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P. Skands

Apr 5 2012 at 00:38 CEST: LHC shift crew declared 
‘stable beams’ for physics data taking at 8 TeV

Huge investment in resources and manpower

Journal Publications: 85 ATLAS, 80 CMS, 25 LHCb, 22 ALICE

Searches for new physics still inconclusive

Searching towards lower cross sections, the game gets harder 

+ Intense scrutiny (after discovery) requires high precision

Theory task: invest in precision 

This talk: to give an idea of how we (attempt to) solve 
QCD, and future developments
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The Large Hadron Collider
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Scattering Experiments
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In particle physics: 
Integrate over all quantum histories 
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Predicted number of counts 
= integral over solid angle
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→ Integrate differential cross sections over 
specific phase-space regions

LHC detector
Cosmic-Ray detector
Neutrino detector

X-ray telescope
…

source



L = ψ̄i
q(iγ

µ)(Dµ)ijψ
j
q−mqψ̄

i
qψqi−

1

4
Fa

µνF
aµν

5

THEORY

→ colour-octet gauge bosons: gluons 
+ (in SM): colour-triplet fermions: quarks
Free parameters = quark masses and value of αs
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“Nothing”
Gluon action density: 2.4x2.4x3.6 fm

QCD Lattice simulation from
D. B. Leinweber, hep-lat/0004025
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To include hadronization

Proper time

Boost factor at LHC ≈ 104 
→ would need ≈ 4000 fm to fit entire collision
     → 1034 lattice points in total
Biggest lattices today are 64×64×64×128 ≈ 107

Why not Lattice for LHC?

To “resolve” a hard LHC collision
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× Lorentz Boost Factor

Example by G. Salam

Lattice → one or a few hadrons at a time



The Way of the Chicken
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! Who needs QCD? I’ll use leptons 
•  Sum inclusively over all QCD 

!  Leptons almost IR safe by definition 
!  WIMP-type DM, Z’, EWSB " may get some leptons 

•  Beams = hadrons for next decade (RHIC / Tevatron / LHC) 
!  At least need well-understood PDFs 
!  High precision = higher orders " enter QCD (and more QED) 

•  Isolation " indirect sensitivity to QCD 

•  Fakes " indirect sensitivity to QCD 

•  Not everything gives leptons 
!  Need to be a lucky chicken … 

! The unlucky chicken  
•  Put all its eggs in one basket and didn’t solve QCD 
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Monte Carlo
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“This risk, that convergence is only given with a 
certain probability, is inherent in Monte Carlo 
calculations and is the reason why this technique 
was named after the world’s most famous 
gambling casino. Indeed, the name is doubly 
appropriate because the style of gambling in the 
Monte Carlo casino, not to be confused with the 
noisy and tasteless gambling houses of Las 
Vegas, is serious and sophisticated.”

F. James, “Monte Carlo theory and practice”, 
Rept. Prog. Phys. 43 (1980) 1145

A Monte Carlo technique: is any technique making use 
of random numbers to solve a problem

Convergence:

Calculus: {A} converges to B
if an n exists for which 

|Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges to B 
if n exists for which 
the probability for

 |Ai>n - B| < ε,  for any ε > 0,
is > P, for any P[0<P<1]
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Convergence
MC convergence is Stochastic! 

       in any dimension
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Uncertainty 
(after n function evaluations)

neval / bin
Approx

Conv. Rate 
(in 1D)

Approx
Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4 1/n4/D

… m-point (Gauss rule) mD 1/n2m-1 1/n(2m-1)/D 

Monte Carlo 1 1/n1/2 1/n1/2 

∆Ω

Ncount(∆Ω) ∝
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dΩ

dσ
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1√
n

1

+ many ways to optimize: stratification, adaptation, ... 
+ gives “events” → iterative solutions, 

+ interfaces to detector simulation & propagation codes
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Monte Carlo Generators
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Improve lowest-order perturbation theory, 
by including the ‘most significant’ corrections

→ complete events (can evaluate any observable you want)

Calculate Everything ≈ solve QCD → requires compromise!

