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Abstract

An important aspect in making quantum chromodynamics (QCD) predictions at the Large Hadron Collider (LHC)
is the speed of the Monte Carlo (MC) event generators which are used to calculate them. MC event generators
simulate a pure QCD collision at the LHC by first using fixed-order perturbation theory to calculate the hard (i.e.
energetic) 2 → n scatter, and then adding radiative corrections to this with a parton shower approximation. The
2→ n scatter is traditionally calculated by summing Feynman diagrams, however the number of Feynman diagrams
has a stronger than factorial growth with the number of final-state particles, hence this method quickly becomes
infeasible. We can simplify this calculation by considering helicity amplitudes, in which each particle has its spin
either aligned or anti-aligned with its direction of motion i.e. each particle has a specific helicity. In particular, it
is well-known that the helicity amplitude for the maximally helicity violating (MHV) configuration is remarkably
simple to calculate. In this thesis we describe the physics of the MHV amplitude, how we could use it within a
MC event generator, and describe a program we wrote called VinciaMHV which calculates the MHV amplitude for
the process qg → q + ng for n = 1, 2, 3, 4. We tested the speed of VinciaMHV against MadGraph4 and found that
VinciaMHV calculates the MHV amplitude significantly faster, especially for high particle multiplicities. We also
tested the precision of VinciaMHV by comparing its MHV amplitudes to those of MadGraph4. We found that the
two programs agree to better than one part in a billion over 99% of the time, thus validating our program.
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1 Introduction

The majority of processes at the Large Hadron Collider (LHC) are accounted for by the scattering of quarks and
gluons (partons) via the strong interaction (quantum chromodynamics, QCD) [1, 2]. Therefore, to understand
LHC data we need a thorough understanding of pure QCD processes, each of which produces collimated sprays
of energetic hadrons called jets [3, 4]. One of the aims of a Monte Carlo (MC) event generator is to calculate
(”predict”) the spectrum of jet multiplicities, their structure, and their transverse momenta by calculating the
QCD high energy (hard) process and subsequent parton showers which created them. Due to the unprecedented
energies and luminosities of the incoming protons at the LHC, we are able to create more numerous and energetic
jets than ever before. However, there is still a discrepancy between the number of jets which can be created at
the LHC and the number of jets which can be simulated with high precision using a MC event generator. For
example, run 1 at the LHC contained collisions which produced 9 jets [1], while the combination of a specialist
hard-process program such as ALPGEN [5], interfaced to a general purpose MC event generator such as PYTHIA [6]
or HERWIG [7] can only accurately simulate up to 6 jets. A key reason for this is the long computational time
needed to calculate the squared scattering amplitude at leading order of the QCD perturbative expansion, also
called the tree-level matrix element.

Traditionally, MC event generators calculate the tree-level matrix element by summing over all possible Feynman
diagrams at leading order of the perturbative expansion. In this approach, the helicities, i.e. each particle’s spin
projected onto its direction of motion, are averaged for initial-state particles and summed for final-state particles.
This method is implemented in programs such as PYTHIA [6], HERWIG [7], SHERPA [8] and MadGraph [9],
however in the past 30 years theorists have shown that QCD amplitudes can be calculated more elegantly using
a helicity basis, i.e. by classifying each particle according to its helicity [10–18]. In this basis many amplitudes
vanish due to a supersymmetry obeyed by tree amplitudes [19, 20]. There are also remarkably simple formulae for
the amplitudes of the so called Maximally Helicity Violating (MHV) configuration, first conjectured by Parke and
Taylor in 1986 for an all-gluon amplitude [13], later extended by Mangano and Parke to include amplitudes with
a massless quark pair [21], and proven by Berends and Giele a year later [22]. Excitingly, it was recently shown
that the MHV amplitude is the dominant helicity amplitude for certain cases [23]. Therefore, it is possible that the
MHV amplitude is both the simplest, and most dominant of helicity amplitudes, and may help extend the number
of jets a MC event generator can accurately simulate.

In this project we created a fast and reliable program called VinciaMHV which calculates full colour-summed
MHV squared amplitudes for the process qg → q + ng for n = 1, 2, 3, 4, along with other 2 → n crossing-related
processes. VinciaMHV is meant to be embedded in the parton-shower program VINCIA [24], improving it by
partially replacing the MadGraph4 tree-level matrix elements [25]. In Section 2 we briefly explain QCD and crossing
symmetry, give a more detailed explanation of QCD colour factors and the spinor-helicity formalism, before finally
describing MHV amplitudes for both the case of n gluon scattering, and for the process involving a single quark
anti-quark pair with n − 2 gluons. In Section 3 we summarised how to use a MC event generator to simulate a
proton-proton collision at the LHC, highlighting in which sections of the event generation we can use VinciaMHV. In
Section 4 we consider the frequency with which we use the MHV amplitude for 4 to 7 partons, and give instructions
upon how to use VinciaMHV. In Section 5 we tested the accuracy and speed of VinciaMHV relative to MadGraph4.
We summarise and propose possible future extensions to this thesis in Section 6.
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2 Background Theory

The original perturbative method, that of summing all possible Feynman diagrams contributing to each order of
the expansion, quickly becomes infeasible as the number of particles increases. For example, the number of 2→ n
all-gluon tree diagrams grows alarmingly quickly with the number of final state gluons (see Table 1) [26]. Hence
a less demanding method of calculating fixed-order perturbative QCD is required to extend to large multiplicities
(i.e. to a large numbers of final state particles). One such method is to use the helicity basis, in which each external
particle has a specific helicity. The helicity of a particle is defined as its spin projected onto its direction of motion
and for massless particles is normalised such that the helicity equals +1 if the spin is aligned with the momentum,
and equals −1 if anti-aligned. Note that, for a massless particle, we cannot boost to a reference frame in which
the particle’s direction of motion switches, Therefore the helicity of a massless particle is equal to its chirality (i.e.
it’s handedness) and is a conserved quantity. An amplitude calculated in the helicity basis is then referred to as a
helicity amplitude. However not all helicity amplitudes were created equally, and we find that helicity amplitudes of
massless particles obey a hierarchy of simplicity [2,27,28]. If all of the particles are considered to be outgoing, and
all have the same helicity, or each particle except one has the same helicity, then the helicity amplitudes vanish. The
next most simple helicity configuration, that for which all particles except two have the same helicity, is called the
MHV configuration,and has a magnificently simple formula at tree level. For example, if in the MHV configuration,
the kinematic part of the 9-gluon MHV amplitude is given by:

A9 = i
〈ij〉4

〈12〉〈23〉 . . . 〈91〉
, (1)

where we used the term kinematic to imply that the colour information has been factorised out of the amplitude.
Here 1, 2, . . . 9 refers to the 9 particles, i, j are the two particles with negative helicity, all other particles have
positive helicity, and 〈ij〉 is a specific spinor inner product which is simple to calculate and to which we return in
section 2.4.2. While we have not yet motivated equation (1), or properly explained its meaning, it is shown here in
order to motivate the purpose of the thesis, that being to change a sum of many terms (in this case 559, 405 terms)
into a simple product. The purpose of the Background Theory section is therefore to outline the theory needed
to understand MHV amplitudes such as equation (1). Note that a different approach used to simplify helicity
amplitude calculations is the BCFW recursion relation [29], which has been successfully implemented in the MC
event generator Comix [30]. This recursion relation is outside the scope of this thesis and won’t be discussed here.

2.1 QCD

In order to make sense of MHV amplitudes we must first understand the quantum field theory in which we are
calculating them. In this thesis, the quantum field theory in which we are interested is QCD, due to its abundance at

Number of External Gluons Number of Feynman Diagrams Relative Growth
4 4 -
5 25 6.3
6 220 8.8
7 2485 11.3
8 34300 13.8
9 559405 16.3
10 10525900 18.8

Table 1: The number of Feynman diagrams needed to calculate an n-gluon scattering amplitude at tree level [26].
The relative growth is the number of Feynman diagrams in that row divided by the number of Feynman diagrams
in the previous row. Notice that the number of diagrams grows like a factorial, but stronger.
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the LHC. QCD is a somewhat counter-intuitive theory. At very short distances, (i.e. smaller than ≈ 1fm = 10−15m,
the size of the proton), QCD is a theory of asymptotically free quarks and gluons (partons) which only scatter
off one another through relatively small quantum corrections1. At longer wavelengths (about 1fm) we see strongly
bound towers of multiple partons called hadrons, implying that QCD is an interaction which becomes stronger at
larger distances.

QCD is a non-abelian SU(3)C gauge theory of coloured quarks and gluons. Quarks, which we will associate with
colour indices from middle of the alphabet (i, j, k, · · · = 1, 2, 3), are in the fundamental representation of SU(3)C ,
while gluons are in the adjoint representation. We will give adjoint colour indices letters from the start of the
alphabet a, b, c, · · · = 1, 2, . . . 8. The QCD Lagrangian is [35,36]:

L =
∑
q

iψ̄iq /Dijψ
j
q −mqψ̄

i
qψqi −

1

4
F aµνF

aµν , (2)

where repeated indices are implicitly summed, ψiq denotes a quark field with fundamental colour index i, mq is the

quark mass, the sum is over quark flavours q, /Dij is the gamma contracted covariant derivative and is defined as:

/Dij ≡ γµDµij = γµ
(
δij∂µ − i

√
2gst

a
ijA

a
µ

)
, (3)

where γµ is the Dirac matrix with spacetime index µ, δij the Kronecker delta, gs the strong coupling with g2
s = 4παs,

Aaµ the gluon field with adjoint colour index a and taij are the t matrices which are proportional to the Hermitian
and traceless Gell-Mann matrices λaij , the generators of SU(3)C :

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (4)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

such that:

taij =
1√
2
λaij . (5)

The field strength tensor in equation (2) F aµν is:

F aµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν , (6)

where fabc are the QCD fine structure constants, related to the t matrices by:

tatb − tbta ≡ [ta, tb] = i
√

2fabctc , (7)

or equivalently:

fabc = − i√
2

Tr{ta[tb, tc]} . (8)

Note that it is the third term of equation (6) which governs the self-interaction of gluons and creates showers of
gluons at the LHC. In perturbative QCD calculations it is useful to know the Fierz identity:

taijt
a
kl = δilδjk −

1

3
δijδkl , (9)

as well as some convention independent trace relations of the t matrices:

Tr{tatb} = TRδ
ab ,

∑
a,j

taijt
a
jk = CF δik ,

∑
c,d

facdfbcd = CAδ
ab , (10)

1This surprising and strange property is called asymptotic freedom, and was the subject of the 2004 Nobel Prize in physics, awarded
to David Gross, Hugh Politzer and Frank Wilczek [31–34].
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where a, b, c, d = 1, 2, ..., 8, i, j, k = 1, 2, 3, and TR = 1, CF = 8/3 and CA = 3 are the convention dependent
Casimirs of SU(3)C . Note that this convention follows that most used in the spinor helicity community [18,27,28]
and is different to the convention often used in QCD literature [35–38]. The difference is the normalisation of the
t matrices, usually normalised such that ta = 1/2λa, and hence TR = 1/2, CF = 4/3 and CA = 3. To move from
the standard convention to our convention we transform t→

√
2t and hence t2 → 2t2, or equivalently CF → 2CF ,

with CA left unchanged. Consequently the colour-ordered Feynman rules (i.e. the QCD Feynman rules stripped of
colour information) contain factors of

√
2.

