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Monte Carlo Methods
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Gluon action density: 2.4x2.4x3.6 fm
(1 fm =1 femtometer = 1 Fermi = 10> m)
Lattice simulation from
~ D. B. Leinweber, hep-lat/0004025
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Lecture I: .
Numerical Integration + This afternoon
Monte Carlo methods Practical Exercises:
Importance Sampling PYTHIA 8 kickstart

. (check the instructions)
The Veto Algortihm N

Lecture 2:
Application of these methods to simulations of
particle physics: Monte Carlo Event Generators

P. Skands -

Monte Carlo methods

MC




Why Integrals7

. = - V.G ,

LHC detector

Scatterin g source Cosmic-Ray detector
. Neutrino detector
EXPe riments X-ray telescope

— Integrate interaction cross sections

over specific regions

Predicted number of counts do
= integral over solid angle Neount(A42) o /AQ dQC‘__Q

Differential solid angle element  d{) = sin 6 df d¢

Differential scattering cross section do (~ differential scattering probability /
interaction probability / ... )

P. Skands - Monte Carlo methods




Particle Physics Example
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ALICE : One of the 4 experiments at the Large Hadron Collider at CERN

MC

L» More complicated integrals ... Lecuure

P. Skands - Monte Carlo methods 4
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Why Numerical?
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Let’s look at something simpler ...

ALEPH-XDALI 9 Apr 2001 version 1l

X11/7XUll

RureS4698 Eve=d8sl

00-06-14 2:32

P e

P. Skands - Monte Carlo methods

8=180

M
$).20 DX TDO@  Nled " nen.on

[4 Jun 2000:
4-jet event in
ALEPH at LEP

(a Higgs
candidate)

Now compute
the
backgrounds ...
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Why Numerical?
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Part of Z = 4 jets ...

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-
gluon-gluon-antiquark at leading and subleading colour, A9 and flg and quark-antiquark-
quark-antiquark for non-identical quark flavours BY as well as the identical-flavour-only
contribution C{. The quark-antiquark-quark-antiquark final state with identical quark
flavours is thus described by the sum of antennae for non-identical flavour and identical-
flavour-only. The antennae for the gggq final state are:

A2(1Q73974972§) = a2(173747 2) + a2(2747 37 1) ’ (527)

Ag(lq)3g74g72q’) = d2(173747 2) + ELZ(274, 37 ]-) + 62(174a372) + dg(273745 1) ) (528)

1 1
0 2 2 2
ay(1,3,4,2) = 5 (2512514 + 2512823 + 2515 + 874 + 853]
81234 | 2513524534
1 2 _ g2 943 3
ST (351253, — 4579534 + 2575 — 53]
51352451345234
1
2 2 2
+—————— [3s12523 — 3512534 + 45Ty — 523534 + 33 + 53]
5135245134
[2812 + 514 + 823] + [4812 + 3593 + 2824]
2513524 813834
5 [512534 + 523534 + 524534
5135734
1
2 2 2
4+ [3512524 + 6812834 — 4512 — 3524834 — 824 — 3534]
51351345234
1
+ [—6512 — 3523 — S24 + 2534]
5135134
L 2 2 252, + 2 2+ s2
—_— [ 512514 + 2512823 + 2579 + 2514823 + 814 + 823]
5245345134
1 1
+ [—4s12 — 514 — 523 + 834] + =5 [S12 + 2513 — 2514 — 534]
5245134 534
1 25195148
2 2 2 12514524
+W [2812514 + 2314823 + 2514524] )
53457134 83451345234
+——[-2 —4 + 257
3 512514 514524 S14
5345134
1
2 2 2
— [—2812814 — 4312 + 2314524 — S14 — 824]
53451345234
1
+ [—8812 — 2893 — 2824] + 5 [812 + S93 + 824]
5345134 S134
1
——— [2s12 + 514 — S24 — s34] + —— + O(e) ¢,
251345234 25134

Carlo methods

Monte

(5.29)