Existing Approaches

PYTHIA : Successor to JETSET (begun in 1978). Originated in hadronization studies: Lund String.
HERWIG : Successor to EARWIG (begun in 1984). Originated in coherence studies: angular ordering.
SHERPA : Begun in 2000. Originated in “matching” of matrix elements to showers: CKKW.
+ MORE SPECIALIZED: ALPGEN, MADGRAPH, ARIADNE, VINCIA, WHIZARD, MC@NLO, POWHEG, … 

Reality is more complicated
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( Tr a d i t i o n a l )  M o n t e  C a r l o  G e n e r a t o r s
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Factorization Scale
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Collider 
Observables

Confrontation 
with DataPa
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Strings

Based on small-angle singularity of accelerated 
charges (synchrotron radiation, semi-classical)

Altarelli-Parisi Splitting Kernels
Leading Logarithms, Leading Color, …

+ Colour coherence

Leading Order,
Infinite Lifetimes,

…  

Hard
Process



Perturbative Evolution: Bremsstrahlung

Charges 
Stopped

Associated field 
(fluctuations) continues

ISRISR

14

The harder they stop, the harder the 
fluctations that continue to become strahlung
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The Strong Coupling

Bjorken scaling
To first approximation, QCD is 
SCALE INVARIANT (a.k.a. conformal)

A jet inside a jet inside a jet inside a 
jet … 

If the strong coupling did not “run”, 
this would be absolutely true (e.g., 

N=4 Supersymmetric Yang-Mills) 

As it is, the coupling only runs 
slowly (logarithmically) at high 
energies → can still gain insight 
from fractal analogy

15
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Total cross section would be infinite … 

This gives an approximation to infinite-order 
tree-level cross sections (here “double-log approximation: DLA”)

(Running coupling and a few more subleading singular terms can also be included → MLLA, NLL, …)

But something is not right … 

✓For any basic process (calculated process by process)dσX =

dσX+1 ∼ NC2g
2
s
dsi1
si1

ds1j
s1j

dσX ✓

dσX+2 ∼ NC2g
2
s
dsi2
si2

ds2j
s2j

dσX+1 ✓

dσX+3 ∼ NC2g
2
s
dsi3
si3

ds3j
s3j

dσX+2 . . .

Bremsstrahlung
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Loops and Legs

Coefficients of the Perturbative Series
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

The corrections from 
Quantum Loops are 

missing

Universality (scaling)

Jet-within-a-jet-within-a-jet-...
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Unitarity

Kinoshita-Lee-Nauenberg: 

Loop = - Int(Tree) + F
Neglect F → Leading-Logarithmic (LL) 

Approximation

→ includes both real (tree) and virtual (loop) corrections

Imposed by Event evolution:  

When (X) branches to (X+1):
Gain one (X+1). Loose one (X). 

✓For any basic process (calculated process by process)dσX =

dσX+1 ∼ NC2g
2
s
dsi1
si1

ds1j
s1j

dσX ✓

dσX+2 ∼ NC2g
2
s
dsi2
si2

ds2j
s2j

dσX+1 . . .

→ evolution equation with kernel
dσX+1

dσX

Evolve in some measure of resolution 
~ virtuality, energy, … ~ fractal scale

Unitarity
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Bootstrapped Perturbation Theory

Resummation
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X(2) X+1(2) …

X(1) X+1(1) X+2(1) X+3(1) …

Born X+1(0) X+2(0) X+3(0) …

Lo
op

s

Legs

Born
+ Shower

Unitarity

Universality (scaling)

Jet-within-a-jet-within-a-jet-...

Exponentiation
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New: Markovian pQCD*

20

Legs

Lo
op

s

+0 +1 +2

+0

+1

+2

+3

|MF |2

1

Generate “shower” emission
|MF |2

|MF+1|2
LL∼

�

i∈ant

ai |MF |2

a→ |MF+1|2

|MF |2

1

Correct to Matrix Element

Unitarity of Shower

|MF |2

|MF+1|2
LL∼

�

i∈ant

ai |MF |2

ai →
|MF+1|2�
ai|MF |2

Virtual = −
�

Real

1

Correct to Matrix Element

|MF |2

|MF+1|2
LL∼

�

i∈ant

ai |MF |2

ai →
|MF+1|2�
ai|MF |2

Virtual = −
�

Real

|MF |2 → |MF |2 + 2Re[M1
F M0

F ] +

�
Real

1

The VINCIA Code 
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Cutting Edge: 
Embedding virtual amplitudes
= Next Perturbative Order
→ Precision Monte Carlos

