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1 Aims & Objectives

In this project we explore the physics behind double gluon emission from quark - antiquark pairs. The likelihood of any
given configuration of this system is calculated through its matriz element, depicted visually on the left hand side of
Figure 1. This matrix element is quite complex, however in certain soft and collinear physical configurations (Section
2.2) it can be simplified using the A antenna function (Section 2.1). AY contains singularities and poles at various points
in its domain (referred to as its phase space), corresponding to limiting cases of important physical states. Exploring
these singularities and poles within the structure of A9 is important as it allows us to characterise crucial underlying
particle interactions. Moreover, determining the antenna function’s structure in these singular limits may provide a
means of overestimating the original function, useful for application in Monte Carlo simulations. This overestimate
must be verified, which can be accomplished by evaluating these functions at uniformly sampled points within the phase
space (Section 2.3).

2 Investigations

2.1 Crossing Relations for A

In certain physical configurations (Section 2.2), matrix elements of complex physical processes can be decomposed into
simpler components using structures called antenna functions, as demonstrated in Figure 1. On the left hand side, we
have the matrix element squared of all possible Feynman diagrams involving double gluon emission from quark - anti-
quark pairs, which has been decomposed into the simpler matrix element of quark - antiquark annihilation, multiplied
by the antenna function. This antenna function for double gluon emission from ¢g pairs is denoted A§ in [2] (henceforth
GGG). The antenna function for ¢g pairs in the final state is available in GGG, however we want to explore configur-
tions with ¢ pairs in the initial state. To derive this, we use relations from crossing symmetry demonstrated in Figure 2.

The AY from GGG is implemented in Mathematica, and algebraic substitutions have been implemented to obtain
our desired antenna function. We will verify that these substitutions have resulted in the correct antenna function using
methods described in Section 2.3.

2.2 Double Soft & Triple Collinear Limits

Soft gluon emission refers to configurations where a gluon is emitted with negligible momentum that goes to zero. Al-
ternatively, the collinear limit refers to emission of a gluon whose momentum becomes collinear with that of its parent.
In these limits, the matrix-element structure simpiflies such that we can apply the factorisation of Figure 1.

Figure 1: Factorisation of the ¢ + ¢ — g + g + Z matrix element using the A antenna function.
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Figure 2: Left: Feynman diagram where the quark, antiquark and gluons are all in the final state. Right: Feynman
diagram where the quark and antiquark are in the initial state, with both gluons in the final state.

However, these antenna functions themselves contain further interesting structure. Considering the left hand side of
Figure 1, squaring the matrix element results in the cross-multiplication and product between different Feynman dia-
grams. In many physical configurations it is a single diagram that dominates all others, such that these cross-multiplied
terms can be ignored. However, in the case of double soft emission where both gluons are emitted with negligible
momenta, these gluons become so similar that different diagrams begin to converge. This has the effect of increasing
the cross-multiplied terms, resulting in interference effects. Similar interference effects arise in the triple collinear limit,
where both gluon momenta become collinear with that of the quarks.

We can parameterize soft gluons with the transformation p — Ap for each soft momenta, then taking the limit A — 0.
Similarly, we parameterize a gluon and quark becoming collinear by substituting p, -py — Apq - pg and again with A — 0.
These A factors then appear in the denominators of A}, such that Mathematica can be used to obtain series expansions
of A} about A = 0, denoted the double soft and triple collinear limits of A depending on which substitution has been
used. This expansion enables us to explore the mathematical structure of these interference effects, while also providing
likely candidates to overestimate the original function.

2.3 Phase Space Sampling

To verify that these derived functions are indeed correct, we compare numerical results of our functions to directly
computed matrix elements (left hand side of Figure 1) available in PYTHIA software [3]. For these comparisons we rely
on the RAMBO algorithm [1], also implemented in PYTHIA, to generate uniformly random configurations of ¢g and
gluons while still obeying energy and momentum conservation. We then compare the numerical results of the matrix
element against our functions evalutated at these random phase-space points to discern agreeance.

3 Future Plans

PYTHIA software is written in C' + +, thus we have exported the AY function and derived limits from Mathematica into
C 4 4. We are currently configuring a test of 100,000 randomly generated phase-space points, at each point recording
the ratio of matrix element to A}. This ratio should converge to values corresponding to the simplified matrix element
on the right hand side of Figure 1. We then require some criteria with which we can determine if a given phase-space
point lies a domain corresponding to soft or collinear configurations. Using this criterion, we apply a similar testing of
the soft and collinear limits in these domains to verify their accuracy. If these functions can be verified as overestimates,
this enables Monte Carlo integration of the original, complex matrix element to further explore these emission processes.

References

[1] R Kleiss, W.J Stirling, and S.D Ellis. ” A new Monte Carlo treatment of multiparticle phase space at high energies”.
Computer Physics Communications, 40(2):359 — 373, 1986.

[2] Aude Gehrmann-De Ridder, Thomas Gehrmann, and E.W. Nigel Glover. Antenna subtraction at NNLO. Journal
of High Energy Physics, 2005(09):056-056, Sep 2005.

[3] Torbjorn Sjostrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna,
Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An introduction to PYTHIA 8.2. Computer Physics
Communications, 191:159-177, Jun 2015.