2.2 Crossing symmetry

To calculate kinematic MHV amplitudes we use the convention that every external particle is considered to be
outgoing, i.e. each particle is considered to be in the final state. Therefore, before we calculate the MHV amplitude
we must first move initial-state particles into the final state. To do this we use crossing symmetry, which states
that the amplitude for a process with a left (right) handed particle of momentum k in the initial state is equal to
the amplitude for the same process with a right (left) handed anti-particle of momentum −k in the final state [36].
For example, the amplitude for the following two processes is the same:

e−L (k) + qL(p)→ e−L (k′) + qL(p′) ,

e+
R(−k′) + e−L (k)→ q̄R(−p) + qL(p′) ,

where e−L and e+
R correspond to a left-handed electron and a right-handed positron, qL, q̄R correspond to a left

handed-quark and a right-handed anti-quark, and k, k′, p and p′ are four-momentum of each particle.
In the all-outgoing convention, we note that due to fermion charge conservation, and because massless fermions

always conserve chirality when interacting with a gluon or photon, that any QCD fermion pair will be a quark
anti-quark pair of opposite chiralities [2]. In this thesis we only consider the light quarks (i.e. not the top quark).
Since our quarks are moving near the speed of light, we consider them to be effectively massless, hence in this thesis
we have that any quark anti-quark pair must have opposite helicities.

Finally we note that momentum conservation in the all-outgoing formalism takes the form:

n∑
i=1

ki = 0 , (11)

and particles with negative energy are those which have been crossed from the initial state into the final state.
Unless otherwise noted we will now use only massless particles with outgoing momenta.

2.3 Colour factors

It is well-known that a QCD scattering amplitude can be factorised into a colour factor and a gauge invariant
kinematic colour-ordered amplitude [2,16,18,27,28,39,40]. The colour factors provide a complete (almost) orthog-
onal basis2 at tree level for the full colour amplitude. They also fix the order in which gluons are contracted in
colour space, and hence the order in which gluons are emitted. Meanwhile the kinematic colour-ordered amplitude
(hereafter kinematic amplitude) is stripped of all colour information and is composed of all Feynman diagrams
which have the relevant colour ordering. In fact, as we shall see in sections 2.5 and 2.7 there is a far simpler method
than summing Feynman diagrams which one can use to calculate the kinematic amplitudes.

In the next two sections we outline this factorisation in the all-gluon case, and then describe the colour factor
at both the amplitude level and at the amplitude squared level in detail. Section 2.3.3 and 2.3.4 repeats this for
the case of a single quark anti-quark pair, together with n− 2 gluons.

2.3.1 All-gluon amplitudes

At tree level, the n gluon scattering amplitude Mn is [14, 27,28,39]:

Mn(g1, g2, . . . , gn) = gn−2
s

∑
σ∈Sn/Zn

Tr(taσ(1) . . . taσ(n))An(σ(kh1
1 ), . . . , σ(khnn )) , (12)

2The all-gluon colour factor in equation (12) for example is only orthogonal at leading order in the power of NC = number of colours.
The basis is still however complete, and ensures gauge invariance of the kinematic amplitudes. For alternate orthogonal bases see
e.g. [40,41].
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Figure 1: Three of the four diagrams which contribute to 4 gluon interactions at tree level. The omitted diagram
is related to the middle diagram by a swap of momenta 3 and 4.

where gs is the strong coupling (g2
s = 4παs), t

aσ(i) is the t matrix defined in equation (5) with a = 1, 2, . . . 8, ki
is the gluon momentum, hi, the gluon helicity, Tr(taσ(1) . . . taσ(1)) the colour factor and An(σ(kh1

1 ), . . . , σ(khnn )) the
kinematic amplitude. The sum is over all non-cyclic permutations of σ (Sn is the set of all permutations of n objects
while Zn is the subset of cyclic permutations, i.e. Sn/Zn is the subset set of all non-cyclic permutations) such that,
for example, swapping σ(1) and σ(2) implies that we swap particles 1 and 2 in the colour order. Mathematically,
this corresponds to swapping the order of the t matrices, and swapping particles σ(1) and σ(2) in the kinematic
amplitude in equation (12).

To motivate equation (12) we will show that this equation holds for 4-gluon scattering, for which the relevant
Feynman Diagrams are shown in Figure 1. We will work in SU(NC), a generalisation of the SU(3)C group used in
QCD, to show the structure of the group algebra. In SU(NC) we can re-write the Fierz identity (equation (9)) in
the adjoint representation as [28]

(ta)j̄1i1 (ta)j̄2i2 = δj̄2i1 δ
j̄1
i2
− 1

NC
δj̄1i1 δ

j̄2
i2
, (13)

which can be represented pictorially as:

= − 1

NC
.

Before continuing we note that the U(1) generator (taU(1))j̄i is given by3 [28]:

(taU(1))j̄i =
1√
NC

δj̄i , (14)

and hence the second term of equation (13) is the product of two U(1) generators. However since gluons do not
carry U(1) charge, and therefore do not couple to the U(1) field, we are free to remove this second term in the
all-gluon case. The Fierz identity for gluons is then:

= . (15)

The standard Feynman rules for QCD (See Appendix B) entangle the colour and kinematic components of the
amplitude. We wish to decouple the colour from the kinematics. To do so we first consider just the colour

3The U(1) field is often called the photon, but in this case it is not strictly true. This U(1) field is a photon field with QCD coupling
strength.
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component of the all-gluon 3-vertex:

= fabc = − i√
2

(Tr(tatbtc)− Tr(tatctb)) , (16)

where we used equation (8) on the right-hand side. The traces can be represented pictorially as:

= fabc = − , (17)

where closed circles with an arrow represent a trace. Now we have all of the tools required to factorise the colour
from the full amplitude, and we are ready to tackle this example. Consider just the colour of the first Feynman
diagram in Figure 1. Using equation (17) we can decompose the colour of this diagram into a sum of four traces:

= − (18)

− + ,

where the numbers indicate the colours, polarisations and momenta of the particles as per equation (12), and the
direction of the arrow is given by equation (17). Notice that the propagator in each term is just the left hand side
of equation (15). Therefore we rewrite the colour structure of the diagram as:

= − (19)

− + .

Note that the direction of the arrow is important, so for example the first and last terms are not equivalent. The
final step is to untangle the middle two diagrams, and flip the last diagram so that the arrow in each trace points
in the same direction. This step is mostly a visual one, so that we see exactly what order the gluons are colour
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contracted. We get that:

= − (20)

− + ,

which is the sum of four independent traces of colour matrices. The relative minus signs are unimportant as they
will be absorbed into the kinematic amplitudes. The two remaining non-cyclic permutations of the colour ordering
can be obtained from the second diagram in Figure 1. By repeating the above steps on the second diagram we find
that:

= − (21)

− + ,

from which we obtain the remaining two independent non-cyclic permutations in colour space. Note that the third
diagram in Figure 1 evaluates to zero (see section 2.5 for details) so does not need to be considered.

2.3.2 Squared all-gluon amplitudes

To calculate the scattering cross section we must first square the scattering amplitude and then sum over colours.
This means that we will have to calculate:

|Mn(g1, g2, . . . , gn)|2 =
∑

colours

g2n−4
s

∑
σ1∈Sn/Zn

Tr(taσ1(1) . . . taσ1(n))An(σ1(kh1
1 ), . . . , σ1(khnn ))

×
∑

σ2∈Sn/Zn

Tr(tbσ2(1) . . . tbσ2(n))∗An(σ2(kh1
1 ), . . . , σ2(khnn ))† , (22)

where each σi is a specific permutation of the colour-ordered gluons. We can represent equation (22) as a matrix
equation of the form:

|Mn(g1, g2, . . . , gn)|2 = g2n−4
s A†σiCijAσj , (23)

where Cij is a colour matrix which relates the kinematic amplitude for gluons ordered by the permutation σi to the
kinematic amplitude for gluons ordered by permutation σj . Before we calculate Cij we note that:

[Tr(taσ1(1)taσ1(2) . . . taσ1(n))]∗ = Tr(taσ1(n)taσ1(n−1) . . . taσ1(1)) , (24)

and we introduce the notation:

(a1a2 . . . an) =Tr(taσ1(1)taσ1(2) . . . taσ1(n)) ,

(b1b2 . . . bn) =Tr(tbσ2(1)tbσ2(2) . . . tbσ2(n)) , (25)

7



which means that the colour matrix Cij can be re-written as:

Cij =

N2
C−1∑

a1,...,an=1

(a1a2 . . . an)(b1b2 . . . bn)∗ . (26)

Since σ2 is some permutation of σ1, and since the trace is cyclic we can re-write equation (26) as:

