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“Nothing”
Gluon action density: 2.4x2.4x3.6 fm

(1 fm = 1 femtometer = 1 Fermi = 10-15 m)
Lattice simulation from

D. B. Leinweber, hep-lat/0004025
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Lecture 1: 
Numerical Integration 
Monte Carlo methods
Importance Sampling
The Veto Algortihm

Lecture 2:
Application of these methods to simulations of 
particle physics: Monte Carlo Event Generators

+ This afternoon
Practical Exercises:

PYTHIA 8 kickstart
(check the instructions)
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⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1

Predicted number of counts 
= integral over solid angle

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1

→ Integrate interaction cross sections 
over specific regions

LHC detector
Cosmic-Ray detector
Neutrino detector

X-ray telescope
…

source

Differential solid angle element

Differential scattering cross section (~ differential scattering probability / 
interaction probability / … )

Scattering 
Experiments
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More complicated integrals ...

ALICE :  One of the 4 experiments at the Large Hadron Collider at CERN
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14 Jun 2000:
4-jet event in 
ALEPH at LEP 

(a Higgs 
candidate)

Now compute 
the 

backgrounds ...

Let’s look at something simpler … 
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Part of Z → 4 jets … 

Note that application of the Finite-operator in the above expression yields only the O(ε0)-

terms of the antenna functions. These antenna functions contain higher powers in ε as

well, and these are relevant to the integrated antennae listed below.

The integrated antennae are defined in (2.35). They read:
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with

Poles
(
A1

3(s123)
)

= −A1
2(s123)

(
2I(1)

qq̄ (ε, s123) + A0
3(s123)

)
+

2b0

ε
(s123)

−ε I
(1)
qq̄ (ε, s123)

−H
(2)
V,A(ε, s123) + S

(2)
V (ε, s123) , (5.21)

Finite
(
A1

3(s123)
)

= −6581

48
+

787π2

96
+

17π4

360
+

143

3
ζ3 , (5.22)

Poles
(
Ã1
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5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-

gluon-gluon-antiquark at leading and subleading colour, A0
4 and Ã0

4 and quark-antiquark-

quark-antiquark for non-identical quark flavours B0
4 as well as the identical-flavour-only

contribution C0
4 . The quark-antiquark-quark-antiquark final state with identical quark

flavours is thus described by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the qggq̄ final state are:

A0
4(1q, 3g, 4g, 2q̄) = a0

4(1, 3, 4, 2) + a0
4(2, 4, 3, 1) , (5.27)

Ã0
4(1q, 3g, 4g, 2q̄) = ã0

4(1, 3, 4, 2) + ã0
4(2, 4, 3, 1) + ã0

4(1, 4, 3, 2) + ã0
4(2, 3, 4, 1) , (5.28)

– 33 –

where the sub-antennae are given by
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In A0
4 the gluonic emissions are colour-ordered, while in Ã0

4 the gluons are photon-like,

implying no ordering. Because of colour-ordering, A0
4 can be used with a single ordered

phase space mapping. In contrast, Ã0
4 can not be used with a unique ordered phase space

mapping. The above decomposition into ã0
4 yields however ordered terms, since the com-

bination ã0
4(1, 3, 4, 2) + ã0

4(2, 4, 3, 1) contains only single emission singularities in 1/s13 and

1/s24, corresponding to the ordered (1, 3, 4, 2) phase space mapping. On the other hand

ã0
4(1, 4, 3, 2) + ã0

4(2, 3, 4, 1) contains only single emission singularities in 1/s14 and 1/s23,

corresponding to the ordered (1, 4, 3, 2) phase space mapping. Since the decomposition of

Ã0
4 is symmetric, all four ã0

4 yield identical integrals if integrated over the tripole phase

space. It should be noted that it is not possible to analytically integrate an individual

ã0
4 over the tripole phase space using the reduction and integration techniques described

in [31], since the extra polynomial denominators present there enlarge the set of basis in-

tegrals considerably. When the four ã0
4 are added together these polynomial denominators

cancel, and the tripole integrals can be carried out.

The integrals of these antenna functions are according to (2.23):
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This is one of the simplest processes 
… computed at lowest order in the 
theory.