PYTHIA 8

+

VINCIA: Giele, Kosower, Skands, PRD78(2008)014026 &  PRD84(2011)054003
+ ongoing work with M. Ritzmann, E. Laenen, L. Hartgring, A. Larkoski, J. Lopez-Villarejo 

PYTHIA: Sjöstrand, Mrenna, Skands, JHEP 0605 (2006) 026 & CPC 178 (2008) 852

*)pQCD : perturbative QCD

Note: other teams working on alternative strategies with similar goals 
Perturbation theory is solvable → expect improvements

R
ep

ea
t

Start at Born level
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SPEED Efficient Matching with Sector Showers
J. Lopez-Villarejo & PS : JHEP 1111 (2011) 150 
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Initialization Time 
(seconds)

Time to Generate 1000 Z→qq showers 
(seconds)

Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Markovian (VINCIA)
Constant of order milliseconds

Traditional Method (CKKW)

~ Two orders of 

magnitudeFrom minutes to hours
Traditional Method (CKKW)

Markovian (VINCIA)

(Why we believe Markov + unitarity is the method of choice for complex problems)

(with helicity-dependence?)

http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
http://arxiv.org/abs/arXiv:1109.3608
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Uncertainties
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A result is only as good as its uncertainty
Normal procedure:

Run MC 2N+1 times (for central + N up/down variations)

Takes 2N+1 times as long 

+ uncorrelated statistical fluctuations 

Instead: Automate & do everything in one run
All events have central weight = 1

Compute unitary alternative weights on the fly

→ sets of alternative weights representing variations (all with <w>=1)

Same events, so only have to be hadronized/detector-simulated ONCE!

→ Used to provide automatic Theory Uncertainty Bands in VINCIA
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Quantifying Precision
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VinciaMatching:order = 3VinciaMatching:order = 0

Note: VINCIA so far only developed for final-state radiation (fragmentation)
Initial State under development, to follow this autumn



H a d ro n i z a t i o n

Distance  Sca le s  ~  10 -15  m = 1  fe rmi

The problem: 

• Given a set of partons resolved at a scale of ~ 1 GeV (the perturbative cutoff), 
need a “mapping” from this set onto a set of on-shell colour-singlet (i.e., 
confined) hadronic states.

MC models do this in three steps

1. Map partons onto continuum of highly excited hadronic states (called 
‘strings’ or ‘clusters’)

2. Iteratively map strings/clusters onto discrete set of primary hadrons 
(string breaks / cluster splittings / cluster decays)

3. Sequential decays into secondary hadrons (e.g., ρ > π π , Λ0 > n π0, π0 > γγ, ...)



From Partons to Strings

• Motivates a model:

• Separation of transverse and longitudinal degrees of freedom

• Simple description as 1+1 dimensional worldsheet – string – 
with Lorentz invariant formalism

25

Short Distances ~ pQCD Long Distances ~ Linear Confinement

Partons Strings (Flux Tubes), Hadrons



The (Lund) String Model

26

Map:

• Quarks > String 
Endpoints

• Gluons > Transverse 
Excitations (kinks)

• Physics then in terms 
of string worldsheet 
evolving in spacetime

• Probability of string 
break constant per unit 
area > AREA LAW

Simple space-time picture
Details of string breaks more complicated → tuning
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u(�p⊥0, p+)

dd̄

ss̄

π+(�p⊥0 − �p⊥1, z1p+)

K0(�p⊥1 − �p⊥2, z2(1− z1)p+)

...

QIR

shower

· · ·
QUV

Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B∗/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D∗/D, the

effective ratio is already reduced to about ∼ 1.0 – 2.0, while for K∗/K and ρ/π, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence

feed-down complicates the extraction of these parameters from experimental data, in particular for

the lighter hadron species. The production of higher meson resonances is assumed to be low in a

string framework
23

. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.

spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ∼
0.075 – 0.15.

