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QCD Models

2

Quarks, Gluons
pQCD

2→2 (Rutherford) 

Hadrons
Optical Theorem

pp→pp

0 ∞5 GeVΛQCD

DijetsElastic Min-Bias

A) Start from pQCD. Extend towards Infrared.
HERWIG/JIMMY, PYTHIA, SHERPA, EPOS

Hard Pomeron?

B) Start from Optical Theorem & Unitarity. Extend towards Ultraviolet.
PHOJET, DPMJET, QGSJET, SIBYLL, … 

Pomerons: Diffraction
Cut Pomerons: Non-diffractive (soft)

Color Screening
Regularization of pQCD

Hadronization

Elastic & Diffractive
Treated as separate class

Little predictivity

Unitarity
Showers (ISR+FSR)
Multiple 2→2 (MPI)

A

B

Note: PHOJET & DPMJET use string fragmentation (from PYTHIA) → some overlap

PYTHIA uses string fragmentation, HERWIG & SHERPA use cluster fragmentation
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Pomerons: Diffraction
Cut Pomerons: Non-diffractive (soft)

Color Screening
Regularization of pQCD

Hadronization

Elastic & Diffractive
Treated as separate class

Little predictivity

Unitarity
Showers (ISR+FSR)
Multiple 2→2 (MPI)

A

B

Note: PHOJET & DPMJET use string fragmentation (from PYTHIA) → some overlap

PYTHIA uses string fragmentation, HERWIG & SHERPA use cluster fragmentation

Strings span 
entire rapidity 
region → 
Constraints in 
forward region 
impact global 
description.
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Soft QCD: Definitions

3

THEORY MODELS

ELASTIC  pp→pp

SINGLE DIFFRACTION

DOUBLE DIFFRACTION

INELASTIC NON-DIFFRACTIVE

 pp→p+gap+X

 pp→X+gap+X

 pp→X (no gap)

QED+QCD (*QED = ∞)

SD model: 
Small gaps suppressed but not zero

DD model:
Small gaps suppressed but not zero

Large gaps suppressed but not zero

σtot ≈ EXPERIMENT

Fiducial region,
identified proton,

and/or 
observable gap

~

≠

≠

≠

(+ multi-gap diffraction = central diff + …)
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Soft QCD: Definitions

Min-Bias, Single-Gap, Forward-proton, etc.
= Experimental trigger condition(s) (hardware-dependent) 

Correct to hardware-independent reference condition(s)

Full acceptance (not 4π), or more restrictive

“Theory” for Min-Bias/Diffraction/…?
Really = Model for ALL INELASTIC incl diffraction (with model-dependent defs of ND, SD, …)

Compare to data with different reference condition(s) → suppress/enhance diffraction 

Can also extrapolate to full phase space (model-dependent)

3

THEORY MODELS

ELASTIC  pp→pp

SINGLE DIFFRACTION

DOUBLE DIFFRACTION

INELASTIC NON-DIFFRACTIVE

 pp→p+gap+X

 pp→X+gap+X

 pp→X (no gap)

QED+QCD (*QED = ∞)

SD model: 
Small gaps suppressed but not zero

DD model:
Small gaps suppressed but not zero

Large gaps suppressed but not zero

σtot ≈ EXPERIMENT

Fiducial region,
identified proton,

and/or 
observable gap

~

≠

≠

≠

Hit
(+ multi-gap diffraction = central diff + …)
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p+

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

Long-Distance

Short-Distance

Parton Distribution Functions

QCD Matrix Elements

1) Hard Interactions
(Inelastic, Non-Diffractive)

4

Hard Probe

Perturbative QCD 
folded with Non-
Perturbative PDFs

Factorization:

Long-distance fluctuations in proton 
parametrized by non-perturbative 
Parton Density Functions (=fits)

The hard probe knows nothing about 
the hadron, apart from the fact that it 

contained the struck parton
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2) Underlying Event (UE)
(A.K.A. the “Pedestal Effect”)

5

p+

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

Long-Distance

Short-Distance

Parton Distribution Functions

QCD Matrix Elements

p+

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2
i xfi(x, Q2)

structure function parton distributions

Long-Distance

Short-Distance

Parton Distribution Functions

QCD Matrix Elements

Example: two parton-parton interactions in one pp interaction
→ Generates UE > Min-Bias (& destroys diffractive gaps)