Cij =

N2
C−1∑

a1,...,an=1

(a1a2 . . . an)(b1b2 . . . bn)∗ =

N2
C−1∑

a1,...,an−1=1

∑
an

(a1a2 . . . an)(anamn−1 . . . am1) , (27)

where {am} is the remaining ordered set of t matrices in the σ2 permutation. We can then write the traces in
component notation and use the Fierz identity (equation (13)) to get that4:

Cij =

N2
C−1∑

a1,...,an−1=1

∑
an

(a1a2 . . . an)(anamn−1 . . . am1)

=

N2
C−1∑

a1,...,an−1=1

[(a1a2 . . . an−1amn−1
. . . am1

)− 1

NC
(a1a2 . . . an−1)(amn−1 . . . am1)] . (28)

The first term in the final line of equation (28) can have either of the following forms:∑
Λ,an−1

(Λ1an−1an−1Λ2) , or
∑

Λ,an−1

(Λ1an−1Λ2an−1) ,

where Λi is some string of t matrices. Note that in the second expression it is likely that we have had to cyclically
permute an−1 to the final position, such that Λ1 has more t matrices than Λ2. If we have the first form, then we
use equation (10) to get that: ∑

Λ,an−1

(Λ1an−1an−1Λ2) =
∑
Λ

(Λ1Λ2) , (29)

and if we have the second form then we again use the Fierz identity to get that:∑
Λ,an−1

(Λ1an−1Λ2an−1) =
∑
Λ

(Λ1)(Λ2)− 1

NC
(Λ1Λ2) . (30)

We can keep doing this until we find terms proportional to:

(a1a1) =
N2
C − 1

NC
δii = N2

C − 1 , (31)

which allows us to calculate the colour factors Cij . Note that we used that in SU(NC) we must generalise CF
from CF = 8/3 to CF = (N2

C − 1)/Nc. Further note that the leading contribution to the colour matrix comes from
the diagonal, i.e. when permutations σ1 = σ2. Following through with the algebra, it is possible to show that the
leading contribution to the colour factor is [27]:

Cii =

N2
C−1∑

a1,...,an=1

(a1a2 . . . an)(a1a2 . . . an)∗ = Nn−2
C (N2

C − 1)[1 +O(1/N2
C)] . (32)

Finally, we note that the colour matrix Cij is symmetric, since each vector A contains the same ordered set of
gluon permutations σ, and that each diagonal term Cii is identical since we sum over all colours and the order of
contractions between t matrices is identical for each Cii.

2.3.3 Quark-gluon amplitudes

At tree level, for a pair of massless quarks and n− 2 gluons, it is sufficient to consider the basis in which all gluons
propagate directly from a single quark anti-quark line such as in Figure 2 [2,21,27,28,42,43]. To see why, consider

4A more complete derivation is shown in Appendix G.
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Figure 2: The structure of the quark anti-quark colour basis. The quark q has colour index i, the anti-quark q̄ has
colour index j, and the permutations over σ permute the order in which gluons are emitted (or equivalently the
order in which they are colour connected). The curved lines above the diagram is the colour flow, i.e it shows which
partons are colour connected.

the possible Feynman diagrams which can contribute to a given process. If a diagram has a three-gluon vertex
connected to a quark line, then we use that:

i
√

2fabctc = [ta, tb] , (33)

which up to constants can be described pictorially as:

= − , (34)

and shows that any diagram with a three-gluon vertex can be decomposed into a colour basis in which the external
gluons propagate directly from the quark line. The remaining type of diagram has a quark line which emits a gluon,
which then emits 3 other gluons. The extra gluons may release more gluons, leading to a tree of gluons propagating
off the quark line. The colour factor of this tree is:

= tAijTr
[
tA(taσ(1) . . . taσ(n−2)

]
, (35)

and we can use the Fierz identity (equation (13)) to show that:

= tAijt
A
klt

aσ(1)

lm . . . t
aσ(n−2)

nk =

(
δilδjk −

1

NC
δijδkl

)
t
aσ(1)

lm . . . t
aσ(n−2)

nk .

9



However we know that the second term of the Fierz identity only couples to quarks, and the string of taσ(i) matrices
is an all-gluon string, hence the second term in the brackets vanishes, leaving:

= (taσ(1) . . . taσ(n−2))ij , (36)

which is the same basis as before. Therefore, we can write any amplitude with a single quark pair and n− 2 gluons
in a basis with no gluon self coupling. We say that the colour order always starts at the quark, moves through the
gluons, and ends at the anti-quark. The amplitude can be written as:

Mn(q, g1, g2, . . . gn−2q̄) = gn−2
s

∑
σ∈Sn−2

(taσ(1) . . . taσ(n−2))ijAn(qhqσ(kh1
1 ), σ(kh2

2 ) . . . , σ(k
hn−2

n−2 )q̄hq̄ ) , (37)

where q, hq, and i (q̄, hq̄, and j) is the quark (anti-quark) momentum, helicity, and colour index, and all other
symbols the same as equation (12). Note that in equation (37) it is only the gluons which are permuted, and the
cyclic permutation is present.

2.3.4 Squared quark-gluon amplitudes

In the cross section we need to calculate the squared amplitude:∑
colours

|Mn(q, g1, g2, . . . , q̄)|2

= g2n−4
s

∑
colours

∑
σ1∈Sn−2

(taσ1(1) . . . taσ1(n−2))ijAn(qhqσ1(kh1
1 ), σ1(kh2

2 ) . . . , σ1(k
hn−2

n−2 )q̄hq̄ )

×
∑

σ2∈Sn−2

(taσ2(1) . . . taσ2(n−2))†jiAn(qhqσ2(kh1
1 ), σ2(kh2

2 ) . . . , σ2(k
hn−2

n−2 )q̄hq̄ )† , (38)

where σ1 and σ2 are two permutations of the n − 2 gluons. Note that we can once again write this as the matrix
equation: ∑

colours

|Mn(q, g1, g2, . . . , q̄)|2 = g2n−4
s A†σiCijAσj , (39)

where σi and σj are two permutations of the gluons. Further note that the colour matrix Cij is once again symmetric,
and that each diagonal term Cii is once again identical since we sum over all colours and the order of contractions
between t matrices is identical Cii. For example, in the two-gluon case, there are two distinct terms in the colour
matrix. Either the two permutations are the same, in which case we calculate C11 = C22, or they are different in
which case we calculate C12 = C21. If they are the same, we see that the colour factor can be written as:

C11 = C22 =

N2
C−1∑

a1,a2=1

(ta1)ij(t
a2)jk[(ta1)kl(t

a2)li]
†

=

N2
C−1∑

a1,a2=1

(ta1)ij(t
a2)jk(ta2)kl(t

a1)li

=

N2
C−1∑
a1=1

N2
C − 1

NC
δjl(t

a1)ij(t
a1)li

=
(N2

C − 1)2

NC
=

64

3
, (40)
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where in the second line we used that the t matrices are Hermitian, and used equation (10) in the next two lines.
Similarly, we can show that the off-diagonal element is:

C12 = C21 =

N2
C−1∑

a1,a2=1

(ta1)ij(t
a2)jk(ta1)kl(t

a2)li

=(ta2)jk(ta2)li[δilδjk −
1

NC
δijδkl]

=(ta2)kk(ta2)ll −
1

NC
(ta2)ik(ta2)ki

=0− N2
C − 1

NC
= −8

3
, (41)

where we used the Fierz identity (equation (13)) in the third line, and the tracelessness of the t matrices along with
equation (10) in the last line. We therefore have that:∑

colours

|M4(q, g1, g2, q̄)|2 = g4
s

(
A4(1, 2)∗ A4(2, 1)∗

) 1

3

(
64 −8
−8 64

)(
A4(1, 2)
A4(2, 1)

)
, (42)

where A4(1, 2) is shorthand for A4(qhq , g(kh1
1 ), g(kh2

2 ), q̄hq ). More colour matrices are given in Appendix H.

2.4 Spinor-helicity formalism

We now wish to move from colour factors to kinematic amplitudes. While most calculations in high energy physics
use the four-component Dirac spinors [44,45] which describe quarks and charged leptons, MHV amplitudes are often
best described using two-component Weyl-van der Waerden spinors5 (commonly known as and hereafter referred
to as Weyl spinors) [46,47]. Weyl spinors are described using a different algebra to Dirac spinors, hence it is useful
to first describe this algebra, which we will do in section 2.4.1. In Section 2.4.2 we explain how to use Weyl-spinor
algebra to build spinor inner products, which are the building blocks used to calculate MHV amplitudes in sections
2.5 and 2.7.

2.4.1 Weyl-spinor algebra

We will use indices in the middle of the Greek alphabet (µ, ν, ρ, ... = 0, 1, 2, 3) to indicate spacetime indices6,
while indices from the start of the Greek alphabet (α, β, γ, ... = 1, 2) are spinor indices. A right-handed spinor is
associated with undotted spinor indices, while a left-handed spinor has dotted spinor indices. It is important to
distinguish between the two types of indices because they represent two separate representations of the Lorentz
group and therefore it is not possible to contract a dotted index with an undotted index to form a Lorentz invariant
quantity [49]. A right-hand massless spinor is defined as [2, 28]:

U+(ki) ≡ |i+〉 ≡ (λi)α =

(√
k+
i

eiφi

)
, (43)

U−(ki) ≡ 〈i−| ≡ (λi)
α =

(
eiφi −

√
k+
i

)
, (44)

where U+(ki) is a four-component Dirac spinor with four-momentum ki, (λi)α is the same particle in the two-
component Weyl-spinor formalism, k+ = k0 + k3 where the raised index for each k is the spacetime index, and:

e±iφi =
k1
i ± ik2

i√
k+
i

. (45)

Note that in matrix notation a lowered undotted index is a row index (i.e. it implies that λα is a column vector),
while a raised undotted index is a column index. Further note that if k+

i = 0, then k1
i = k2

i = 0 (since k2 = 0),

5Both Weyl and van der Waerden independently decomposed the Dirac equation into two coupled differential equations of 2 two-
spinors, however in the literature it is usually only Weyl who is given this credit. Indeed it was van der Waerden who first investigated
the application of tensor calculus to spinor analysis and introduced the notation of dotted and undotted indices described in section
2.4.1.