With p2
⊥ and m2

now fixed, the final step is to select the fraction, z, of the fragmenting end-

point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string

picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the

fragmentation be independent of the sequence in which breakups are considered (causality) imposes

a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) ∝ 1
z
(1− z)a exp

�
−

b (m2
h + p2

⊥h)
z

�
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a

by-product, the probability distribution in invariant time τ of q�q̄ breakup vertices, or equivalently

Γ = (κτ)2, is also obtained, with dP/dΓ ∝ Γa exp(−bΓ) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time τ0 ∼ 10−23s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may

in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder

fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p⊥, and z values is illustrated in figure 21. A parton produced

in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale

QIR, with 3-momentum �p = (�p⊥0, p+), where the “+” on the third component denotes “light-cone”

momentum, p± = E ± pz . Next, an adjacent dd̄ pair from the vacuum is created, with relative

transverse momenta ±p⊥1. The fragmenting quark combines with the d̄ from the breakup to form a

23
The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.

37

Hadronization

27

cutoff Qhad, may be larger than the purely non-perturbative κ/π above, to account for effects
of additional unresolved soft-gluon radiation below Qhad. In principle, the magnitude of this
additional component should scale with the cutoff, but in practice it is up to the user to
enforce this by retuning the relevant parameter when changing the hadronization scale.

Since quark masses are difficult to define for light quarks, the value of the strangeness
suppression is determined from experimental observables, such as the K/π and K∗/ρ ratios.
The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g → ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.

Baryon production can also be incorporated, by allowing string breaks to produce pairs
of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are difficult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/π ratio, and since the perturbative shower splittings do not produce
diquarks, the effective value for this parameter is mildly correlated with the amount of g → qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄� from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the difference in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2
⊥ and m2 now fixed, the final step is to select the fraction, z, of the fragmenting

endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) ∝ 1

z
(1− z)a exp

�
−b (m2

h + p2
⊥h)

z

�
, (1.11)

1The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1
multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several
states are poorly known and thus may result in a worse overall description when included. For baryons, the
lightest spin-1/2 and -3/2 multiplets are included.
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String Break

q

leftover string,
further breaks

a) b)

Fig. 20: a) Illustration of string breaking by quark pair creation in the string field. b) Illustration of the algo-
rithmic choice to process the fragmentation from the outside-in, splitting off a single on-shell hadron in each
step.

A straightforward Lorentz-invariant description of this object is provided by the massless relativistic
string in 1+1 dimensions, with no transverse degrees of freedom. The mathematical, one-dimensional
string can be thought of as parameterizing the position of the axis of a cylindrically symmetric flux
tube. (Note that the expression “massless” is somewhat of a misnomer, since κ effectively corresponds
to a “mass density” along the string.)

As the q and q̄ move apart, their kinetic energy is gradually converted to potential energy, stored
in the growing string spanned between them. In the “quenched” approximation, in which g → qq̄ split-
tings are not allowed, this process would continue until the endpoint quarks have lost all their momen-
tum, at which point they would reverse direction and be accelerated by the now shrinking string. In
the real world, quark-antiquark fluctuations inside the string field can make the transition to become
real particles by absorbing energy from the string, thereby screening the original endpoint charges
from each other and breaking the string into two separate colour-singlet pieces, (qq̄)→ (qq̄�) + (q�q̄),
illustrated in figure 20 a. This process then continues until only ordinary hadrons remain. (We will
give more details on the individual string breaks below.) More complicated multi-parton topologies
including gluons are treated by representing gluons as transverse “kinks”. Thus soft gluons effec-
tively “build up” a transverse structure in the originally one-dimensional object, with infinitely soft
ones absorbed into the string without leading to modifications. For strings with finite-energy kinks,
the space-time evolution is then slightly more involved [68], and modifications to the fragmentation
model to handle stepping across gluon corners have to be included, but the main point is that there
are no separate free parameters for gluon jets. Differences with respect to quark fragmentation arise
simply because quarks are only connected to a single string piece, while gluons have one on either
side, increasing the energy loss per unit (invariant) time from a gluon to the string by a factor of 2
relative to quarks, which can be compared to the ratio of colour Casimirs CA/CF = 2.25.

Since the string breaks are causally disconnected (as can easily be realized from space-time
diagrams [68]), they do not have to be considered in any specific time-ordered sequence. In the
Lund model, the string breaks are instead generated starting with the leading hadrons, containing the
endpoint quarks, and iterating inwards towards the centre of the string, alternating randomly between
fragmentation off the left- and right-hand sides, respectively, figure 20b. This has the advantage that a
single on-shell hadron can be split off in each step, making it straightforward to ensure that only states
consistent with the known spectrum of hadron resonances are produced, as will be discussed below.

