1/s13 and

1/s24, corresponding to the ordered (1, 3, 4, 2) phase space mapping. On the other hand

ã0
4(1, 4, 3, 2) + ã0

4(2, 3, 4, 1) contains only single emission singularities in 1/s14 and 1/s23,

corresponding to the ordered (1, 4, 3, 2) phase space mapping. Since the decomposition of

Ã0
4 is symmetric, all four ã0

4 yield identical integrals if integrated over the tripole phase

space. It should be noted that it is not possible to analytically integrate an individual

ã0
4 over the tripole phase space using the reduction and integration techniques described

in [31], since the extra polynomial denominators present there enlarge the set of basis in-

tegrals considerably. When the four ã0
4 are added together these polynomial denominators

cancel, and the tripole integrals can be carried out.

The integrals of these antenna functions are according to (2.23):
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, (5.31)

Ã0
4(s1234) = 2 (s1234)
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]

,

(5.32)
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This is one of the simplest 
processes … computed at 
lowest order in the theory.

Now compute and add the 
quantum corrections  … 

Then maybe worry about 
simulating the detector 
too … 

+ Additional Subleading Terms … 
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B. Riemann, 
(1826-1866)

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

∫ b

a
f (x)dx = lim

n→∞

n∑
i=1

f (ti)(xi+1 − xi)



P.  S k a n d s

Numerical Integration in 1D

28

Divide into N “bins” of size ∆
Approximate f(x) ≈ constant in each bin
Sum over all rectangles inside your region

Fixed-Grid n-point 
Quadrature Rules

1 function evaluation per bin

Midpoint (rectangular) Rule: 
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Numerical Integration in 1D
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Fixed-Grid n-point 
Quadrature Rules

Approximate f(x) ≈ linear in each bin
Sum over all trapeziums inside your region

Trapezoidal Rule: 

2 function evaluations per bin
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Numerical Integration in 1D
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Fixed-Grid n-point 
Quadrature Rules

Approximate f(x) ≈ quadratic in each bin
Sum over all “Simpsons” inside your region

Simpson’s Rule: 

3 function evaluations per bin

… and so on for higher n-point rules ...
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Convergence Rate

The most important question:
How long do I have to wait?

How many evaluations do I need to calculate for a 
given precision?

31

Uncertainty 
(after n evaluations)

neval / bin
Approx

Conv. Rate 
(in 1D)

Trapezoidal Rule (2-point) 2 1/N2

Simpson’s Rule (3-point) 3 1/N4

… m-point (Gauss quadrature) m 1/N2m-1 

See, e.g., Numerical 
Recipes

See, e.g., F. James, “Monte 
Carlo Theory and Practice”
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Higher Dimensions

m-point rule in 1 dimension

 … in 2 dimensions

32

1 2 m...

2 m...

m
2

..
.

→ m function evaluations per bin

→ m2 evaluations per bin

Fixed-Grid (Product) Rules scale exponentially with D
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Higher Dimensions

m-point rule in 1 dimension

 … in 2 dimensions

32

1 2 m...

2 m...

m
2

..
.

→ m function evaluations per bin

→ m2 evaluations per bin

 … in D dimensions → mD per bin

E.g., to evaluate a 12-point rule in 10 dimensions, need 
1000 billion evaluations per bin

Fixed-Grid (Product) Rules scale exponentially with D



P.  S k a n d s

Convergence Rate
+ Convergence is slower in higher Dimensions!
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Uncertainty 
(after n evaluations)

neval / bin
Approx

Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4/D

… m-point (Gauss rule) mD 1/n(2m-1)/D 

→ More points for less precision

See, e.g., Numerical 
Recipes

See, e.g., F. James, “Monte 
Carlo Theory and Practice”
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A Monte Carlo technique: is any technique making use 
of random numbers to solve a problem

Convergence:

Calculus: {A} converges to B
if an n exists for which 

|Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges to B 
if n exists for which 
the probability for

 |Ai>n - B| < ε,  for any ε > 0,
is > P, for any P[0<P<1]
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Monte Carlo GeneratorsMonte Carlo Generators→ Monte Carlo
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“This risk, that convergence is only given with a 
certain probability, is inherent in Monte Carlo 
calculations and is the reason why this technique 
was named after the world’s most famous 
gambling casino. Indeed, the name is doubly 
appropriate because the style of gambling in the 
Monte Carlo casino, not to be confused with the 
noisy and tasteless gambling houses of Las 
Vegas and Reno, is serious and sophisticated.”