Hadrons are composite → possibility of Multiple Simultaneous Parton Interactions

MPI

Multiple Parton 
Interactions
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3) Diffraction
(Hitting Colour-Singlet Substructure Fluctuations in the Beam Hadrons)

6

Long-Distance

p+

Short-Distance

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

Very Long-Distance
Q < Λ

p+

Full hadron wavefunction
contains a superposition of states
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3) Diffraction
(Hitting Colour-Singlet Substructure Fluctuations in the Beam Hadrons)
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Long-Distance

p+

Short-Distance

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

Very Long-Distance
Q < Λ

Virtual π+ (“Reggeon”)

n0

p+

Full hadron wavefunction
contains a superposition of states

→ Sometimes, p = n0π+ for a little (virtual) while …
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Long-Distance

p+

Short-Distance

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:
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d
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fi(x, Q2) = number density of partons i
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∑
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e2i xfi(x, Q2)

structure function parton distributions

Very Long-Distance
Q < Λ

Virtual π+ (“Reggeon”)

n0

p+

Virtual “glueball” 
(“Pomeron”) = (gg) color singlet

 + higher modes

Full hadron wavefunction
contains a superposition of states

→ Sometimes, p = n0π+ for a little (virtual) while …

or p = p’ + singlet-glueball (a.k.a. Pomeron) for a little (virtual) while … 
… etc … 
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3) Diffraction
(Colour-Singlet Substructure Fluctuations in the Beam Hadrons)

7

Long-Distance

p+

Short-Distance

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
d
g
u

p

fi(x, Q2) = number density of partons i
at momentum fraction x and probing scale Q2.

Linguistics (example):
F2(x, Q2) =

∑

i

e2i xfi(x, Q2)

structure function parton distributions

Compare with
normal PDFs

Very Long-Distance
Q < Λ

Virtual π+ (“Reggeon”)

n0
Virtual “glueball” 

(“Pomeron”) = (gg) color singlet
→ Diffractive PDFs

X

Gap

p+

Hard Probe

Unphysical to ask if 
there was an 

(unmeasurable) 
pomeron

Physical to ask if there 
was a measurable gap

Note on Diffraction:
Traditionally phrased in the 

language of Regge “Theory” = 
Semi-classical model of soft physics. 
Measurements should be phrased 

model-independently as physical 
observables. 
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Color Flow in MC Models

“Planar Limit”

Equivalent to NC→∞: no color interference*

Rules for color flow:

For an entire cascade:

9

Figure 1.1: Color development of a shower in e+e− annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay Υ→ ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably affect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order αem ln Q/me, or even of order αem ln Q/me ln Eγ/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut off below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not affected by it.

7

Illustrations from: Nason + PS, 
PDG Review on MC Event Generators, 2012
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photons, which considerably affect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order αem ln Q/me, or even of order αem ln Q/me ln Eγ/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut off below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not affected by it.

7

String #1 String #2 String #3

Example: Z0 → qq

Coherence of pQCD cascades → not much “overlap” between strings 
→ planar approx pretty good

LEP measurements in WW confirm this (at least to order 10% ~ 1/Nc2 )

*) except as reflected by 
the implementation of 
QCD coherence effects in 
the Monte Carlos via 
angular or dipole ordering
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Color Connections

10

! The colour flow determines the hadronizing string topology 
•  Each MPI, even when soft, is a color spark 

•  Final distributions crucially depend on color space 
Different models make different ansätze

Each MPI (or cut Pomeron) exchanges color between the beams

1

2

3

4

2

# of
strings

FWD

FWD

CTRL

Sjöstrand & PS, JHEP 03(2004)053
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Sjöstrand & PS, JHEP 03(2004)053

Color Connections

11

! The colour flow determines the hadronizing string topology 
•  Each MPI, even when soft, is a color spark 

•  Final distributions crucially depend on color space 
Different models make different ansätze

Each MPI (or cut Pomeron) exchanges color between the beams

1

2

3

5

3

FWD

FWD

CTRL

# of
strings
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Color Connections

12

Rapidity

NC → ∞

Multiplicity ∝ NMPI

Better theory models needed
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Color Reconnections?