The details of the individual string breaks are not known from first principles. The Lund model

35

One Breakup:

Iterated Sequence:

ti
m

e

Figure 1.2: Illustration of string breaking by quark pair-creation in the string field.

Consider a color-connected quark-antiquark pair with no intermediate gluons emerging

from the parton shower (like the q̄q pair in the center of fig. 1.1), e.g. a red q and an antired

q̄. As the charges move apart, linear confinement implies that a potential V (r) = κ r is

reached for large distances r. (At short distances, there is a Coulomb term ∝ 1/r as well,

but this is neglected in the Lund string.) This potential describes a string with tension

κ ∼ 1 GeV/fm ∼ 0.2 GeV
2
. The physical picture is that of a color flux tube being

stretched between the q and the q̄. As the string grows, the non-perturbative creation of

quark-antiquark pairs can break the string, via the process (qq̄) → (qq̄�) + (q�q̄), illustrated

in figure 1.2. More complicated color-connected quark-antiquark configurations involving

intermediate gluons (like the q̄gggq and q̄gq systems on the left and right part of fig. 1.1)

are treated by representing gluons as transverse “kinks”. Thus soft gluons effectively build

up a transverse structure in the originally one-dimensional object, with infinitely soft ones

smoothly absorbed into the string. For strings with finite-energy kinks, the space-time

evolution is slightly more involved [48], but the main point is that there are no separate

free parameters for gluon jets. Differences with respect to quark fragmentation arise simply

because quarks are only connected to a single string piece, while gluons have one on either

side, increasing their relative energy loss (per unit invariant time) by a factor of 2, similar

to the ratio of color Casimirs CA/CF = 2.25.

Since the string breaks are causally disconnected (as can be realized from space-time

diagrams [48]), they do not have to be considered in any specific time-ordered sequence. In

the Lund model, the string breaks are generated starting with the leading (“outermost”)

hadrons, containing the endpoint quarks, and iterating inwards towards the center of the

string, alternating randomly between the left and right sides. One can thereby split off a

single on-shell hadron in each step, making it straightforward to ensure that only states

consistent with known hadron states are produced.

For each breakup vertex, quantum mechanical tunneling is assumed to control the masses

and p⊥ kicks that can be produced, leading to a Gaussian suppression

Prob(m2
q, p

2
⊥q) ∝ exp

�−πm2
q

κ

�
exp

�−πp2
⊥q

κ

�
, (1.10)

where mq is the mass of the produced quark flavor and p⊥ is the non-perturbative transverse

momentum imparted to it by the breakup process (the antiquark has the same mass and

opposite p⊥), with a universal average value of
�
p2
⊥q

�
= κ/π ∼ (250 MeV)2. The charm

and bottom masses are sufficiently heavy that they are not produced at all in the soft

fragmentation. The transverse direction is defined with respect to the string axis, so the

p⊥ in a frame where the string is moving will be modified by a Lorentz boost. Note that

the effective amount of “non-perturbative” p⊥, in a Monte Carlo model with a fixed shower

12

Causality
→ 

Lund FF

Area
→ 

Law
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Conclusions

QCD phenomenology is witnessing a rapid evolution:

Dipole/antenna shower models, (N)LO matching, better interfaces/tuning, … 

New techniques developed to compute complex QCD amplitudes (e.g., 
unitarity), and to embed these within shower resummations (VINCIA)

Driven by demand of high precision for LHC environment

Will automatically benefit other communities, like astro-particle and heavy-ion

Non-perturbative QCD is still hard

Lund string model remains best bet, but ~ 30 years old

Lots of input from LHC: total cross sections, min-bias, multiplicities, ID 
particles, correlations, shapes, you name it … (THANK YOU to the experiments!)

New ideas (like AdS/QCD, hydro, ...) still in their infancy; but there are new ideas!

“Solving the LHC” is both interesting and rewarding

The key to high precision → maximum information about ALL OTHER physics...