F. James, “Monte Carlo theory and practice”, 
Rept. Prog. Phys. 43 (1980) 1145

A Monte Carlo technique: is any technique making use 
of random numbers to solve a problem

Convergence:

Calculus: {A} converges to B
if an n exists for which 

|Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges to B 
if n exists for which 
the probability for

 |Ai>n - B| < ε,  for any ε > 0,
is > P, for any P[0<P<1]
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Convergence
MC convergence is Stochastic! 

       in any dimension

35

Uncertainty 
(after n function evaluations)

neval / bin
Approx

Conv. Rate 
(in 1D)

Approx
Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4 1/n4/D

… m-point (Gauss rule) mD 1/n2m-1 1/n(2m-1)/D 

Monte Carlo 1 1/n1/2 1/n1/2 

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1p
n

1

+ many ways to optimize: stratification, adaptation, ... 
+ gives “events” → iterative solutions, 

+ interfaces to detector simulation & propagation codes
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Assume you know the 
area of this shape: 

πR2

(an overestimate)

Random Numbers

36

Now get a few 
friends, some 

balls, and throw 
random shots 

inside the circle 
(but be careful to make 

your shots truly 
random)

Count how many 
shots hit the 

shape inside and 
how many miss

A  ≈ Nhit/Nmiss × πR2

Earliest 
Example of 

MC 
calculation: 

Buffon’s 
Needle 
(1777) 

to calculate π 

G. Leclerc, Comte de Buffon (1707-1788)

(apologies, I did not have much time to adapt these slides)
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Random Numbers
I will not tell you how to write a Random-number 
generator (interesting topic & history in its own right) 

Instead, I assume that you can write a computer code 
and link to a random-number generator, from a library 

E.g., ROOT includes one that you can use if you like. 
PYTHIA also includes one

37

From the PYTHIA 8 HTML documentation, under “Random Numbers”:

+ Other methods for exp, x*exp, 1D Gauss, 2D Gauss.

Random numbers R uniformly distributed in 0 < R < 1 are obtained with

   Pythia8::Rndm::flat();
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Example: Number of Terascale school students 
who will get hit by a car this week

Complicated Function:
Time-dependent 

Traffic density during day, week-days vs week-ends
(i.e., non-trivial time evolution of system)

No two students are the same
Need to compute probability for each and sum

(simulates having several distinct types of “evolvers”)

Multiple outcomes:
Hit → keep walking, or go to hospital?
Multiple hits = Product of single hits, or more 
complicated?

38
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Monte Carlo Approach

Approximate Traffic
Simple overestimate: 

highest recorded density 
of most careless drivers, 
driving at highest recorded speed
… 

Approximate Student
by most completely reckless and accident-prone 
student (wandering the streets lost in thought after these lectures …)

39

This extreme guess will be the equivalent 
of our simple overestimate from before:
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Density of 
Cars

Hit Generator

Off we go…
Throw random accidents according to:

40

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

0

@�
nstudX

i=1

Z te

t0
dt

Z

x
dx⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

1

A

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌥̂(x, t)

dN (t)

dt
= �P (t)N (t) = �

Z

x
dx

nstudX

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

Solve the equation:

R = (t0, t)

3

Sum over 
students

Student-Car
hit rate

Density of
Student i
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R=

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

te : time
of accident
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n
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↵
max

n
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(Also generate trial xe, e.g., uniformly in circle around DESY)
(Also generate trial i; a random student gets hit)
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Accept trial hit (i,x,t) with probability

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

dN (t)

dt
= �P (t)N (t) = �

⇤

x
dx

nstud�

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

⌅
⇤L,max NL + ⇤R,max NR

⇥
⌥cmax

Solve the equation:

R = �(t0, t)

4

Prob(accept) = 

Hit Generator

41

↵
max

n
stud

⇢cmax

Using the following:
ρc : actual density of cars at location x at time t

ρi : actual density of student i at location x at time t
αi : The actual “hit rate” (OK, not really known, but can make one up)
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→ True number = number of accepted hits
(note: we didn’t really treat multiple hits … → Markov Chain)

↵
max

n
stud

⇢cmax

Using the following:
ρc : actual density of cars at location x at time t

ρi : actual density of student i at location x at time t
αi : The actual “hit rate” (OK, not really known, but can make one up)



Importance Sampling
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Peaked Functions

20% 20% 20% 20% 20%

fmax

43



P.  S k a n d s

Peaked Functions

20% 20% 20% 20% 20%

fmax

43



P.  S k a n d s

Peaked Functions

Precision on integral
dominated by the
points with f ≈ fmax 
(i.e., peak regions)

→ slow convergence 
if high, narrow peaks

20% 20% 20% 20% 20%

fmax

43



P.  S k a n d s

Stratified Sampling

→ Make it twice as
likely to throw points
in the peak

→ faster convergence
for same number
of function evaluations

16.7%16.7%33.3%16.7%16.7%

44

6*R1 ∈ [1,2]  
6*R1 ∈ [2,4]  
6*R1 ∈ [4,5]  
6*R1 ∈ [5,6]  

6*R1 ∈ [0,1]  

A B

C

D E

→ Region A
→ Region B
→ Region C
→ Region D
→ Region E

For:

Choose:
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Adaptive Sampling

→ Can even design
algorithms to
do this automatically
as they run 
(not covered here)

→ Adaptive sampling
5.6% 22.2%44.4%22.2% 5.6%

45
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Importance Sampling

→ or throw points
according to some
smooth peaked 
function for which 
you have, or can 
construct, a random 
number generator
(here: Gauss)

E.g., VEGAS 
algorithm, by G. 