1 1 3 1
~0 2 2 3 3
ay(1,3,4,2) = 5512534 — 2579534 + STp — 5534
51234 | 51352451345234 | 2 2
N S _3 Ag2 _ 2 2
519893 512834 + 4879 — $23534 + S53 + Sz
5135245134
3
1 812 € 1 |—101n04 L QA2A-|

This is one of the simplest processes
... computed at lowest order in the
theory.

| $1351345234
1

$135134(s13 + s23)

- 14~ o - 4T o o4

2
[s12824 + S12834 + 2875

- 23%2]

Now compute and add the quantum
corrections ...

“<12
s13(s13 + s23)(s14 + S24) (813 + 514)
1

s13(s13 + 523) (513 + S14)

1
+ / N7/

Then maybe worry about
simulating the detector too ...

91345234 o134 J

[512524 + 25%2]

- [s12523 + 253,

(5.30)

+ Additional Subleading Terms ... MC
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Numerlcal Integratlon
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Problem:

y find 2 numerical
approximation to
the value of S

J(x)




drY = e ¥sin(8x%) +1 Mldelnt Rule
™\ Sample Points = 6 -
Numerical Quadrature
_ ;2 ) ()55 g,:z Eg () ( IEB:Z€S"I 236365)

Approximation =

] 1

|
| \
A
.-‘
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Carlo methods
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Numerlcal Integratlon in 1D
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Fixed-Grid n-point
Quadrature Rules

Midpoint (rectangular) Rule:

Divide into N “bins”’ of size A

Approximate f(x) = constant in each bin
Sum over all rectangles inside your region

| function evaluation per bin

N / f:(a:)daz ~ (b - a) f (a’ ; b) ............

P. Skands - Monte Carlo methods



Numerlcal Integratlon in 1D
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Fixed-Grid n-point

Trapezoidal Rule:
P Quadrature Rules

Approximate f(x) = linear in each bin
Sum over all trapeziums inside your region

2 function evaluations per bin

/f )dx ~ ( —a)

P. Skands - Monte Carlo methods



Numerlcal Integratlon in 1D
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Fixed-Grid n-point

Simpson’s Rule:
P Quadrature Rules

Approximate f(x) = quadratic in each bin
Sum over all “Simpsons” inside your region

3 function evaluations per bin

... and so on for higher n-point rules ... ,
" Lecture

P. Skands - Monte Carlo methods




Convergence Rate
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P. Skands -

The most important question:

How long do | have to wait!?

How many evaluations do | need to calculate for a given precision?

Uncertainty Approx
. Conv. Rate
(after n evaluations) (in 1D)
Trapezoidal Rule (2-point) 2 | /N2
Simpson’s Rule (3-point) 3 | /N*
. m-point (Gauss quadrature) m | /N2m-]
See, e.g,, F.James,“Mon.te ’(’:arlo »

Theory and Practice

Monte Carlo methods




ngher DlmenS|ons
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Fixed-Grid (Product) Rules scale exponentially with D

m-point rule in | dimension

c—6—6—-6 — m function evaluations per bin

| 2 m

... IN 2 dimensions

< S—o—"F — m? evaluations per bin

~P

(> . - . D *
] e tn® dimensions — mP per bin

E.g., to evaluate a 12-point rule in 10 dimensions, need
1000 billion evaluations per bin

P. Skands - Monte Carlo methods



Convergence Rate

R e SO GRS Y

+ Convergence is slower in higher Dimensions!