29

Want more information? 2012 edition of Review of Particle Physics (PDG) will include a new 
Section, on “Monte Carlo Event Generators”, by P. Nason & PS. 
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P. Skands

Stratified Sampling

→ make it twice as
likely to throw points
in the peak
→ faster convergence
for same number
of function evaluations

16.7% 16.7% 33.3% 16.7% 16.7%
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Adaptive Sampling

→ can even design
algorithms that
do this automatically
as they run
→ Adaptive sampling

5.6% 22.2% 44.4% 22.2% 5.6%
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Importance Sampling

→ or throw points
according to some
smooth peaked 
function for which you have, or can construct, a 
random number generator
(here: Gauss)

E.g., VEGAS algorithm, by G. Lepage
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Why does this work?

1)You are inputting knowledge: obviously need 
to know where the peaks are to begin with … (say you 
know, e.g., the location and width of a resonance)

2)Stratified sampling increases efficiency by 
combining n-point quadrature with the MC method, 
with further gains from adaptation

3)Importance sampling:

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

Effectively does flat MC with 
changed integration variables

Fast convergence if 
f(x)/g(x) ≈ 1
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(Color Flow in MC Models)

“Planar Limit”

Equivalent to NC→∞: no color interference*

Rules for color flow:

For an entire cascade:

35

Figure 1.1: Color development of a shower in e+e− annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay Υ→ ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably affect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order αem ln Q/me, or even of order αem ln Q/me ln Eγ/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut off below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not affected by it.
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Illustrations from: Nason + PS, 
PDG Review on MC Event Generators, 2012

Figure 1.1: Color development of a shower in e+e− annihilation. Systems of color-connected
partons are indicated by the dashed lines.

1.1.5 Color information

Shower MC generators track large-Nc color information during the development of the
shower. In the large-Nc limit, a quark is represented by a color line, i.e. a line with an
arrow in the direction of the shower development, an antiquark by an anticolor line, with
the arrow in the opposite direction, and a gluon by a pair of color-anticolor lines. The rules
for color propagation are:

. (1.9)

At the end of the shower development, partons are connected by color lines. We can have
a quark directly connected by a color line to an antiquark, or via an arbitrary number of
intermediate gluons, as shown in fig 1.1. It is also possible for a set of gluons to be connected
cyclically in color, as e.g. in the decay Υ→ ggg.

The color information is used in angular-ordered showers, where the angle of color-
connected partons determines the initial angle for the shower development, and in dipole
showers, where dipoles are always color-connected partons. It is also used in hadronization
models, where the initial strings or clusters used for hadronization are formed by systems of
color-connected partons.

1.1.6 Electromagnetic corrections

The physics of photon emission from light charged particles can also be treated with a shower
MC algorithm. A high-energy electron, for example, is accompanied by bremsstrahlung
photons, which considerably affect its dynamics. Also here, similarly to the QCD case,
electromagnetic corrections are of order αem ln Q/me, or even of order αem ln Q/me ln Eγ/E
in the region where soft photon emission is important, so that their inclusion in the simulation
process is mandatory. This can be done with a Monte Carlo algorithm. In case of photons
emitted by leptons, at variance with the QCD case, the shower can be continued down
to values of the lepton virtuality that are arbitrarily close to its mass shell. In practice,
photon radiation must be cut off below a certain energy, in order for the shower algorithm to
terminate. Therefore, there is always a minimum energy for emitted photons that depends
upon the implementations (and so does the MC truth for a charged lepton). In the case of
electrons, this energy is typically of the order of its mass. Electromagnetic radiation below
this scale is not enhanced by collinear singularities, and is thus bound to be soft, so that the
electron momentum is not affected by it.
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String #1 String #2 String #3

Example: Z0 → qq

Coherence of pQCD cascades → not much “overlap” between strings 
→ planar approx pretty good

LEP measurements in WW confirm this (at least to order 10% ~ 1/Nc2 )

*) except as reflected by 
the implementation of 
QCD coherence effects in 
the Monte Carlos via 
angular or dipole ordering
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The Denominator    v

36

In a traditional parton shower, you would face 
the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last → 
proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms~( + )

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

|MF |2

|MF+1|2
LL∼

�

i∈ant

ai |MF |2

ai →
|MF+1|2�
ai|MF |2

1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)
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Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced

37

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ Sector antennae 
→ 1 term at any order

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!