Lepage

46
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Why does this work?

1) You are inputting knowledge: obviously need 
to know where the peaks are to begin with … 
(say you know, e.g., the location and width of a 
resonance)

2) Stratified sampling increases efficiency by 
combining fixed-grid methods with the MC 
method, with further gains from adaptation

3) Importance sampling:

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

Effectively does flat MC 
with changed integration 

variables
Fast convergence if 

f(x)/g(x) ≈ 1

47



The Veto Algorithm

Hit Miss

48
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How we do Monte Carlo
Take your system

Set of radioactive nuclei
Set of hard scattering processes
Set of resonances that are going to decay
Set of particles coming into your detector
Set of cosmic photons traveling across the galaxy
Set of molecules 
…

49
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How we do Monte Carlo
Take your system

Generate a “trial”  (event/decay/interaction/… )
Not easy to generate random numbers distributed 
according to exactly the right distribution?
May have complicated dynamics, interactions … 
→ use a simpler “trial” distribution

50

Flat with some stratification

Or importance sample with simple 
overestimating function (for which you 
can generate random #s)
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How we do Monte Carlo
Take your system

Generate a “trial”  (event/decay/interaction/… ) 
Accept trial with probability f(x)/g(x)

f(x) contains all the complicated dynamics
g(x) is the simple trial function

If accept: replace with new system state
If reject: keep previous system state
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Sounds deceptively simple, 
but  … 

with it, you can 
integrate 

arbitrarily complicated 
functions (in particular 
chains of nested functions),
over arbitrarily 
complicated regions, in 
arbitrarily many 
dimensions … 
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Summary - Lecture 2

Quantum Scattering Problems are common to many areas of physics:
To compute expectation value of observable: integrate over phase space

Complicated functions → Numerical Integration

High Dimensions → Monte Carlo (stochastic) convergence is fastest
+ Additional power by stratification and/or importance sampling

Additional Bonus → Veto algorithm → direct simulation of 
arbitrarily complicated reaction chains → “Event Generators”

53



P.  S k a n d s

Recommended Reading

F. James
Monte Carlo Theory and Practice

Rept.Prog.Phys.43 (1980) p.1145

S. Weinzierl
Topical lectures given at the Research School Subatomic physics, Amsterdam, June 2000

Introduction to Monte Carlo Methods
e-Print: hep-ph/0006269

P. Skands
Introduction to QCD (TASI 2012)

arXiv:1207.2389

54

http://arxiv.org/abs/arXiv:1207.2389
http://arxiv.org/abs/arXiv:1207.2389
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•  Conclusion: 100 GeV can be “soft” at the LHC 
  Matrix Element (fixed order) expansion breaks completely down at 50 GeV 
  With decay jets of order 50 GeV, this is important to understand and control 

FIXED ORDER pQCD 

 inclusive X + 1 “jet” 

 inclusive X + 2 “jets” 

LHC - sps1a - m~600 GeV Plehn, Rainwater, PS PLB645(2007)217  

(Computed with SUSY-MadGraph) 

Cross section for 1 or 
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larger than total σ, 
obviously non-
sensical 

Alwall, de Visscher, Maltoni,  JHEP 0902(2009)017 

σ for X + jets much larger than 
naive estimate
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Scaling Violation

Real QCD isn’t conformal

The coupling runs logarithmically with the energy scale
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Asymptotic freedom in the ultraviolet

Confinement (IR slavery?) in the infrared
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Asymptotic Freedom
Asymptotic Freedom 

“What this year's Laureates 
discovered was something that, at 
first sight, seemed completely 
contradictory. The interpretation of 
their mathematical result was that the 
closer the quarks are to each other, 
the weaker is the 'colour charge'. 
When the quarks are really close to 
each other, the force is so weak that 
they behave almost as free particles. 
This phenomenon is called 
‘asymptotic freedom’. The converse 
is true when the quarks move apart: 
the force becomes stronger when the 
distance increases.”  

1/r 

αS(r) 

57

David J. Gross H. David Politzer Frank Wilczek

The Nobel Prize in Physics 2004
David J. Gross, H. David Politzer, Frank Wilczek

The Nobel Prize in Physics 2004 was awarded jointly to David J. Gross, H. David Politzer and Frank
Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".

