# Plans for Pythia 8

Simulation of Final States Relevant to LHCb

Current Plans for Joint Monash-Warwick Projects

(Not intended to be exhaustive or exclusive; open to further suggestions from others at both institutions.)

Broader Pythia 8 Activities at Monash







## Simulation of Final States Relevant to LHCb

# Feb 2021: joint ARC grant proposal on "beautiful strings" (Kreps+PS)

ARC "Discovery Project" - basically funds for one post doc.

Assessments expected in June, announcements in Oct/Nov; no reason to wait.

# 1. Efficient Pythia MC for producing B<sub>c</sub> (and relatives)

Preparatory steps started at Monash, with **T. Hadavizadeh** + will involve new Monash-Warwick post doc **M. Singla** (started today!)

Idea: enhance  $g \to Q\bar{Q}$  shower branchings [Mrenna+PS, arXiv:1605.08352] + enhance probability "close" in phase space to other heavy quarks Expect joint publication this year.

- 2. Final states with specific B hadron(s) on request
- 3. Uncertainties in B→partons decays

Lead: M. Kreps.

4. Collective Effects on B Spectra (in pp)

#### Rare Final States

Type(s) of B hadron:  $B_0, B^+$   $B_s, \Lambda_b$   $\Upsilon(1S), \Xi_b$   $\Sigma_b, B_c$   $\Omega_b, \Xi_{bc}$  Rate in inclusive sample:  $\mathcal{O}(10^{-2})$   $\mathcal{O}(10^{-3})$   $\mathcal{O}(10^{-4})$   $\mathcal{O}(10^{-5})$  one-in-a-million or less

#### Probability to produce double-heavy hadrons in Pythia is prohibitively low for high-stats runs

Currently only possible to "bias" event generation by requiring at least one heavy quark present in hard interaction, eg  $gg \to b\bar{b}, gb \to gb, ...$ 

Then run parton shower and "hope" for a  $g \to c\bar{c}$  branching (or vice versa) that just happens to end up producing a colour-singlet  $(b\bar{c})$  system with sufficiently low invariant mass  $\to$  B<sub>c</sub> meson.

Not bloody likely.

+ "fragmentation contribution" even harder ( $gg \rightarrow gg$  with **two** accidents)

#### Dedicated packages (eg GenXicc) to force these states used by LHCb/Warwick

Not easy to maintain, extend, thread (!), and documentation not always exhaustive/extensive

+ also miss fragmentation contribution?

## MWA Project(s): enhance $g \to Q\bar{Q}$ shower branchings, in the "right" phase-space regions

 $\implies$  generate **weighted** events with O(1) probabilities for requested states

Follow-ups: validation of quality of modelling + extend to hadronisation algorithms ( $\rightarrow$  enhance B baryons)

# Broader Monash Activities on Pythia 8

# Since May, Pythia now has "triumvirate" leadership:

Spokesperson: PS

Code Master: Phil Ilten (now at Cincinnati)

Web Master: Christian Bierlich

# → new home: <u>pythia.org</u>

should be opening within the coming month or so

# New email address for issues etc already open authors@pythia.org

With nice issue-tracking functionality + future searchability

E.g., use it to report HME issue?

# Current Active Monash Research Projects on Pythia 8

# Weak Boson Fusion (coherence & ME corrections with Vincia antennashower vs Pythia's DGLAP-based shower)

Pythia lacks accurate initial-final coherence (and cannot do CKKW-L merging for VBF) Vincia antenna-shower model (partonShowers:model = 2) can do both.

Paper out very soon.

# Interleaved Resonance Decays (new treatment of finite-width effects) + Electroweak Showers

With R. Verheyen (UCL);

Paper out very soon.

## **Top Production and Decay**

Recoil effects and precision top mass; much interaction with ATLAS top group

#### Vincia Antenna-Shower Model (lead node: Monash)

**Showers with 2<sup>nd</sup>-order kernels**, joint with C. Preuss (HDR student), S. Hoeche & J. Campbell (Fermilab) & H. T. Li (Northwestern)

First paper out soon + another DP grant proposal for longer-term development.

# Longer-Term Projects

#### Strangeness Enhancements in PP

(currently project with honours student)

Strangeness enhancement effects in B sector?

Opportunities for LHCb? Consequences for LHCb?

#### **QCD @ Future EE Colliders**

FCC-ee, CEPC, ILC

Defining ideal set of maximally constraining QCD measurements

#### **Tuning for Pythia 8.3**

Last tuning (Monash) was done in 2013

Opportunity for major overhaul, new constraints, new techniques.

E.g., treatment of statistics (& neglect of correlations) so far unimpressive in tuning contexts Input / Desires / Constraints from LHCb?

#### New extensive dedicated manual for Pythia 8.3

Plan is to finally rival the detail of Pythia 6.4 manual (~600 pages)

Already several hundred pages; likely to still take a few months to finish