13

Rapidity

Do the systems really form
and hadronize independently?

Multiplicity ∝ NMPI
<

E.g.,
Generalized Area Law (Rathsman: Phys. Lett. B452 (1999) 364)
Color Annealing (P.S., Wicke: Eur. Phys. J. C52 (2007) 133)
Statistical CR (Gieseke et al., arXiv:1206004) 

Better theory models needed

Can gaps be created?
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Effects of CR

14

Examples from “CR in Herwig++” : Gieseke et al., arXiv:1206004
(Note: exhibits larger dN/dη effects than PYTHIA models, but qualitative features similar)

Forward region 
becomes less active

Average track pT
becomes higher
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Min-Bias & Underlying Event

15

Number of MPI

Pedestal Rise

Strings per Interaction

Main IR Parameters
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Min-Bias & Underlying Event

Infrared Regularization scale for the QCD 2→2 
(Rutherford) scattering used for multiple parton 
interactions (often called pT0) → size of overall activity

15

Number of MPI

Pedestal Rise

Strings per Interaction

Main IR Parameters
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Min-Bias & Underlying Event

Infrared Regularization scale for the QCD 2→2 
(Rutherford) scattering used for multiple parton 
interactions (often called pT0) → size of overall activity

Proton transverse mass distribution → difference betwen 
central (active) vs peripheral (less active) collisions

15

Number of MPI

Pedestal Rise

Strings per Interaction

Main IR Parameters
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Min-Bias & Underlying Event

Infrared Regularization scale for the QCD 2→2 
(Rutherford) scattering used for multiple parton 
interactions (often called pT0) → size of overall activity

Proton transverse mass distribution → difference betwen 
central (active) vs peripheral (less active) collisions

Color correlations between multiple-parton-interaction 
systems → shorter or longer strings → less or more 
hadrons per interaction

15

Number of MPI

Pedestal Rise

Strings per Interaction

Main IR Parameters
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+ NEW! full MPI + showers for       system (→ UE in Diffraction)
+ NEW! Central Diffraction (→ fully contained gap-X-gap events)
+ NEW! Alternative Min-Bias Rockefeller (MBR) Model

+ Diffraction (in PYTHIA 8)

16

PYTHIA 8 Status
Diffraction

! Comparisons to PYTHIA 6 and PHOJET have been made
e.g. p⊥ distribution of single diffractive events
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Figure 13:Richard Corke (Lund University) January 2010 16 / 18

SD

and σel = σ2
tot/16πBel. The elastic slope parameter is parameterized by

Bel = BAB
el (s) = 2bA + 2bB + 4s� − 4.2 , (115)

with s given in units of GeV and Bel in GeV
−2

. The constants bA,B are bp = 2.3, bπ,ρ,ω,φ =

1.4, bJ/ψ = 0.23. The increase of the slope parameter with c.m. energy is faster than

the logarithmically one conventionally assumed; that way the ratio σel/σtot remains well-

behaved at large energies.

The diffractive cross sections are given by

dσsd(XB)(s)

dt dM2
=

g3IP

16π
βAIP β2

BIP

1

M2
exp(Bsd(XB)t) Fsd ,

dσsd(AX)(s)

dt dM2
=

g3IP

16π
β2

AIP βBIP
1

M2
exp(Bsd(AX)t) Fsd ,

dσdd(s)

dt dM2
1 dM2

2

=
g2
3IP

16π
βAIP βBIP

1

M2
1

1

M2
2

exp(Bddt) Fdd . (116)

The couplings βAIP are related to the pomeron term XABs�
of the total cross section

parameterization, eq. (112). Picking a reference scale
√

sref = 20 GeV, the couplings are

given by βAIPβBIP = XAB s�
ref . The triple-pomeron coupling is determined from single-

diffractive data to be g3IP ≈ 0.318 mb
1/2

; within the context of the formulae in this

section.

The spectrum of diffractive masses M is taken to begin 0.28 GeV ≈ 2mπ above the

mass of the respective incoming particle and extend to the kinematical limit. The simple

dM2/M2
form is modified by the mass-dependence in the diffractive slopes and in the Fsd

and Fdd factors (see below).