Now compute and add the quantum 
corrections  … 

Then maybe worry about 
simulating the detector too … 

+ Additional Subleading Terms … 
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Problem:
find a numerical 

approximation to 
the value of S
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B. Riemann, 
(1826-1866)

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

∫ b

a
f (x)dx = lim

n→∞

n∑
i=1

f (ti)(xi+1 − xi)



MC

P.  S k a n d s  -  M o n t e  C a r l o  m e t h o d s

Lecture
I

Numerical Integration in 1D

9

Divide into N “bins” of size ∆
Approximate f(x) ≈ constant in each bin
Sum over all rectangles inside your region

Fixed-Grid n-point 
Quadrature Rules

1 function evaluation per bin

Midpoint (rectangular) Rule: 
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Fixed-Grid n-point 
Quadrature Rules

Approximate f(x) ≈ linear in each bin
Sum over all trapeziums inside your region

Trapezoidal Rule: 

2 function evaluations per bin
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Fixed-Grid n-point 
Quadrature Rules

Approximate f(x) ≈ quadratic in each bin
Sum over all “Simpsons” inside your region

Simpson’s Rule: 

3 function evaluations per bin

… and so on for higher n-point rules ...
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How long do I have to wait?
How many evaluations do I need to calculate for a given precision?

12

Uncertainty 
(after n evaluations)

neval / bin
Approx

Conv. Rate 
(in 1D)

Trapezoidal Rule (2-point) 2 1/N2

Simpson’s Rule (3-point) 3 1/N4

… m-point (Gauss quadrature) m 1/N2m-1 

See, e.g., Numerical Recipes See, e.g., F. James, “Monte Carlo 
Theory and Practice”
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m-point rule in 1 dimension

 … in 2 dimensions

13

1 2 m...

2 m...

m
2

...

→ m function evaluations per bin

→ m2 evaluations per bin

 … in D dimensions → mD per bin

E.g., to evaluate a 12-point rule in 10 dimensions, need 
1000 billion evaluations per bin

Fixed-Grid (Product) Rules scale exponentially with D



MC

P.  S k a n d s  -  M o n t e  C a r l o  m e t h o d s

Lecture
I

Convergence Rate

+ Convergence is slower in higher Dimensions!
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Uncertainty 
(after n evaluations)

neval / bin
Approx

Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4/D

… m-point (Gauss rule) mD 1/n(2m-1)/D 

→ More points for less precision

See, e.g., Numerical Recipes See, e.g., F. James, “Monte Carlo 
Theory and Practice”
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“This risk, that convergence is only given 
with a certain probability, is inherent in 
Monte Carlo calculations and is the reason 
why this technique was named after the 
world’s most famous gambling casino. 
Indeed, the name is doubly appropriate 
because the style of gambling in the Monte 
Carlo casino, not to be confused with the 
noisy and tasteless gambling houses of Las 
Vegas and Reno, is serious and 
sophisticated.”

F. James, “Monte Carlo theory and 
practice”, Rept. Prog. Phys. 43 (1980) 1145

A Monte Carlo technique: is any technique making use 
of random numbers to solve a problem

Convergence:

Calculus: {A} converges to B
if an n exists for which 

|Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges 
to B if n exists for which 

the probability for
 |Ai>n - B| < ε,  for any ε > 0,

is > P, for any P[0<P<1]
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shape: Assume you know the 

area of this shape: 
πR2

(an overestimate)

Random Numbers and Monte Carlo

16

Now get a few 
friends, some balls, 
and throw random 

shots inside the 
circle 

(PS: be careful to make 
your shots truly random)

Count how many 
shots hit the shape 

inside and how many 
miss A  ≈ Nhit/Nmiss × πR2

Example 1: simple function (=constant); complicated boundary

Earliest 
Example of 

MC 
calculation: 

Buffon’s 
Needle 
(1777) 

to calculate π 

G. Leclerc, Comte de Buffon (1707-1788)
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generator. (For that, see the references at the end.)

Instead, I assume that you can write a computer code and link 
to a random-number generator, from a library 

E.g., ROOT includes one that you can use if you like. 

PYTHIA also includes one

17

From the PYTHIA 8 HTML documentation, under “Random Numbers”:

+ Other methods for exp, x*exp, 1D Gauss, 2D Gauss.

Random numbers R uniformly distributed in 0 < R < 1 are obtained with

   Pythia8::Rndm::flat();
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Start from overestimate,

Generate uniformly 
distributed random points 
between a and b

Example 2: complicated function; simple boundary

The integral is then ≈

⇥⇤

Ncount(⇥⇤) /
Z

⇤⌅
d⇤

d⇥

d⇤

1p
n

2D

3D

(b� a)fmax
1

n

nX

i=1

f (xi)

fmax

1

area of rectangle fraction that ‘hit’

f (xi)

fmax
= Phit

2

f (xi)

fmax
= Phit

2

f (xi)

fmax
= Phit

2
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Justification

1. Law of large numbers

2. Central limit theorem

19

The sum of n independent random variables (of finite 

expectations and variances) is asymptotically Gaussian
(no matter how the individual random variables are distributed)