6for a pedagogical treatment of spacetime indices see the textbook by Riley, Hobson and Bence [48].
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and naively we have that eiφi = 0/0. In this case we must instead use the well-known formula for a right-handed
particle moving along the z axis:

U+(ki) ≡ |i+〉 ≡ (λi)α =

(
0√
2Ei

)
, (46)

U−(ki) ≡ 〈i−| ≡ (λi)
α =

(√
2Ei 0

)
. (47)

Similarly, a left-handed massless spinor is defined as:

U+(ki) ≡ 〈i+| ≡ (λ̃i)α̇ =
(
e−iφi −

√
k+
i

)
, (48)

U−(ki) ≡ |i−〉 ≡ (λ̃i)
α̇ =

(√
k+
i

e−iφi

)
, (49)

or if k+
i = 0, then we similarly have:

U+(ki) ≡ 〈i+| ≡ (λ̃i)α̇ =
(
−
√

2Ei 0
)
, (50)

U−(ki) ≡ |i−〉 ≡ (λ̃i)
α̇ =

(
0

−
√

2Ei

)
. (51)

Note that for dotted indices, a raised index is a row index, while a lowered dotted index is a column index. Further
note that (λ̃i)α̇ = [(λi)α]

†
= [(λi)

α]
∗
. Spinor indices are raised or lowered using the two-index antisymmetric

Levi-Cevita symbol:
ε12 = −ε21 = −ε12 = ε21 = 1 , (52)

which written in matrix notation is:

εαβ =

(
0 1
−1 0

)
and εαβ =

(
0 −1
1 0

)
. (53)

Note that the Levi-Cevita symbol is sometimes referred to as the spinor metric, or just the epsilon, and that some
epsilon identities are included in Appendix A. Also note that in raising or lowering a spinor index, adjacent indices
are summed over when multiplied on the left by the appropriate spinor metric. Thus one can write:

λα =
[
εαβλ

β
]T

and λα =
[
εαβλβ

]T
, (54)

λ̃α̇ =
[
εα̇β̇λ̃

β̇
]T

and λ̃α̇ =
[
εα̇β̇λ̃β̇

]T
, (55)

where we have included the transpose sign to make it explicit that raising or lowering a spinor index changes a row
vector to a column vector and vice versa.

We construct Lorentz invariant objects by first contracting spinor indices to make objects that transform as
Lorentz tensors [49]. A Lorentz scalar is created by taking the spinor inner product (see section 2.4.2), a Lorentz
vector is obtained using the Pauli matrices in spinor notation, while higher rank Lorentz tensors are outside the
scope of this thesis. We first consider Lorentz vectors. The Pauli matrices (see Appendix A) can be written in
spinor notation as:

(σµ)β̇α ≡ σµ ≡ σ+ =(12×2,−~σσσ) ,

(σµ)αβ̇ ≡ σ
µ ≡ σ− =(12×2, ~σσσ) , (56)

and are used to construct both Lorentz vectors and Lorentz scalars. Each Lorentz vector Aµ has a one-to-one
correspondence with its bi-spinor /Aαβ̇ [47, 50,51] such that:

Aµ =
1

2
(σµ)β̇α /Aαβ̇ , and /Aαβ̇ = Aµ(σµ)αβ̇ , (57)

hence the Pauli matrices are the analogue of the Dirac matrices in two-component notation. Note that the bi-spinors
are 2× 2 matrices, such that:

( /A
T

)αβ̇ = /Aβα̇ , (58)

/Aαβ̇ =( /Aα̇β)∗ , (59)

( /A
†
)αβ̇ =( /Aβα̇)∗ , (60)
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where equation (59) shows that changing between dotted and undotted indices is equivalent to complex conjugating

each term. Also, if /A is Hermitian, then /A = /A
†
, or equivalently /Aαβ̇ = /Aα̇β . Using this we can manoeuvre between

the four-momentum kµ and its bi-spinor /kαα̇:

(/ki)αα̇ = kµi (σµ)αα̇ = (λi)α(λ̃i)α̇ =

(
k+
i k1

i − ik2
i

k1
i + ik2

i k−i

)
, (61)

where k−i = k0
i − k3

i . It is useful to also have an expression for (/ki)
α̇α:

(/ki)
α̇α = kµi (σµ)α̇α = λ̃α̇λα =

(
k− −k1 + ik2

−k1 − ik2 k+

)
. (62)

Note that det
[
(/ki)

α̇α
]

= det [(/ki)αα̇] = 0. To move the other way, we use:

2kµi = (σµ)α̇α(/ki)αα̇ = (σµ)α̇α(λi)α(λ̃i)α̇ = (λ̃i)α̇(σµ)α̇α(λi)α ≡ 〈i+|γµ|i+〉 . (63)

Similarly, we also have that:
2kµi = (λi)

α(σµ)αα̇(λ̃i)
α̇ ≡ 〈i−|γµ|i−〉 . (64)

It follows that there are 4 Dirac equations in two-component notation:

〈i∓|k · σ± = 0 and k · σ±|i∓〉 = 0, (65)

Or equivalently:

/kαα̇λ̃
α̇ = 0 , λα/kαα̇ = 0 , /k

α̇α
λα = 0 , λ̃α̇/k

α̇α
= 0 . (66)

Finally, it is useful to know some relations between (σµ)αα̇ and (σµ)β̇β :

(σµ)αα̇ = εαβεα̇β̇(σµ)β̇β , (σµ)α̇α = εαβεα̇β̇(σµ)ββ̇ , (67)

εαβ(σµ)βα̇ = εα̇β̇(σµ)β̇α , εα̇β̇(σµ)αβ̇ = εαβ(σµ)α̇β , (68)

along with the Fierz identities:

(σµ)αα̇(σµ)β̇β = 2δ β
α δβ̇α̇ , (69)

(σµ)αα̇(σµ)ββ̇ = 2εαβεα̇β̇ , (70)

(σµ)α̇α(σµ)β̇β = 2εαβεα̇β̇ , (71)

where we wrote the Kronecker delta as δ β
α to show explicitly which index is the row index and which the column

index. This separation is useful when it is necessary to remember the origin of the indices.

2.4.2 Spinor inner products

To create a Lorentz scalar from Weyl spinors we need to contract the indices to form an inner product. Spinor inner
products are the building blocks from which helicity amplitudes, and ultimately the MHV amplitudes upon which
this thesis is based, are created. Due to the two types of spinor indices, there are two types of inner products. The
first type, using undotted indices is defined as7:

〈ij〉 = 〈i−|j+〉 = (λi)
α(λj)α = εαβ(λi)β(λj)α = −(λi)α(λj)

α . (72)

It is useful for numerical calculations to have an expression for 〈ij〉 in terms of four-momenta. To do this, combine
the definitions of λ (equations (43) and (44)) with equation (72) to get that:

〈ij〉 =
√
k+
j e

iφi −
√
k+
i e

iφj , (73)

7Our definition of 〈ij〉 follows the old convention as found in [28]. In the new convention (which can be found in [16] and [2]), the
undotted inner product is defined as 〈ij〉 = (λi)α(λj)

α. To move between the two conventions one must multiply each factor of 〈ij〉 by
−1 in every equation, or swap the upstairs and downstairs indices if working in the spinor index notation.
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where eiφi and k+ are defined as before. In the special case that k+
i = 0, we must substitute equations (47) and

(43) into equation (72) to get:

〈ij〉 =
√

2Eik
+
j , (74)

while in the special case that both particles are parallel, such that kj = zki for some (real) factor z, we have that:

〈ij〉 = 〈i(zi)〉 =
√
z

[√
k+
i e

iφi −
√
k+
i e

iφi

]
= 0 . (75)

We therefore conclude that the inner product of two parallel spinors vanishes8. Similarly, the dotted inner product
is defined as:

[ij] = 〈i+|j−〉 = (λ̃i)α̇(λ̃j)
α̇ = εα̇β̇(λ̃i)α̇(λ̃j)β̇ = −(λ̃i)

α̇(λ̃j)α̇ . (76)

Combining equations (48), (49) and (76) gives the numerical form of [ij]:

[ij] =
√
k+
i e
−iφj −

√
k+
j e
−iφi , (77)

while for the special case k+
i = 0 we have:

[ij] = −
√

2Eik
+
j , (78)

and the collinear case again vanishes. From equations (73) and (77) it is immediately obvious that:

〈ij〉 =[ji]∗ , (79)

〈ij〉 =− 〈ji〉 , (80)

[ij] =− [ji] , (81)

〈ii〉 =[ii] = 0 , (82)

where equations (80) - (82) show that the inner products are anti-symmetric. Using equations (63), (64) and (69)
it is possible to construct the momentum invariant sij = (ki + kj)

2 = 2ki · kj in terms of spinor inner products9:

sij = 2ki · kj = 〈ij〉[ji] , (83)

and combining equation (83) with equation (79) gives that:

sij = 〈ij〉〈ij〉∗ = [ij][ij]∗ = |〈ij〉|2 = |[ij]|2 .