The slope parameters are assumed to be

Bsd(XB)(s) = 2bB + 2α�
ln

�
s

M2

�
,

Bsd(AX)(s) = 2bA + 2α�
ln

�
s

M2

�
,

Bdd(s) = 2α�
ln

�

e4
+

ss0

M2
1 M2

2

�

. (117)

Here α�
= 0.25 GeV

−2
and conventionally s0 is picked as s0 = 1/α�

. The term e4
in Bdd is

added by hand to avoid a breakdown of the standard expression for large values of M2
1 M2

2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV
−2

is still explicitly required for Bsd, which comes into play e.g. for a J/ψ state (as part of a

VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of

the scaled variables µ1 = m2
A/s, µ2 = m2

B/s, µ3 = M2
(1)/s (= m2

A/s when A scatters

elastically), µ4 = M2
(2)/s (= m2

B/s when B scatters elastically), and the combinations

C1 = 1− (µ1 + µ2 + µ3 + µ4) + (µ1 − µ2)(µ3 − µ4) ,

C2 =

�
(1− µ1 − µ2)

2 − 4µ1µ2

�
(1− µ3 − µ4)

2 − 4µ3µ4 ,

C3 = (µ3 − µ1)(µ4 − µ2) + (µ1 + µ4 − µ2 − µ3)(µ1µ4 − µ2µ3) , (118)

one has tmin < t < tmax with

tmin = −s

2
(C1 + C2) ,

tmax = −s

2
(C1 − C2) = −s

2

4C3

C1 + C2
=

s2C3

tmin
. (119)
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Diffractive Cross Section Formulæ:

4) Choice between 5 Pomeron PDFs.
Free parameter needed to fix

4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of .5) Framework needs testing and tuning, e.g. of σIPp.

Diffraction
Ingelman-Schlein: Pomeron as hadron with partonic content
Diffractive event = (Pomeron flux) × (IPp collision)

p
p

IP

p

Used e.g. in
POMPYT
POMWIG
PHOJET

1) σSD and σDD taken from existing parametrization or set by user.
2) Shape of Pomeron distribution inside a proton, fIP/p(xIP, t)
gives diffractive mass spectrum and scattering p⊥ of proton.
3) At low masses retain old framework, with longitudinal string(s).
Above 10 GeV begin smooth transition to IPp handled with full pp
machinery: multiple interactions, parton showers, beam remnants, . . . .
4) Choice between 5 Pomeron PDFs.
Free parameter σIPp needed to fix 〈ninteractions〉 = σjet/σIPp.
5) Framework needs testing and tuning, e.g. of σIPp.

Navin, arXiv:1005.3894

PY6
No diffr jets

PYTHIA8 & PHOJET

include diffr jets

+ Recently Central Diffraction!

PYTHIA 8 Status
Diffraction

! New framework for high-mass diffractive events (with Sparsh Navin)
! Follows the approach of Pompyt (P. Bruni, A. Edin and G. Ingelman)
! Total diffractive cross sections parameterised as before

! Introduce pomeron flux fIP/p(xIP, t)

xIP =
EIP
Ep

, t = (pi − p′

i )
2
, M2

X = xIPs

! Factorise proton-pomeron hard scattering

fp1/p(x1,Q2) fp2/IP(x2,Q2)
dσ̂
dt̂

pi

pj

p
′

i

xg

x
LRG

X

! Existing PYTHIA machinery used to simulate interaction
! Initialise MPI framework for a set of different diffractive
mass values; interpolate in between

Richard Corke (Lund University) January 2010 14 / 18

Partonic Substructure in Pomeron:

Follows the  Ingelman-
Schlein approach of 

Pompyt

PYTHIA 8

MX > 10 GeV

MX ≤ 10 GeV

Represent MX as longitudinal string → Fragment
→ Typical string-fragmentation spectrum

(and for all masses in PYTHIA 6)
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(Some) Opportunities with ALFA + ATLAS

17
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with variable ECM
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Summary

Aim to describe complete event structure

The MPI that produce the underlying event (UE) in the central region also 
disturb the beam remnant in the forward region