For finite n:
The Monte Carlo estimate is Gauss distributed around the true value 

f (xi)

fmax
= Phit

lim
n!1

1

n

nX

i=1

f (xi) =
1

b� a

Z b

a
f (x)dx

2

Monte Carlo Estimate The Integral

For infinite n:
Monte Carlo is a 

consistent 
estimator 

For a function, f, of random variables, xi,
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MC convergence is Stochastic! 

        in any dimension
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Uncertainty 
(after n evaluations) neval / bin

Approx
Conv. Rate 

(in 1D)

Approx
Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4 1/n4/D

… m-point (Gauss rule) mD 1/n2m-1 1/n(2m-1)/D 

Monte Carlo 1 1/n1/2 1/n1/2 

⇤⌅

Ncount(⇤⌅) /
Z

⇥⌅
d⌅

d�

d⌅

1p
n

1

MC = Monte Carlo

+ can re-use previously generated points (≈ nesting)



Importance Sampling
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Peaked Functions

Precision on integral
dominated by the
points with f ≈ fmax 
(i.e., peak regions)

→ slow convergence 
if high, narrow peaks

20% 20% 20% 20% 20%

fmax

22
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Stratified Sampling

→ Make it twice as
likely to throw points
in the peak

→ faster convergence
for same number
of function evaluations

16.7% 16.7% 33.3% 16.7% 16.7%

23

6*R1 ∈ [1,2]  
6*R1 ∈ [2,4]  
6*R1 ∈ [4,5]  
6*R1 ∈ [5,6]  

6*R1 ∈ [0,1]  

A B

C

D E

→ Region A
→ Region B
→ Region C
→ Region D
→ Region E

For:

Choose:
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Adaptive Sampling

→ Can even design
algorithms that
do this automatically
as they run 
(not covered here)

→ Adaptive sampling5.6% 22.2% 44.4% 22.2% 5.6%

24
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Importance Sampling

→ or throw points
according to some
smooth peaked 
function for which 
you have, or can 
construct, a random 
number generator
(here: Gauss)

E.g., VEGAS algorithm, 
by G. Lepage

25
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Why does this work?

1)You are inputting knowledge: obviously need 
to know where the peaks are to begin with … 
(say you know, e.g., the location and width of a resonance)

2)Stratified sampling increases efficiency by 
combining n-point quadrature with the MC 
method, with further gains from adaptation

3)Importance sampling:

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

Effectively does flat MC with 
changed integration variables

Fast convergence if 
f(x)/g(x) ≈ 1

26



The Veto Algorithm

Hit Miss

27
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How we do Monte Carlo
Take your system

Set of radioactive nuclei

Set of hard scattering processes

Set of resonances that are going to decay

Set of particles coming into your detector

Set of cosmic photons traveling across the galaxy

Set of molecules 

…

28
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How we do Monte Carlo
Take your system

Generate a “trial”  (event/decay/interaction/… )

Not easy to generate random numbers distributed 
according to exactly the right distribution?

May have complicated dynamics, interactions … 

→ use a simpler “trial” distribution

29

Flat with some stratification

Or importance sample with simple overestimating 
function (for which you can generate random #s)
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How we do Monte Carlo
Take your system

Generate a “trial”  (event/decay/interaction/… ) 

Accept trial with probability f(x)/g(x)
f(x) contains all the complicated dynamics

g(x) is the simple trial function

If accept: replace with new system state

If reject: keep previous system state

And keep going: generate next trial … 

no dependence on g in final result - 
only affects convergence rate

30
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How we do Monte Carlo
Take your system

Generate a “trial”  (event/decay/interaction/… ) 

Accept trial with probability f(x)/g(x)
f(x) contains all the complicated dynamics

g(x) is the simple trial function

If accept: replace with new system state

If reject: keep previous system state

And keep going: generate next trial … 

no dependence on g in final result - 
only affects convergence rate

31

Sounds deceptively 
simple,but  … 
with it, you can 
integrate 

arbitrarily complicated 
functions (in particular 
chains of nested functions),
over arbitrarily 
complicated regions, in 
arbitrarily many 
dimensions … 
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Example: Number of students who will get 
hit by a car during the next 3 weeks

Complicated Function:
Time-dependent 

Traffic density during day, week-days vs week-ends
(simulates non-trivial time evolution of system)

No two students are the same

Need to compute probability for each and sum
(simulates having several distinct types of “evolvers”)

Multiple outcomes:

Hit → keep walking, or go to hospital?

Multiple hits = Product of single hits, or more complicated?