[—> More points for less precision

Uncertaint .

nd Neval / bin | Conv. Rate

(after n evaluations) . .
(in D dim)

Trapezoidal Rule (2-point) 2P |/n%P

Simpson’s Rule (3-point) 3P | /n*P
. m-point (Gauss rule) mP | /n(2m-1)/D

See, e.g,, F.James,“Mon.te ’(’:arlo »

Theory and Practice

P. Skands - Monte Carlo methods
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A Monte Carlo technique: is any technique making use
of random numbers to solve a problem

Convergence:

Sy Calculus: {A} converges to B
if an n exists for which

/ ‘/ |Ai>n - B| < €, for any € >0
Y

[_ Monte Carlo: {A} converges
i to B if n exists for which

= the probability for

e |Ain-B| <¢g, forany € >0,

is > P, for any P[O<P<I]

- s

LNCEER | e
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“Thas risk, that convergence 1s only given
with a certain probability, 1s inherent in
Monte Carlo calculations and is the reason
why this technique was named after the
world’s most famous gambling casino.
Indeed, the name 1s doubly appropriate
because the style of gambling in the Monte
Carlo casino, not to be confused with the
noisy and tasteless gambling houses of Las
Vegas and Reno, 1s serious and
sophisticated.”

F. James, “Monte Carlo theory and
practice”, Rept. Prog. Phys. 43 (1980) 1145

-




Random Numbers and Monte Carlo
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[ Example |:simple function (=constant); complicated boundary )

Example: you want to know the area of this
shape:

Assume you know the

_—  area of this shape:

TTR?
(an overestimate)

Now get a few
friends, some balls,
and throw random

~
shots inside the e
circle Example of
(PS: be careful to make calc::action-
your shots truly random) Buffon’s
Needle
(1777)
Count how many to calculate Tt
shots hit the shape
st
inside and how many

. J

A} ~ Nhit/Nmissx TTR? @

miss

P. Skands - Monte Carlo methods




Random Numbers
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1 will not tell you how to write a Random-number
generator. (For that, see the references at the end.)

Instead, | assume that you can write a computer code and link
to a random-number generator, from a library

E.g., ROOT includes one that you can use if you like.
PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under ‘Random Numbers’’:

Random numbers R uniformly distributed in 0 < R < 1 are obtained with

Pythia8::Rndm::flat();

+ Other methods for exp, x*exp, | D Gauss, 2D Gauss.

P. Skands - Monte Carlo methods



Random Numbers and Monte Carlo

PR
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[ Example 2: complicated function; simple boundary )

-~ f(x)

a b x

The integral is then =

P. Skands - Monte Carlo methods

Start from overestimate,
fmax

Generate uniformly
distributed random points
betweenaandb [ _p

max

1 fl2;)
b — a)fmax —
( )f ”@z_; Jmax

area of rectangle fraction that ‘hit’
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2.

Justlﬂcat|on

Law of large numbers
For a function, f, of random variables, x;, For infinite n:
. 1 < Monte Carlo is a
nli)moo E Z f(zz / f consistent
1=1 estimator

i The Integral
Monte Carlo Estimate 8

Central limit theorem

r

U

N
The sum of n independent random variables (of finite

expectations and variances) is asymptotically Gaussian

(no matter how the individual random variables are distributed)

For finite n:
The Monte Carlo estimate is Gauss distributed around the true value

P. Skands - Monte Carlo methods




Convergence
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MC = Monte Carlo

1 ORDER STOCHASTIC

MC convergence is Stochastic! 382228 et
L R
% in any dimension r g vt

Approx Approx
Neva / bin | Conv. Rate | Conv. Rate
(in 1D) (in D dim)

Uncertainty

(after n evaluations)

Trapezoidal Rule (2-point) | /n?P

Simpson’s Rule (3-point) 3P |/n? | /n%D
.. m-point (Gauss rule) mP | /n2m-| | /n(2m-1)/iD

Monte Carlo | 1 /n'2 | /2

+ can re-use previously generated points (= nesting)

P. Skands - Monte Carlo methods




Importance Sampling




FuncUons

Functions: Breit-Wigner
I ' I ' I ' I ' I

fmax ) Precision on integral
o dominated by the
points with f = fmax
‘ (i.e., peak regions)

G/O’max

— slow convergence
if high, narrow peaks

0.50

20%
S
0.00 MC
-2 -1 0 1 2
(E'M)/r Leclture

P. Skands - Monte Carlo methods




1.00

o/cmax

0.50

0.00

P. Skands -

Functions: Breit-

Wigner

C

!

|

7%

33.3% |

16.