Larkosi, Peskin,Phys.Rev. D81 (2010) 054010
Lopez-Villarejo, Skands, JHEP 1111 (2011) 150

Giele, Kosower, Skands, PRD 84 (2011) 054003 
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Approximations
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer

29

S T RO N G  O R D E R I N G

Q: How well do showers do?
Exp: Compare to data. Difficult to interpret; all-orders cocktail including 

hadronization, tuning, uncertainties, etc
Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log10(PS/ME)
(fourth order)(third order)(second order)

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations
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2→4

Generate Branchings without imposing strong ordering

At each step, each dipole allowed to fill its entire phase space
Overcounting removed by matching

+ smooth ordering beyond matched multiplicities
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Figure 32: Transverse-momentum-ordered antenna approximation compared to 2nd order QCD matrix
elements, using ARIADNE’s definition of p⊥ and VINCIA’s smooth suppression factor instead of the
usual strong ordering condition. This corresponds to the default in VINCIA without matching. (Note:
by default, matching to Z → 4 is on in VINCIA, over all of phase space, and hence these ratios are all
equal unity).
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Transverse-Momentum-Ordering (ARIADNE)
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Figure 25: Transverse-Momentum-Ordered antenna approximation compared to 2nd order QCD matrix
elements, using the ARIADNE definition of p⊥, which is also the default evolution variable in VINCIA.
Most of the double-counting evident for phase-space ordering has been removed, and the shower ap-
proximation now also gives the correct answer in the double-collinear region at the top of the lower
left-hand plot. The price is the introduction of a dead zone, visible at the top of the upper left-hand plot.
The size of the dead zone in the flat phase-space scan amounts to about 2% of all sampled points.
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Dead Zone Smooth Ordering
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 13: The value of �R4� differentially over 4-parton phase space, with p⊥ ratios characterizing the
first and second emissions on the x and y axes, respectively. Smooth ordering in p⊥ (left) compared to
smooth ordering in mD (right). Gluon emission only. Matrix-element weights from MADGRAPH [46,
47], leading color (no sum over color permutations).

factor
Gluon Emission : Θord PLL → PimpPLL =

p̂2
⊥

p̂2
⊥ + p2

⊥
PLL , (94)

where p̂⊥ is the smallest p⊥ scale among all the color-connected parton triplets in the parent configura-
tion (i.e., a global measure of the “current” p⊥ scale of that topology), and p2

⊥ is the scale of the trial
2 → 3 emission under consideration.

Since the antenna function for the previous branching is proportional to 1/p̂2
⊥, the net effect of this

term, in the unordered region, is to replace that divergence by a damped factor, 1/(p̂2
⊥ + p2

⊥). The
correction is thus constructed such that a remains unmodified in the strongly ordered limit p⊥ � p̂⊥. It
then drops off to 1

2a for p⊥ = p̂⊥, and finally tends smoothly to zero in the limit of extreme unordering,
p⊥ � p̂⊥.

The ratio of the resulting shower to matrix elements is shown in the left-hand pane of fig. 13. Com-
paring this distribution with those in fig. 12, we indeed see that not only has the dead zone been removed,
without introducing any serious overcounting of it, but the quality of the approximation has also been
improved inside the ordered region.

For completeness, in the right-hand pane of fig. (13), we also show how the approximation would
have looked if the alternative measure m2

D = 2min(m2
ij ,m

2
jk) had been used instead of p⊥ in the

suppression factor eq. (94). Although there is still clearly an improvement over the pure phase-space-
ordered case — the dead zone has been eliminated — it is much less convincing than for p⊥, as the
weights are larger in the region above the thin horizontal red line, and hence the efficiency will be lower.

To illustrate how this approximation evolves with parton multiplicity, we show the distribution of
the log of the PS/ME ratio with this modification, in fig. 14, for Z → 4, 5, and 6 partons, including
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z → 5 and Z → 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z → qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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Weight