Hence we can re-write the inner products as complex square roots of the momentum-invariant:

〈ij〉 =
√
|sij |eiφij , [ij] = −

√
|sij |e−iφij , (84)

for some phase φij . Other useful properties of the inner product include charge conjugation:

〈i+|γµ|j+〉 = 〈j−|γµ|i−〉 , (85)

or equivalently:
(λ̃i)α̇(σµ)α̇α(λj)α = (λj)

α(σµ)αα̇(λ̃i)
α̇ ; (86)

the Fierz rearrangement:

〈i+|γµ|j+〉〈k+|γµ|l+〉 ≡ (λ̃i)α̇(σµ)α̇α(λj)α(λ̃k)β̇(σµ)β̇β(λl)β = 2[ik]〈lj〉 ,

〈i−|γµ|j−〉〈k−|γµ|l−〉 ≡ (λi)
α(σµ)αα̇(λ̃i)

α̇(λk)β(σµ)β̇β(λ̃l)
β̇ = 2[kj]〈il〉 ; (87)

and the Schouten identities:

〈ij〉〈kl〉 =〈ik〉〈jl〉+ 〈il〉〈kj〉 , (88)

[ij][kl] =[ik][jl] + [il][kj] , (89)

〈i−|/km|j−〉 =〈im〉[mj] , (90)

〈i+|/km|j+〉 =[jm]〈mj〉 . (91)

8Note that this is a very important result which leads to the collinear singularity of QFT, as we shall see in section 3.2.
9For a full derivation of equation (83), as well as equations (85), (87), (88) and (90) see appendix C.
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2.5 All-gluon helicity amplitudes

We now have all of the tools needed to calculate any helicity amplitude, and specifically to calculate the MHV
amplitude. To apply the spinor-helicity formalism to gluons we must associate the gluon polarisation with its
helicity. We can do this because a gluon is massless, hence it has no longitudinal polarisation, and its spin is either
aligned or anti-aligned with its motion. The gluon polarisation vector ε is best given by10

ε±µ (k, p) = ±〈k
±|γµ|p±〉√
2〈p∓|k±〉

, (92)

where k is the gluon momentum, p is a reference momentum which we are free to choose (so long as the spinor
|p±〉 obeys the massless Dirac equation /p|p±〉 = 0), and the spinors are defined in equations (43) - (49). Note that
the polarisation vector is gauge invariant, i.e. we can choose a different reference momentum p for each gluon. It is
easy to show that equation (92) is indeed the polarisation. Firstly, the polarisation is always transverse:

ε±µ (k, p) kµ = ± 〈k
±|/k|p±〉√

2〈p∓|k±〉
= 0 , (93)

which follows from the Dirac equation 〈k±|/k = 0. The polarisation is also an orthonormal basis:

ε±(k, p) · ε±(k, p) = ε±(k, p) · (ε∓(k, p))∗ = 0 , (94)

ε±(k, p) · (ε±(k, p))∗ =− 1 , (95)

which can both be proven using the Fierz rearrangement (equation (87)).
Now that we know how to describe the polarisation of each gluon, we can consider the different choices of

reference momentum p. In every all-gluon helicity amplitude we must contract the polarisation vectors either with
a propagator momentum, or with another polarisation vector. It is convenient to choose reference momenta of
like-helicity gluons to be the same, and to coincide with the momentum of an opposite-helicity gluon. This is
because:

ε±(k, p) · ε±(k′, p) = ε±(k, p) · ε∓(p, p′) = 0 . (96)

Similarly, it is convenient to choose the reference momenta to be the propagator momentum, or external quark
momentum, since:

ε±(k, p) · p = 0 , (97)

which vanishes because the reference momentum must obey the massless Dirac equation. We will now show that
equations (96) and (97) imply that many helicity amplitudes vanish. First, consider the 4-gluon process shown in
Figure 1. Let each gluon have the same helicity such that we want to solve A4(1±, 2±, 3±, 4±). Choose the reference
momentum of each particle to be p. Using the colour-ordered Feynman rules (see Appendix B) and equation (96)
we see that every term must have ε±(ki, p) · ε±(kj , p) = 0, and hence the helicity amplitude vanishes.

Similarly, we can show that if all but one particle has the same helicity then the helicity amplitude vanishes. In
this case we solve A4(1∓, 2±, 3±, 4±), and choose reference momentum p1 = k2, and pi = k1 for i = 2, 3, 4. Each
term has either ε∓(k1, k2) · ε±(ki, k1) = 0, or ε±(ki, k1) · ε±(kj , k1) = 0 for j = 2, 3, 4, j 6= i. This argument also
holds for all permutations of the gluons such that, e.g. A4(4±, 2∓, 3±, 1±) also vanishes. Note that this vanishing
property is not exclusive to a 4-gluon amplitude. This argument still holds for the n-gluon amplitude, hence:

An(1±, 2±, 3±, . . . n±) = 0 (98)

An(1∓, 2±, 3±, . . . n±) = 0 . (99)

The only remaining 4-gluon helicity amplitude up to permutations is A4(1∓, 2∓, 3±, 4±). For simplicity we will
restrict ourselves to carefully calculating the helicity amplitude for A4(1−, 2−, 3+, 4+). The physical process we are
considering is:

g+(−k1)g+(−k2)→ g+(k3)g+(k4) , (100)

and the relevant diagrams shown in Figure 3. Note that the colour order is 1234 and that the first two particles
are considered incoming, so their helicities have been flipped, and their momenta are negative so that momentum
conservation takes the crossed form:

k1 + k2 + k3 + k4 = 0 . (101)

10A more complete discussion of the polarisation vector, including a derivation of equations (92) - (96) is given in Appendix D.
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Figure 3: The three diagrams with colour order 1234 contributing to g+(−k1)g+(−k2) → g+(k3)g+(k4). Particles
on the left side of a vertex are considered ingoing. Note that the fourth gg → gg diagram does not have the correct
colour order, hence is not shown.

Written more carefully, the helicity amplitude for this process is:

A
(
g+(−k1)g+(−k2)→ g+(k3)g+(k4)

)
= A4

(
(k1)−, (k2)−, (k3)+, (k4)+

)
≡ A4(1−, 2−, 3+, 4+) . (102)

To calculate this helicity amplitude choose the reference momenta p1 = p2 = k4 and p3 = p4 = k1. Equation (96)
implies that the only non-zero ε contraction is ε∓(k2, k4) · ε±(k3, k1) ≡ ε2 · ε3. The third diagram in Figure 3 is
still zero because each term contains at least one of the vanishing ε contractions. The bottom vertex of the middle
diagram is given by:

= ε−1 · ε
+
4 (k1 − k4)µ + εµ1 (−2k1 − k4) · ε+4 + εµ4 (2k4 + k1) · ε−1 = 0 , (103)

where each term individually is 0. The first term is trivially 0 by construction of our reference momenta (equation
(96)). The second term has two separate contractions, ε4 · k1 and ε4 · k4 which are both 0 due to the Dirac equation
/ki|k±i 〉 = 0. To see this, substitute the definition of the polarisation vector (equation (92)) into the contraction
ε4 · k1. This gives that:

ε+(k4, k1) · k1 =
〈k+

4 |γµ|k
+
1 〉√

2〈k−1 |k
+
4 〉

(k1)µ =
〈k+

4 | /k1|k+
1 〉√

2〈k−1 |k
+
4 〉

= 0 . (104)

This can be done for each of the remaining terms on the right hand side, and hence the second diagram vanishes.
The helicity amplitude is therefore equal to the remaining Feynman diagram in Figure 3, and is calculated using
the colour-ordered Feynman rules (see appendix B) as follows:

A4(1−, 2−, 3+, 4+) =

(
i√
2

)2 −i
(−k1 − k2)2

×
[
ε−1 · ε

−
2 (k1 − k2)µ +

(
ε−2
)µ
ε−1 · (2k2 + k1) +

(
ε−1
)µ
ε−2 · (−2k1 − k2)

]
×
[
ε+3 · ε

+
4 (k3 − k4)µ +

(
ε+4
)
µ
ε+3 · (2k4 + k3) +

(
ε+3
)
µ
ε+4 · (−2k3 − k4)

]
=
−2i

s12

(
ε−2 · ε

+
3

) (
ε−1 · k2

) (
ε+4 · k3

)
, (105)

where we put the propagator at the front of the equation and rewrote the momentum invariant (k1 + k2)2 = s12 in
the last line. To get to the last line we removed all quantities which were zero either from the choice of reference
momenta (equation (96)) or the Dirac equation (equation (104)). Note that each polarisation vector is gauge
dependent, hence equation (105) is currently gauge dependent. To make this gauge invariant we use equation (87)
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for the first term and equation (90) for the latter two terms to write all polarisations and momenta in terms of
spinor inner products. Hence:

ε−2 · ε
+
3 =− 〈4

+|γµ|2+〉〈1−|γµ|3−〉√
2[42]〈13〉

= − [43]〈12〉
[42]〈13〉

, (106)

ε−1 · k2 =
−1√

2

[42]〈21〉
[41]

, (107)

ε+4 · k3 =
1√
2

〈13〉[34]

〈14〉
. (108)

Substituting these equations into equation (105), cancelling common factors and using equation (83) to write that
s12 = 〈12〉[21] gives that:

A4(1−, 2−, 3+, 4+) = −i 〈12〉[34]2

[12]〈14〉[14]
. (109)

This is a perfectly acceptable (i.e. gauge invariant) equation, but we can make it more elegant. Multiply and divide
by 〈23〉〈34〉 to get that:

A4(1−, 2−, 3+, 4+) = −i 〈12〉(〈23〉[34])(〈34〉[34])

[12]〈23〉〈34〉〈14〉[14]
, (110)

which at first sight doesn’t look elegant. However using the equations for invariant mass (equation (83)) and
momentum conservation (equation (101)) we have that:

[34]〈34〉 = −s34 = −s12 = [12]〈12〉 , (111)

and using the Schouten identity (equation (90)), momentum conservation (equation (101)) and the Dirac equation
we see that:

〈23〉[34] =〈2−| /k3|4−〉
=− 〈2−| /k1 + /k2 + /k4|4−〉
=− 〈2−| /k1|4−〉
=− 〈21〉[14] . (112)

Substituting these into equation (110) gives that:

A4(1−, 2−, 3+, 4+) =− i 〈12〉(−〈21〉[14])(〈12〉[12])

[12]〈23〉〈34〉〈14〉[14]

= i
〈12〉4

〈12〉〈23〉〈34〉〈41〉
, (113)

which is the famous Parke Taylor formula for 4-gluon scattering11 [13]. Incredibly, all n-gluon helicity amplitudes
with the form An(1−, 2−, 3+, . . . , n+) have the same simple form:

An(1−, 2−, 3+, . . . , n+) = i
〈12〉4

〈12〉〈23〉 . . . 〈n1〉
, (114)

and can be evaluated without summing diagrams. Note that if particles i and j had negative helicity (instead of
1 and 2), then we must replace the numerator in equation (114) with 〈ij〉4. Note that to prove equation (114)
requires recursion relations which are outside the scope of this thesis [22].

2.6 Supersymmetry - a quick aside

To derive the MHV amplitude for the process which contains a single quark anti-quark pair it is possible to once
again use the colour-ordered Feynman rules as above, however this MHV amplitude is more elegantly derived using

11Actually, Parke and Taylor wrote their formula in terms of momentum inner products. The use of spinor inner products was first
used by Mangano and Parke a year later [21].