(E-MY/T

Monte Carlo methods

— Make it twice as
likely to throw points
in the peak

Choose:

0,1] = Region A
For: [1,2] = Region B
6*R1 € [2,4] — Region C
e=-_ [4,5] 2 RegionD

L ) :
}‘g' 5,6] 2 Region E

— faster convergence
for same number
of function evaluations




Functions: Breit-Wigner

I ' I ' I ' l ' |

1.00 - -
— Can even design
- algorithms that
E do this automatically
" osof - as they run

(not covered here)

5.6% | 222% | 44.4% | 223% | 5.6% — Adaptive sampling
0.00 | 1 | i | i | 1 |
2 1 0 1 2 =
(E-MVT Lecare

P. Skands - Monte Carlo methods




Functions: Breit-Wigner

L — or throw points
according to some
smooth peaked
function for which
you have, or can

1 l construct, a random
0.50 1= T - number generator
(here: Gauss)

1.00 - -

o/o,...

E.e.,VEGAS algorithm,

by G. Lepage

000 = !I. 1 | 1 . 10

-2 -1 0 1 2
(E-MVF Lecture

P. Skands - Monte Carlo methods




kWhy dOes thls Work?
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1)You are inputting knowledge: obviously need

to know where the peaks are to begin with ...
(say you know, e.g., the location and width of a resonance)

2)Stratified sampling increases efficiency by
combining n-point quadrature with the MC
method, with further gains from adaptation

3)Importance sampling:
Effectively does flat MC with

f changed integration variables

glx Fast convergence if
“ () fx)/g(x) = |

P. Skands - Monte Carlo methods




The Veto Algorithm




How We do Monte Carlo
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Take your system
Set of radioactive nuclei

Set of hard scattering processes

Set of resonances that are going to decay
Set of particles coming into your detector
Set of cosmic photons traveling across the galaxy

Set of molecules

P. Skands - Monte Carlo methods




How we do MOnte Carlo
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Take your system

Generate a “trial” (event/decay/interaction/... )

Not easy to generate random numbers distributed
according to exactly the right distribution!?

May have complicated dynamics, interactions ...

— use a simpler “trial” distribution

Flat with some stratification

Or importance sample with simple overestimating

function (for which you can generate random #s)

P. Skands - Monte Carlo methods



How we do MOnte Carlo
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~Take your system

Generate a ‘“trial” (event/decay/interaction/... )

Accept trial with probability f(x)/g(x)
f(x) contains all the complicated dynamics

g(x) is the simple trial function

If accept: replace with new system state

If reject: keep previous system state

no dependence on g in final result -
only affects convergence rate

L And keep going: generate next trial ...

P. Skands - Monte Carlo methods




How We do MOnte Carlo

e eSS
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L And keep going: generate next trial ...

P. Skands -

Generate a ‘“trial” (event/deca

Accept trial with probability f(x)/g(x)
f(x) contains all the complicated dynamics

g(x) is the simple trial function

If accept: replace with new system st

If reject: keep previous system state

Monte

B B VN N -

Take your system
” Y Y

Carlo methods

-

no dependence on g in final result =

only affects convergence rate

L

Sounds deceptively

simple,but ...

with it, you can

integrate
arbitrarily complicated
functions (in particular
chains of nested functions),
over arbitrarily
complicated regions, in
arbitrarily many
dimensions ...




P. Skands -

Complicated Function:

Time-dependent

Traffic density during day, week-days vs week-ends

(simulates non-trivial time evolution of system)

No two students are the same

Need to compute probability for each and sum

(simulates having several distinct types of “evolvers”)

Multiple outcomes:
Hit — keep walking, or go to hospital?

Multiple hits = Product of single hits, or more complicated!?