→ correlations between central and fwd fragmentation

Current MC constraints sum inclusively over FWD region → blind spot

If there are big elephants there, the central constraints would need to be 
thoroughly re-evaluated

Diffraction

Is not a big elephant for the UE  or central physics program (mainly non-diff)

But important for fwd physics + all MCs in active development (Hard + Central 

diffraction model in Pythia 8, POMWIG-type model in Herwig++, KMR model in Sherpa) → need good 
constraints:  → study both diff-enhanced and diff-suppressed triggered samples
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Leading-Order pQCD

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This affects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 → 2 scattering almost go on shell at low p⊥,
causing the differential cross sections to become very large, behaving roughly as

dσ2→2 ∝
dt

t2
∼ dp2

⊥
p4
⊥

. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in σ2→2 but only once in σtot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

σ2→2(p⊥min) = �n�(p⊥min) σtot , (1.14)

with �n�(p⊥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⊥min per hadron-hadron collision,

Pn(p⊥min) = (�n�(p⊥min))
n exp (−�n�(p⊥min))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⊥min → 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 → 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⊥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⊥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG

models, instead the uncorrelated estimate of �n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⊥ and
x, is color screening; if the wavelength ∼ 1/p⊥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⊥ → 0, hence leading to suppressed interactions. This
provides an infrared cutoff for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cutoff would be the proton size,
p⊥min ≈ �/rp ≈ 0.3 GeV ≈ ΛQCD, but empirically this appears to be far too low. In current

18
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QF Q2×

Lesson from bremsstrahlung in pQCD: 
divergences → fixed-order breaks down

Perturbation theory still ok, with 
resummation (unitarity)

→ Resum dijets?
Yes → MPI!
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Earliest MC model (“old” PYTHIA 6 model)
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the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 → 2 scattering almost go on shell at low p⊥,
causing the differential cross sections to become very large, behaving roughly as

dσ2→2 ∝
dt

t2
∼ dp2

⊥
p4
⊥

. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in σ2→2 but only once in σtot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

σ2→2(p⊥min) = �n�(p⊥min) σtot , (1.14)

with �n�(p⊥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⊥min per hadron-hadron collision,

Pn(p⊥min) = (�n�(p⊥min))
n exp (−�n�(p⊥min))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⊥min → 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 → 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⊥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⊥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG

models, instead the uncorrelated estimate of �n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⊥ and
x, is color screening; if the wavelength ∼ 1/p⊥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⊥ → 0, hence leading to suppressed interactions. This
provides an infrared cutoff for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cutoff would be the proton size,
p⊥min ≈ �/rp ≈ 0.3 GeV ≈ ΛQCD, but empirically this appears to be far too low. In current
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1. Choose pTmin cutoff 
= main tuning parameter

2. Interpret <n>(pTmin) as mean of Poisson distribution
Equivalent to assuming all parton-parton interactions equivalent and 
independent ~ each take an instantaneous “snapshot” of the proton

3. Generate n parton-parton interactions (pQCD 2→2)
Veto if total beam momentum exceeded → overall (E,p) cons

4. Add impact-parameter dependence → <n> = <n>(b)
Assume factorization of transverse and longitudinal d.o.f., → PDFs : f(x,b) = f(x)g(b)
b distribution ∝ EM form factor → JIMMY model
Constant of proportionality = second main tuning parameter

5. Add separate class of “soft” (zero-pT) interactions representing 
interactions with  pT < pTmin and require σsoft + σhard = σtot
→ Herwig++ model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

Ordinary CTEQ, MSTW, NNPDF, …

Bähr et al, arXiv:0905.4671

Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637
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!  Underlying Event 
(note: interactions correllated in colour: 

hadronization not independent) 

Sjöstrand & PS : JHEP03(2004)053, EPJC39(2005)129 

multiparton 
PDFs derived 
from sum rules 

Beam remnants 
Fermi motion /  
primordial kT 

Fixed order 
matrix elements 

Parton Showers 
(matched to  
further Matrix  
Elements) 

perturbative  
“intertwining”? 

“New” Pythia model 

Sjöstrand & Skands, JHEP 0403 (2004) 053; EPJ C39 (2005) 129

(B)SM
2→2

Also available for Pomeron-Proton collisions since Pythia 8.165