17



supersymmetry (SUSY), which is the theoretical symmetry that relates fermions and bosons [52]. It contains an
operator Q, also called the supersymmetry charge, which generates this transformation such that:

Q|Boson〉 = |Fermion〉 , Q|Fermion〉 = |Boson〉 . (115)

The single-particle supersymmetric states fall into irreducible representations of the supersymmetric algebra, called
supermultiplets [53–55]. Each supermultiplet contains an equal number of fermionic and bosonic degrees of freedom
of equal mass, called the superpartners of each other. Every particle within a supermultiplet is in the same repre-
sentation of the gauge group, and hence each particle has the same electric charge, colour charge and weak isospin
as its superpartners. A particular example of a supermultiplet (one which we will use) is the gluon supermultiplet.
The fermionic superpartner of the gluon is called the gluino, and by construction is massless (for unbroken SUSY),
has an adjoint colour index and is spin 1/2. Note that if we are only considering strong interactions, the gluino is
identical to the previously considered massless quarks up to the colour. Additionally, tree-level QCD is effectively
supersymmetric [20, 56]. To see this in the n-gluon case is trivial: there are no loops, so there are no fermions.
Therefore any fermions in our theory may as well be gluinos, i.e. we may as well be calculating a SUSY amplitude.
Similarly, if we have quarks, up to the colour index of the fermion the two theories are the same. Therefore we expect
that the purely kinematical amplitude involving 2 gluinos and n− 2 gluons should be identical to that involving a
massless quark anti-quark pair and n−2 gluons. However SUSY amplitudes are easier to calculate due to the extra
relationships between them. One such relationship is the supersymmetric Ward identities (SWI) [19, 27, 28, 57],
which we now describe below.

Denote the polarised gluon as before by g± and a gluino by Λ±, where ± denotes the gluino helicity. Let Q(η)
be the supersymmetry charge with η being some fermionic parameter of the transformation. We then have the
following relationships [27,28]:

[Q(η), g±(k)] =∓ Γ±(k, η)Λ± , (116)

[Q(η),Λ±(k)] =∓ Γ∓(k, η)g± , (117)

where k is the gluon or gluino momentum and Γ± is a complex function which satisfies:

Γ+(k, η) = η̄U−(k) , and Γ−(k, η) = η̄U+(k) , (118)

for U−(k) (U+(k)) being a negative (positive) helicity spinor with momentum k which satisfies the massless Dirac
equation. We are allowed to choose the supersymmetric parameter η arbitrarily, so we choose it to be a negative-
helicity spinor of momentum p obeying the massless Dirac equation times a (real) Grassmann variable12 θ. The
Grassmann variable reminds us that Γ± anti-commutes with the fermion creation and annihilation operators, and
commutes with the bosonic operators. We then write that:

Γ+(k, η(p)) ≡ Γ+(k, p) = η̄(p)U−(k)

= θ〈p+|k−〉
= θ[pk] , (119)

where we used the bra-ket notation for spinors defined in Section 2.4.1 along with the definition of the spinor inner
product equation (76). Note that we can choose Γ+ to vanish by letting p = k. Using equation (118) we similarly
have that:

Γ−(k, p) = θ〈pk〉 , (120)

and we can similarly make Γ− vanish by choosing p = k. A useful property in unbroken SUSY (which we are
considering) is that the operator Q(η) ≡ Q(p) annihilates the vacuum13 [28,58]. Therefore the commutator of Q(k)
with any string of operators creating or annihilating gluons or gluinos has a vanishing vacuum expectation value.
That is:

0 = 〈0|
[
Q,φ±1 φ

±
2 . . . φ

±
n

]
|0〉 =

n∑
i=1

〈0|φ±1 . . .
[
Q,φ±i

]
. . . φ±n |0〉 , (121)

where each φ±i creates or annihilates a gluon or gluino helicity eigenstate. Equation (121) is what we call the
supersymmetric Ward identity (SWI) and will be used throughout the next section.

12The key property of Grassmann variables is that they anticommute with themselves and commute with ordinary (i.e. non-
Grassmann) variables. Specifically this means that if θ1 and θ2 are Grassmann variables, then θ1θ2 = −θ2θ1 and that θ21 = θ22 = 0. For
more details see e.g. [37]

13If Q(p) did not annihilate the vacuum then we would be using broken SUSY. Note that because we do not see low mass superpartners
in nature, SUSY must be a broken symmetry (if it exists at all) [58].
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2.7 Helicity amplitudes with a single quark anti-quark pair

We are now ready to use (unbroken) SUSY to calculate helicity amplitudes involving a single quark anti-quark pair
and n − 2 gluons. The simplest helicity configuration occurs when every particle has the same helicity. For this
configuration the relevant helicity amplitude is the SUSY amplitude An(Λ±1 , g

±
2 , g

±
3 , . . . , g

±
n−1,Λ

±
n ) (Recall that the

position of the quark and anti-quark are fixed from the colour structure (see section 2.3.3)). However, in SUSY
helicity is still conserved along a fermion line, so that in our all outgoing convention each pair of gluinos must have
opposite helicities [27,28]. Hence this amplitude vanishes and due to the equivalence of the kinematic amplitudes:

An(q±, g±1 , . . . g
±
n−2, q̄

±) = 0 , (122)

where the gluons in equation (122) are relabelled so that the first gluon’s index is 1. Note that we can use helicity
conservation along a fermion line to again prove that the all-gluon amplitude An(g±1 , . . . , g

±
n ) vanishes. To do so

we consider the following all positive helicity SWI:

0 =〈0|
[
Q(p),Λ+

1 g
+
2 g

+
3 . . . g

+
n

]
|0〉

=〈0|
[
Q(p),Λ+

1

]
g+

2 g
+
3 . . . g

+
n |0〉+ 〈0|Λ+

1

[
Q(p), g+

2

]
g+

3 . . . g
+
n |0〉

+ · · ·+ 〈0|Λ+
1 g

+
2 g

+
3 . . . g

+
n−1

[
Q(p), g+

n

]
|0〉

=− Γ−(k1, p)〈0|g+
1 g

+
2 . . . g

+
n |0〉+ Γ+(k2, p)〈0|Λ+

1 Λ+
2 g

+
3 . . . g

+
n |0〉

+ · · ·+ Γ+(kn, p)〈0|Λ+
1 g

+
2 . . . g

+
n−1Λ+

n |0〉
=− Γ−(k1, p)An(g+

1 , g
+
2 , . . . , g

+
n ) + Γ+(k2, p)An(Λ+

1 ,Λ
+
2 , g

+
3 , . . . , g

+
n )

+ · · ·+ Γ+(kn, p)An(Λ+
1 , g

+
2 , . . . g

+
n−1,Λ

+
n )

=− Γ−(k1, p)An(g+
1 , g

+
2 , . . . , g

+
n ) , (123)

where we used the SWI (equation (121)) in the second line and equations (116) and (117) to express the commutators
in terms of Γ± in the third line. In the fourth line we used the definitions of the kinematic amplitudes An, and we
used helicity conservation along a fermion line in the last line. Choosing p 6= k1 implies that the all-gluon amplitude
vanishes as expected. We can show that the next simplest helicity configuration also vanishes by changing the
helicity of the final gluon at the top of equation (123). Doing so gives that:

0 =〈0|
[
Q(p),Λ+

1 g
+
2 . . . g

+
n−1g

−
n

]
|0〉

=− Γ−(k1, p)〈0|g+
1 g

+
2 . . . , g

+
n−1g

−
n |0〉+ · · ·+ Γ+(k2, p)〈0|Λ+

1 Λ+
2 g

+
3 . . . g

+
n |0〉

+ · · ·+ Γ+(kn, p)〈0|Λ+
1 g

+
2 . . . g

+
n−1Λ−n |0〉

=− Γ−(k1, p)An(g+
1 , g

−
2 , . . . , g

+
n ) + Γ+(kn, p)An(Λ+

1 , g
+
n , . . . , g

+
n−1,Λ

−
n ) . (124)

To get the last line we recognised that every term except for the first and last violates helicity conservation along
a fermion line. Setting p = k1 gives that the second amplitude must vanish, while setting p = kn implies that the
first amplitude vanishes (something which we already proved in equation (99)). We can swap all of the helicities
and follow the same procedure as for equation (124) to conclude that:

An(q±, g±1 , . . . g
±
n−2, q̄

∓) = An(Λ±1 , g
±
n , . . . , g

±
n−1,Λ

∓
n ) = 0 . (125)

Now let us consider the first non-vanishing amplitude, i.e. the MHV amplitude. To calculate this consider the
following SWI:

0 =〈0|
[
Q(p), g−1 , g

−
2 g

+
3 . . . g

+
n−1Λ+

n

]
|0〉

= Γ−(k1, p)〈0|Λ−1 g
−
2 g

+
3 . . .Λ

+
n |0〉+ Γ−(k2, p)〈0|g−1 Λ−2 g

+
3 . . . g

+
n−1Λ+

n |0〉
− Γ+(k3, p)〈0|g−1 g

−
2 Λ+

3 g
+
4 . . . g

+
n−1Λ+

n |0〉+ · · · − Γ−(kn, p)〈0|g−1 g
−
2 g

+
3 . . . g

+
n |0〉

= Γ−(k1, p)An(Λ−1 , g
−
2 , g

+
3 , . . . , g

+
n−1,Λ

+
n ) + Γ−(k2, p)An(g−1 ,Λ

−
2 , g

+
3 , . . . , g

+
n−1,Λ

+
n )

− Γ−(kn, p)An(g−1 , g
−
2 , g

+
3 , . . . , g

+
n ) , (126)

where we once again removed amplitudes which vanish due to fermion helicity conservation. Now let p = k2, so
that the only remaining amplitude with gluinos is in the same colour order as the quark amplitude. Rearranging
gives that:

Γ−(k1, k2)An(Λ−1 , g
−
2 , g

+
3 , . . . , g

+
n−1,Λ

+
n ) = Γ−(kn, k2)An(g−1 , g

−
2 , g

+
3 , . . . , g

+
n ) , (127)
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while substituting equation (120) for each Γ− and equation (114) for the all-gluon MHV amplitude gives:

θ〈21〉An(Λ−1 , g
−
2 , g

+
3 , . . . , g

+
n−1,Λ

+
n ) = θ〈2n〉i 〈12〉4

〈12〉〈23〉 . . . 〈n1〉
. (128)

Cancelling common factors and using that the inner products are antisymmetric gives that:

An(Λ−1 , g
−
2 , g

+
3 , . . . , g

+
n−1,Λ

+
n ) = i

〈12〉3〈n2〉
〈12〉〈23〉 . . . 〈n1〉

. (129)

A final step is to relabel the particles so that only the gluons are numbered, and turn the gluinos into a quark
anti-quark pair, giving that:

An(q−, g−1 , g
+
2 , . . . , g

+
n−2, q̄

+) = i
〈q1〉3〈q̄1〉

〈q1〉〈12〉 . . . 〈(n− 2)q̄〉〈q̄q〉
, (130)

which is the MHV formula for an amplitude with n−2 gluons of mostly positive helicities, a single negative helicity
quark, and a single positive helicity anti-quark. If we swap the helicities of the quark and the anti-quark we simply
have to exchange the quark with the anti-quark in the numerator of equation (130). To see why, consider the SWI:

0 = 〈0|
[
Q(p),Λ+

1 , g
−
2 g

+
3 . . . g

+
n−1g

−
n

]
|0〉

=− Γ−(k1, k2)〈0|g+
1 g
−
2 g

+
3 . . . g

+
n−1g

−
n |0〉+ Γ−(kn, k2)〈0|Λ+

1 g
−
2 g

+
3 . . . g

+
n−1Λ−n |0〉 , (131)

where we again chose the reference momentum p = k2. If we proceed as before we find that:

〈21〉An(g+
1 , g

−
2 , g

+
3 , . . . , g

+
n−1, g

−
n ) = 〈2n〉An(Λ+

1 , g
−
2 , g

+
3 , . . . , g

+
n−1,Λ

−
n ) , (132)

or that:

An(q+, g−1 , g
+
2 , . . . , g

+
n−2, q̄

−) = i
〈q̄1〉3〈q1〉

〈q1〉〈12〉 . . . 〈(n− 2)q̄〉〈q̄q〉
. (133)

2.8 Explicit formulae for MHV amplitudes

In this section we summarise the two key MHV amplitudes used in this thesis. The n-gluon MHV amplitude with
negative helicity gluons at positions i and j is given by the Parke Taylor formula [13]:

An(1+, . . . , (i− 1)+, i−, (i+ 1)+, . . . , (j − 1)+, j−, (j + 1)+, . . . , n+) = i
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉
, (134)

while flipping all of the helicities implies that we must flip each 〈ij〉 → [ji]. Hence:

An(1−, . . . , (i− 1)−, i+, (i+ 1)−, . . . , (j − 1)−, j+, (j + 1)−, . . . , n−) = i
[ij]4

[1n][n(n− 1)] . . . [21]

= i(−1)n
[ij]4

[12][23] . . . [n1]
. (135)

There is an equally compact MHV formula for the process involving n − 2 gluons and a quark anti-quark pair. If
the quark and gluon i each have negative helicity (hence the anti-quark and all other gluons have positive helicity)
then the amplitude is [21,22]:

An(q−, 1+, . . . , (i− 1)+, i−, (i+ 1)+, . . . , (n− 2)+, q̄+) =
〈qi〉3〈q̄i〉

〈q̄q〉〈q1〉〈12〉 . . . 〈(n− 2)q̄〉
, (136)

where the numbers refer to the (colour ordered) gluons. If we exchange the helicities on the quarks, it is sufficient
to exchange the exponents in the numerator:

An(q+, 1+, . . . , (i− 1)+, i−, (i+ 1)+, . . . , (n− 2)+, q̄−) =
〈qi〉〈q̄i〉3

〈q̄q〉〈q1〉〈12〉 . . . 〈(n− 2)q̄〉
, (137)

while flipping the helicity of each particle again implies that we must change 〈ij〉 → [ji]. Finally we note that
at the amplitude squared level it does not matter whether we consider the mostly-plus or the mostly-minus MHV
amplitude. This is because 〈ij〉 = −[ij]∗, and hence An(+) = (−1)nAn(−)∗, or that:

|An(+)|2 = An(+)∗An(+) = (−1)nAn(−)× (−1)nAn(−)∗ = |An(−)|2 , (138)

where An(+) is a mostly-plus MHV kinematic amplitude, and An(−) is the same amplitude with all of the helicities
flipped.
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3 Monte Carlo event generators

To use the results of the previous section to make predictions at the LHC we must place them within a general
purpose Monte Carlo (MC) event generator such as PYTHIA [6], HERWIG [7] or SHERPA [8]. This is because
the 2 → n scatter for which we just calculated the squared amplitude is only a small part of any proton-proton
collision. To understand how we use the MHV formulae to help make predictions we must therefore understand a
MC event generator. The following sections will first give a basic overview of an LHC particle collision, and then
discuss how a MC event generator simulates this collision. There will be a particular focus on how and where we
can use the MHV formulae within the MC event generator VINCIA [24], since we aim to include these formulae
within this program. For a more detailed review on MC event generators see e.g. [59].

3.1 Modelling particle collisions

At the LHC, each collision typically produces hundreds of composite colour-neutral particles, an example of which
is shown in Figure 4. At first glance this appears to be in direct opposition to fixed-order perturbation which tells
us how to produce n . 10 coloured partons14. Nonetheless fixed-order perturbation is a key component of the MC
event generator, and we build the structure of a proton-proton collision at the LHC by factorising the collision into
several distinct processes with the fixed-order expansion at its core [59–62]. This structure can be summarised as
follows:

• Hard process: This is the 2→ n collision between two partons, one from each incoming proton. We calculate
the hard scatter cross section using the fixed-order perturbative amplitudes of the previous section. Note that
hard refers to the high energy of each incoming particle, (while soft processes are those in which the particles
have low energy). Hence in any hard process either a large momentum transfer occurs, or heavy particles
are created. Further, note that we choose the hard process of interest, which for this thesis will be a QCD
process.

• Heavy resonance decay: If heavy particles such as the top quark, or the W± or Z0 bosons are produced,
their decay is viewed as part of the hard process.

• Parton shower: Accelerated colour and electromagnetic charges emit bremsstrahlung. Note that the gluon is
itself colour charged and therefore emits further bremsstrahlung, hence a shower of colour-charged particles is
created. Emissions associated with the two incoming partons is called initial-state radiation, while final-state
radiation describes the parton showers associated with final-state partons.

• Multiple parton interactions: Secondary interactions between the remaining partons within the colliding
hadrons can occur. Each of these secondary interactions has its own parton showers.

• Hadronisation: Colour confinement becomes significant as partons become softer through bremsstrahlung
radiation, and they move apart in spacetime. Partons bunch into colour-neutral primary hadrons, which are
often unstable and decay further to lighter, more stable particles.

• Use a detector simulator: At this stage, the MC event generator finishes and we switch to a different
program to simulate the interaction of the produced particles with the detector material. It is only at this
point that we mimic the experimental information that can be obtained and used to reconstruct what happened
at the core of this collision.
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Figure 4: Actual data from the CMS detector at the LHC showing production of many hadrons (the blue curved
lines) and four high energy electrons (the purple lines). It is the aim of the MC event generator to predict the
complex spectrum of resultant particles in LHC collisions such as this. Figure courtesy of [60].

Figure 5: The virtualities Q2 of each particle in an LHC collision. We choose the hard process to be the one with
the largest Q2 (in this case the central gluon), and approximate all other virtualities as vanishing.
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3.2 Parton showers

The idea of a parton shower is to iteratively build up a cascade of coloured partons, using simple dipole expressions
for transitions such as qq̄ → qgq̄, gg → ggg, gg → gqq̄, qg → qq′q̄′, and qg → qgg [63, 64]. Note that we use the
”dipole” or ”antenna” shower since this is what VINCIA uses. Readers may be more familiar with conventional
”parton” showers which are based on the so-called DGLAP formalism, however we show below that the former
includes the latter, hence there is no fundamental incompatibility between them. The starting point for this shower
is the hard process, usually a simple 2→ 2 scatter in which each external particle is approximated as on shell. This
means that the virtuality of each external massless particle Q2 is approximately 0, where Q2 is defined as:

Q2 = |k2| =
∣∣∣E2 − |~k|2

∣∣∣ . (139)

Since each hard coloured particle emits bremsstrahlung, we must realise that the external particles aren’t actually
external, and have non-zero virtualities. Therefore, there is some ambiguity as to which process is the hard scatter.
For example, consider Figure 5 in which two quarks scatter via exchange of a gluon, and also emit bremsstrahlung
gluons. Since we choose the hard process based on the largest virtuality, for the hard scatter to be qq → qq we
must have that Q2 > Q2

i (i = 1, 2, 3, 4) [61]. We approximate each Q2
i ≈ 0, and then use expressions for qq → qgq

to correct each of these on-shell approximations. Note that if for example Q2
1 had the largest virtuality, then the

hard process would be qg → qg.
After we have chosen the hard process we then calculate its differential cross section dσME using the squared

matrix elements |Mn|2 from section 2 [37]:

dσME =
1

4E1E2

1

|~v1 − ~v2|
|Mn|2 dΦn , (140)

where E1 (E2) is the energy of the first (second) incoming particle and ~v1 (~v2) the incoming velocity of the first
(second) particle as viewed from the lab frame, and dΦn is defined as:

dΦn = (2π)4δ(4) (kF − kI)
n∏
i=1

d3ki
(2π)3

1

2E~ki
, (141)

where n is the number of final-state particles, kF is the sum of final-state four-momenta, and kI the sum of initial-
state four-momenta. Note that every quantity in equation (140) is Lorentz invariant except for the velocities and
the energies, and that dΦn is what we call relativistically invariant n-body phase space, or just phase space for
short, and has 3n − 4 dimensions. Note that integrals over phase space are often of dimension d � 2, hence we
must use an integration method which is independent of dimensionality, such as the MC method. For more details
see Appendix E.