32
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Monte Carlo Approach

Approximate Traffic

Simple overestimate: 
highest recorded density 

of most careless drivers, 

driving at highest recorded speed

etc. (If this becomes too slow (computing time), try more clever 
“stratifications”, adaptations, and/or importance sampling)

Approximate Student

by most accident-prone Left- and Right-hand traffic 
student (overestimate)

33
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Density of 
Cars

Hit Generator

Off we go…

Throw random accidents according to:

34

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

0

@�
nstudX

i=1

Z te

t0
dt

Z

x
dx⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

1

A

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌥̂(x, t)

dN (t)

dt
= �P (t)N (t) = �

Z

x
dx

nstudX

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

Solve the equation:

R = (t0, t)

3

Sum over 
students

Student-Car
Coupling

Density of
Student i

dN (t)

dt
= �P (t)N (t) = �

⇤

x
dx

nstud�

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

⌅
⇤L,max NL + ⇤R,max NR

⇥
⌥cmax

Solve the equation:

R = �(t0, t)

4

Coupling of 
most accident-prone

left-hand-traffic student

Coupling of 
most accident-prone

right-hand-traffic student

Rush-hour 
density
of cars

Stratification

Too
Difficult

(possibly weighted by speed × drunkenness)

Simple 
Overestimate

R=

Sudakov Form Factor = Number of students
that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

R = (te-t0)∆x

te : time
of accident
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Trial Generator: (generate te)

Accept with probability

Hit Generator

35

dN (t)

dt
= �P (t)N (t) = �

⇤

x
dx

nstud�

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

⌅
⇤L,max NL + ⇤R,max NR

⇥
⌥cmax

Solve the equation:

R = �(t0, t)

4

Coupling of 
most accident-prone

left-hand-traffic student

Coupling of 
most accident-prone

right-hand-traffic student

Rush-hour 
density
of cars

Simple 
OverestimateR = (te-t0)∆x

te : time
of accident

(Also generate trial xe, uniformly in Kumasi)
Sudakov Form Factor = Number of students

that did not get hit

N (t)

N0
= (t0, te) = exp

⇥

⇤�
nstud�

i=1

⌅ te

t0
dt

⌅

x
dx ⇤i(x, t) ⌃i(x, t) ⌃c(x, t)

⇧

⌃

Elementary probability to hit a student

Pi(x, t) = ⇤̂i(x, t)⌃̂(x, t)

3

dN (t)

dt
= �P (t)N (t) = �

⇤

x
dx

nstud�

i=1

⇤i(x, t) ⌥i(x, t) ⌥c(x, t)

⌅
⇤L,max NL + ⇤R,max NR

⇥
⌥cmax

Solve the equation:

R = �(t0, t)

4

Paccept = 

→ True integral = number of accepted hits
(note: we didn’t really treat multiple hits … → Markov Chain)
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Summary - Lecture 1

Quantum Scattering Problems are common to many areas of physics:
To compute expectation value of observable: integrate over phase space

Complicated functions → Numerical Integration

High Dimensions → Monte Carlo (stochastic) convergence is fastest
+ Additional power by stratification and/or importance sampling

Additional Bonus → Veto algorithm → direct simulation 
of arbitrarily complicated reaction chains → next lecture

36
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Recommended Reading

F. James
Monte Carlo Theory and Practice

Rept.Prog.Phys.43 (1980) p.1145

S. Weinzierl
Topical lectures given at the Research School Subatomic physics, Amsterdam, June 2000

Introduction to Monte Carlo Methods
e-Print: hep-ph/0006269

S. Teukolsky, B. Flannery, W. Press, T. Vetterling
Numerical Recipes (in FORTRAN, C, …)

http://www.nr.com/

37

http://www.nr.com
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Test4Theory
10,000 Volunteers wanted a virtual atom smasher  
(to help do high-energy theoretical-physics calculations)

Problem: Lots of different machine architectures

→ Use Virtualization (CernVM)

Provides standardized computing environment (in our case Scientific 
Linux) on any machine

Exact replica of our normal working environment → no worries

Sending Jobs and Retrieving output

Using BOINC platform for volunteer clouds

But can also use other distributed computing resources

39

See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0 
team, C. Aguado Sanchez et al., CHEP 2010, J.Phys.Conf.Ser. 331 (2011) 062022.

http://inspirehep.net/record/1111424
http://inspirehep.net/record/1111424
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Last 24 Hours: 2853 machines
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See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0 
team, C. Aguado Sanchez et al., CHEP 2010, J.Phys.Conf.Ser. 331 (2011) 062022.

http://inspirehep.net/record/1111424
http://inspirehep.net/record/1111424
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Last 24 Hours: 2853 machines
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See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0 
team, C. Aguado Sanchez et al., CHEP 2010, J.Phys.Conf.Ser. 331 (2011) 062022.

http://inspirehep.net/record/1111424
http://inspirehep.net/record/1111424