Nominal 1

Variation

for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2

αs1a1
P1 , (118)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or scheme)
and a2 as its radiation function (e.g., with different finite terms, different partitioning of shared poles,
different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower would
be affected by keeping track of such relative probabilities down along the shower chain; the Sudakov
factors would remain unmodified. Such a procedure would therefore explicitly break the unitarity that is
so important to resummation applications, leading to possibly exponentially different weights between
the sets, which would be hard to interpret7. More intuitively, a big uncertainty on a very soft branching
happening late in the shower should not be able to significantly change the entire event weight, jets
and all. In the normal shower approach, it is the property of unitarity which keeps such things from
happening; as soon as any correction grows large, its associated Sudakov factor must necessarily become
small soon thereafter, keeping the total size of any correction inside a unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also for
the uncertainty variations, as follows. For each accepted branching, a number of trial branchings have
usually first been generated and discarded, to eliminate the overcounting done by the trial function. In
VINCIA, we have so far not been particularly careful to optimize the choice of trial function (see Section
2.2), and hence we have quite many failed trials. These are relatively cheap to generate, however, so the
code is not significantly slowed by this inefficiency. Moreover, these failed trials actually turn out to be
useful, even essential, in the present context.

Just like eq. (118) expresses the relative probability for a branching to be accepted under two dif-
ferent sets of model parameters, 1 and 2, with 1 playing the role of phase space generator and 2 the
role of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase space gen-
erator (which corresponds to the settings chosen by the user in VINCIA, including matching, subleading
corrections, etc.) is

P1;no = 1− P1 , (119)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1− αs2a2

αs1a1
P1 . (120)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and by
P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In order to
prevent extreme outliers from substantially degrading the statistical precision of the variation samples,
however, we limit the resulting weight adjustments to at most a factor of 2 per branching in the code (in
either direction).

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after 20
such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million, clearly
not a reasonable correction to the total event rate.
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For each failed branching:

for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2

αs1a1
P1 , (118)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or scheme)
and a2 as its radiation function (e.g., with different finite terms, different partitioning of shared poles,
different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower would
be affected by keeping track of such relative probabilities down along the shower chain; the Sudakov
factors would remain unmodified. Such a procedure would therefore explicitly break the unitarity that is
so important to resummation applications, leading to possibly exponentially different weights between
the sets, which would be hard to interpret7. More intuitively, a big uncertainty on a very soft branching
happening late in the shower should not be able to significantly change the entire event weight, jets
and all. In the normal shower approach, it is the property of unitarity which keeps such things from
happening; as soon as any correction grows large, its associated Sudakov factor must necessarily become
small soon thereafter, keeping the total size of any correction inside a unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also for
the uncertainty variations, as follows. For each accepted branching, a number of trial branchings have
usually first been generated and discarded, to eliminate the overcounting done by the trial function. In
VINCIA, we have so far not been particularly careful to optimize the choice of trial function (see Section
2.2), and hence we have quite many failed trials. These are relatively cheap to generate, however, so the
code is not significantly slowed by this inefficiency. Moreover, these failed trials actually turn out to be
useful, even essential, in the present context.

Just like eq. (118) expresses the relative probability for a branching to be accepted under two dif-
ferent sets of model parameters, 1 and 2, with 1 playing the role of phase space generator and 2 the
role of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase space gen-
erator (which corresponds to the settings chosen by the user in VINCIA, including matching, subleading
corrections, etc.) is

P1;no = 1− P1 , (119)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1− αs2a2

αs1a1
P1 . (120)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and by
P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In order to
prevent extreme outliers from substantially degrading the statistical precision of the variation samples,
however, we limit the resulting weight adjustments to at most a factor of 2 per branching in the code (in
either direction).

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after 20
such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million, clearly
not a reasonable correction to the total event rate.
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Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of τ = 1− T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p⊥.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.

50

Automatic Uncertainties
Vincia:uncertaintyBands = on

Traditional
Variaton

(two separate runs)

Automatic
Variation

(one run)

Renormalization Scale Uncertainty
~ constant relative size

Variation of renormalization scale (no matching)



1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
Vincia

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

R
el

.U
nc

.

0

1

Finite

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4 1-T (udsc)

0 0.1 0.2 0.3 0.4 0.5

1/
N

 d
N

/d
(1

-T
)

-310

-210

-110

1

10 L3 
a=Max
a=Min

1-Thrust (udsc)

Data from Phys.Rept. 399 (2004) 71
Vincia 1.025 + Pythia 8.145

1-T (udsc)
0 0.1 0.2 0.3 0.4 0.5

Th
eo

ry
/D

at
a

0.6
0.8

1
1.2
1.4

Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p⊥ and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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