Photos: Copyright © The Nobel Foundation
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charge

potential

*1 The force still goes to ∞ as r → 0 
(Coulomb potential), just less slowly

*2 The potential grows linearly as r→∞, so the force actually becomes constant 
(even this is only true in “quenched” QCD. In real QCD, the force eventually vanishes for r>>1fm)

*1

*2
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Asymptotic Freedom
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But only dominant if > 16 flavors!
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QED: 
Vacuum polarization
→ Charge screening

QCD: 
Quark Loops
→ Also charge screening
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QED: 
Vacuum polarization
→ Charge screening

QCD: 
Gluon Loops
Dominate if ≤ 16 flavors
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UV and IR

At low scales

Coupling αs(Q) actually runs 
rather fast with Q

Perturbative solution diverges 
at a scale ΛQCD somewhere 
below 

     ≈ 1 GeV

So, to specify the strength of 
the strong force, we usually 
give the value of αs at a unique 
reference scale that everyone 
agrees on: MZ

60

9. Quantum chromodynamics 25

The central value is determined as the weighted average of the individual measurements.
For the error an overall, a-priori unknown, correlation coefficient is introduced and
determined by requiring that the total χ2 of the combination equals the number of
degrees of freedom. The world average quoted in Ref. 172 is

αs(M2
Z) = 0.1184 ± 0.0007 ,

with an astonishing precision of 0.6%. It is worth noting that a cross check performed in
Ref. 172, consisting in excluding each of the single measurements from the combination,
resulted in variations of the central value well below the quoted uncertainty, and in a
maximal increase of the combined error up to 0.0012. Most notably, excluding the most
precise determination from lattice QCD gives only a marginally different average value.
Nevertheless, there remains an apparent and long-standing systematic difference between
the results from structure functions and other determinations of similar accuracy. This
is evidenced in Fig. 9.2 (left), where the various inputs to this combination, evolved to
the Z mass scale, are shown. Fig. 9.2 (right) provides strongest evidence for the correct
prediction by QCD of the scale dependence of the strong coupling.

0.11 0.12 0.13
α  (Μ  )s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

τ-decays (N3LO)

DIS  jets (NLO)

e+e? jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e? jets & shapes (NNLO) 

Υ decays (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1
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0.5

αs (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e?  Annihilation
Deep Inelastic Scattering

July 2009

Figure 9.2: Left: Summary of measurements of αs(M2
Z), used as input for the

world average value; Right: Summary of measurements of αs as a function of the
respective energy scale Q. Both plots are taken from Ref. 172.

July 30, 2010 14:57

From PDG Review on QCD. by Dissertori & Salam

Freedom?
Unification?
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The Fundamental Parameter(s)
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(depends on nf, scheme, and # of loops)
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Figure 9.2: Left: Summary of measurements of αs(M2
Z), used as input for the

world average value; Right: Summary of measurements of αs as a function of the
respective energy scale Q. Both plots are taken from Ref. 172.

July 30, 2010 14:57

(depends on nf, scheme, and # of loops)

From PDG Review on QCD. by Dissertori & Salam
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Explosion of # of diagrams (nDiagrams ≈ n!)
New initial states contributing at higher orders (E.g., gq → Zq)
Inclusion of low-x (non-DGLAP) enhancements
Bad (high) scale choices at Lower Orders, … 

Theirs not to reason why // Theirs but to do and die
Tennyson, The Charge of the Light Brigade



P. Skands

Why scale variation ~ uncertainty?

Scale dependence of calculated orders must be canceled by 
contribution from uncalculated ones (+ non-pert)

Changing the scale(s)

63

Strong coupling
αs(mZ)MS

Λ
(nf )MS
QCD

αs(Q
2) = αs(m

2
Z)

1

1 + b0 αs(mZ) ln Q2

m2
Z

+ O(α2
s)

b0 =
11NC − 2nf

12π

Strong coupling
αs(mZ)MS

Λ
(nf )MS
QCD

αs(Q
2) = αs(m

2
Z)

1

1 + b0 αs(mZ) ln Q2

m2
Z

+ O(α2
s)

→  

→ Generates terms of higher order, but proportional to what you 
already have (|M|2)→ a first naive* way to estimate uncertainty 
*warning: some theorists believe it is the only way … but be agnostic! There are other things than scale dependence … 

�
↵s(Q

02)� ↵s(Q
2)
�
|M |2 = ↵2

s(Q
2)|M |2 + . . .
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Global Scaling: jets don’t care about mW
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If you have multiple QCD scales
→ variation of μR by factor 2 in each 

direction not good enough! (nor is × 3, nor × 4)

Need to vary also functional dependence 
on each scale! 