Monte Carlo methods




Monte Carlo Approach A

S R e L B v V. e T S P

P. Skands -

Approximate Traffic

Simple overestimate:
highest recorded density

of most careless drivers,
driving at highest recorded speed

etc. (If this becomes too slow (computing time), try more clever
“stratifications”, adaptations, and/or importance sampling)

Approximate Student

by most accident-prone Left- and Right-hand traffic
student (overestimate)

Monte Carlo methods




H|t Generator

. B " T, N

Off we go...

Throw random accidents according to:

Nstud T
— OO
R= [t [y aj(x,t) pi(a, t) pe(x, t) .
foneCar Density ’ Difficult
Student-Car  Density of  Density of Iricu
‘ Coupling Student i Cars
S:Td;::sr (possibly weighted by speed x drunkenness)
fe :time
of accident Stratification
Simple
R = (te-fO)AX (OéL,ma,X NL - QR max NR) Yentrall Overestimate
Coupling of Coupling of Rush-hour
most accident-prone most accident-prone density
left-hand-traffic student  right-hand-traffic student ~ of cars MC

P. Skands -

Lecture
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Monte Carlo methods




H|t Generator
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Trial Generator: (generate t.)
Simple
R = (t.-10) Ax (aL,maX N, + QR max NR) Zonthve Overestimate

Coupling of Coupling of Rush-hour
t, :time most accident-prone most accident-prone density
left-hand-traffic student  right-hand-traffic student of cars

of accident

(Also generate trial x., uniformly in Kumasi)

Accept with probability
@i(xa t) /02(377 t) ,UC(CE, t)

(O‘L,max Ny, + X R max NR) Pemax

Paccept =

— True integral = number of accepted hits
(note: we didn’t really treat multiple hits ... = Markov Chain)

P. Skands - Monte Carlo methods
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summary - Lecture 1
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Quantum Scattering Problems are common to many areas of physics:
To compute expectation value of observable: integrate over phase space

Complicated functions — Numerical Integration

High Dimensions = Monte Carlo (stochastic) convergence is fastest
+ Additional power by stratification and/or importance sampling

Additional Bonus — Veto algorithm — direct simulation
of arbitrarily complicated reaction chains = next lecture

P. Skands - Monte Carlo methods 36
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Recommended Readmg
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F. James
Monte Carlo Theory and Practice
Rept.Prog.Phys.43 (1980) p.1145

S.Weinzierl

Topical lectures given at the Research School Subatomic physics, Amsterdam, June 2000

Introduction to Monte Carlo Methods
e=-Print: hep-ph/0006269

S. Teukolsky, B. Flannery, W. Press, T.Vetterling

Numerical Recipes (i Forman.c,...)
http://www.nr.com/

P. Skands - Monte Carlo methods 37



http://www.nr.com
http://www.nr.com

LHC@home 2.0

Test4Theory - A Virtual Atom Smasher

Over 400 billion simulated collision events


http://lhcathome2.cern.ch
http://lhcathome2.cern.ch

Test4Th eory

———m— I .- TN R Y

10,000 Volunteers wanted a virtual atom smasher
(to help do high-energy theoretical-physics calculations)

Problem: Lots of different machine architectures

— Use Virtualization (CernVM)

Provides standardized computing environment (in our case Scientific
Linux) on any machine

Exact replica of our normal working environment — no worries

Sending Jobs and Retrieving output

Using BOINC platform for volunteer clouds

But can also use other distributed computing resources

See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0
team, C.Aguado Sanchez et al., CHEP 2010, |.Phys.Conf.Ser. 331 (201 1) 062022.

P. Skands - Monte Carlo methods


http://inspirehep.net/record/1111424
http://inspirehep.net/record/1111424
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See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0 "
team, C.Aguado Sanchez et al., CHEP 2010, |.Phys.Conf.Ser. 331 (201 1) 062022.
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See Volunteer Clouds and citizen cyberscience for LHC physics, by the LHC@home 2.0

team, C.Aguado Sanchez et al., CHEP 2010, |.Phys.Conf.Ser. 331 (201 1) 062022.
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