Before moving on to the shower we must first recognise that the amplitudes which make up this cross section
diverge. For example consider a mostly-positive-helicity MHV amplitude with a single quark pair, and n−2 gluons.
This amplitude is given by equation (130):

An(q−, g−1 , g
+
2 , . . . , g

+
n−2, q̄

+) = i
〈q1〉3〈q̄1〉

〈q1〉〈12〉 . . . 〈(n− 2)q̄〉〈q̄q〉
. (142)

Further, recall equation (84), which relates the inner products to the momentum invariants:

sij = (pi + pj)
2 = 2pi · pj = 2EiEj(1− cos θij) = |〈ij〉|2 , (143)

or equivalently that:

〈ij〉 = eiφij
√
|sij | = eiφij

√
2EiEj(1− cos θij) , (144)

where eiφij is some phase factor, Ei (Ej) is the energy of particle i (j) and θij the angle between the two particles
in some frame. While the final form of the momentum invariant in equation (144) isn’t actually Lorentz invariant,
it does give us valuable insight. It implies that there are two ways that the momentum invariant, and hence the

14In practice most MC event generators only use fixed-order calculations for processes with a few particles in the final state. For
example PYTHIA only uses fixed-order perturbation in 2 → 2 or 2 → 3 processes (with some higher multiplicity states available via
decays of heavy resonances), while a more specialised program such as MadGraph5 can calculate QCD amplitudes at leading order for
processes with up to 7 particles in the final state [9].
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Figure 6: The qq̄ dipole in Z0 → qq̄ → qgq̄. The dipole itself is represented by the curved line between the qq̄ pair,
and the gluon can be emitted by either the quark or anti-quark in the dipole. Note that the Z0 is considered to
have come from a lepton pair, say e+e−, so that there is no ISR.

denominator in equation (142), can vanish. One of the particles can either be soft (i.e. Ei → 0) or two colour-
connected particles can become collinear (θij → 0). These are unsurprisingly called the soft singularity and the
collinear singularity. Note that the physical reasons for these singularities are the following: the soft singularity
occurs because the emitted particle has so little energy that it is impossible to detect, while the collinear singularity
occurs because at a small angular separation the two particles are so close together that we can no longer distinguish
between them. We must therefore be mindful of which areas of phase space we want to access, and somehow remove
these singularities. Note that to properly remove the singularities we must use that tree-level diagrams with a soft or
collinear parton are exactly equal and opposite to those diagrams involving a soft or collinear virtual parton [65,66].
However, virtual, or loop-level QCD, is notoriously difficult [18], so we instead tame these singularities using a
computationally cheap method which we describe in the next section.

3.2.1 Final-state radiation

The aim of the parton shower is to add soft and/or collinear gluon radiation to the incoming and outgoing partons.
To demonstrate how this works, consider the scenario in which two leptons annihilate into a Z0, which creates a qq̄
pair (as studied at the LEP collider). Since the incoming particles are leptons, we only encounter final-state QCD
radiation in this scenario. The first radiated gluon must therefore come from the qq̄ dipole, as shown in Figure 6.
Note that the Z0 is at rest in the centre-of-mass frame. Denote the cross section of the original process to be σ0,
along with its matrix element |Mqq̄|2 and phase space dΦ0, and denote the cross section of the new process (i.e.

with radiation) as σ, along with its matrix element |Mqgq̄|2 and phase space dΦ. The new cross section is then
related to the old one by [35,63,64]:

dσ

σ0
=
|Mqgq̄|2

|Mqq̄|2
dΦ

dΦ0
= g2

s

8

3

[
2s12

s13s23
+

1

s

(
s13

s23
+
s23

s13

)]
1

16π2s
ds13ds23 , (145)

which can be verified by direct substitution of the relevant matrix elements and phase spaces. Here s is the
centre-of-mass invariant:

s = s12 + s13 + s23 = E2
cm , (146)

where the last equality is only true in the centre-of-mass frame, and partons 1, 2, and 3 are those in Figure 6. Note
that the term 2s12/s13s23 in equation (145) is called the eikonal or soft factor, and is universal, i.e. any ratio of
matrix elements |Mn+g|2/|Mn|2 will include this term. The remaining terms within the square brackets on the right
of equation (145) are the collinear terms, and are dependent upon whether the emitter was a quark or a gluon.
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Substituting into equation (145) the energy fractions xi of each parton, defined such that15:

x1 =
2E1

Ecm
= 1− s23

s
, x2 =

2E2

Ecm
= 1− s13

s
, x3 =

2E3

Ecm
= 1− s12

s
, (147)

re-writing g2
s = 4παs and cancelling gives that:

dσ

σ0
=

2αs
3π

x2
1 + x2

2

s(1− x1)(1− x2)

1

s
ds13ds23 . (148)

Finally we note that dx1 = −ds23/s and dx2 = −ds13/s to get the result:

dσ

σ0
=

2αs
3π

x2
1 + x2

2

(1− x1)(1− x2)
dx1dx2 . (149)

We could similarly derive expressions describing gluon emission from the remaining possible dipoles. These expres-
sions are given by [63]:

gg dipole:
dσ

σ0
=

3αs
4π

x3
1 + x3

2

(1− x1)(1− x2)
dx1dx2 , (150)

qg dipole:
dσ

σ0
=

3αs
4π

x2
1 + x3

2

(1− x1)(1− x2)
dx1dx2 . (151)

Note that each gluon emitter corresponds to a term x3
i , while each quark (or anti-quark) emitter corresponds to a

term x2
i . We mention here for completeness that if the emitted gluon is collinear to the particle which emitted it,

we can change from ”dipole” showers to ”parton” showers, and use the so-called Altarelli-Parisi splitting functions
to describe the emission. We can relate the dipoles in equations (149) - (151) to the Altarelli-Parisi splitting in the
limit that x2 → 1, by making the following substitutions:

k2
⊥ =E2

cm(1− x1)(1− x2)⇒ dk2
⊥ = −E2

cmdx2

z =1− x1 ⇒ dz = −dx1 , (152)

where k⊥ is the transverse momentum of the gluon relative to the dipole axis, z = Eg/Ei is the energy fraction
carried by the gluon (see Figure 7), and the limit x2 → 1 corresponds to the limit that the gluon is collinear to the
quark (see Figure 8). Substituting equation (152) into equation (149) gives that:

dσ

σ0
=

2αs
3π

dk2
⊥

k2
⊥

dz

z

[
1 + (1− z)2

]
. (153)

We can similarly take the collinear limit for the other two dipole cross sections (equations (150) and (151)) to obtain
the famous DGLAP equations [67–69]:

dσ

σ0
=
αs
4π

dk2
⊥

k2
⊥
Pa→bc(z)dz , (154)

where:

Pq→qg(z) =
1 + (1− z)2

z

Pg→gg(z) =
[1− z(1− z)]2

z(1− z)
, (155)

are called the DGLAP splitting kernels. What we have described so far has seen us make no approximations.
However, in general we will have for gluon emission that:

|Mn+g|2

|Mn|2
= g2

sNC

(
2s12

s13s23
+ collinear terms + finite

)
, (156)

where the finite term for Z0 decay just happens to be 0. If the finite term is not zero, then we make the approximation
[35]:

a = g2
sNC

(
2s12

s13s23
+ collinear terms

)
≈ |Mn+g|2

|Mn|2
, (157)

15For a more in depth discussion of the energy fractions xi along with a more thorough derivation of equation (149), see Appendix F.
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Figure 7: The two Feynman diagrams which contribute to Z0 → qgq̄. Momentum i is the off-shell quark (anti-
quark) momentum. In the limit that the gluon is collinear to either the quark or the anti-quark, we must no longer
consider the dipole, and instead must consider only one of these diagrams. For example, if the gluon is collinear
to the quark we consider only the first diagram with the gluon carrying energy E3 = zEi, and the quark carrying
energy E1 = (1− z)Ei, 0 < z < 1.

Figure 8: Two-dimensional phase space. When x2 → 1 we have that s13 → 0, possibly with E1, E3 6= 0. This
implies that the gluon and quark are collinear and corresponds to the blue line. Similarly if the anti-quark and
gluon are collinear we are on the red line.
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where a is called the antenna function. Similarly, if a gluon splits into a quark anti-quark pair, then the antenna
function is given by [64]:

a =
1

s2

(
s2

1q + s2
1q̄

sqq̄

)
≈ |Mn+qq̄|2

|Mn+g|2
, (158)

where particle 1 is the remaining particle in the original dipole. In the limit in which the quark and anti-quark
become collinear we obtain the final DGLAP splitting kernel:

Pg→qq̄(z) =
[
z2 + (1− z)2

]
. (159)

At this point we use the antenna function to calculate the new differential cross-section using (for gluon emission):

dσ

σ0
≈ a 1

16π2s
ds13ds23 . (160)

This approximation is therefore only valid near the soft and collinear singularities, where we can ignore finite terms.
However, since the amplitude for soft and collinear bremsstrahlung is higher than that for a hard, well-separated
emission, we expect the majority of our radiation to be soft and/or collinear. If the radiation is hard and well
separated, we must make corrections to this approximation, which we will outline in Section 3.2.2.

We now have the cross sections, but we don’t quite have the probability of the dipole emitting a gluon. While
we normally have that the probability of emission from a dipole is dP0 = dσ/σ0, we need to ensure that an emission
has not already occurred, i.e. we want the first emission. The probability that the first emission occurs at time T
is the probability that something happens at T multiplied by the probability that nothing has already happened
before T :

dPfirst(T ) = dPsomething happens(T )Pnothing happens(0 ≤ t ≤ T ) . (161)

To find a useful formula for the probability that an emission already happened we consider:

Pnothing(0 ≤ t ≤ T ) = 1− Psomething(0 ≤ t ≤ T ) , (162)

and divide the probability of something happening into n equal sections. Taking the limit that n→∞ we get:

Pnothing(0 ≤ t ≤ T ) = lim
n→∞

n∏
i=0

[
1− Psomething(Ti ≤ t ≤ Ti+1)

n

]n
= exp

(
−
∫ T

0

dPsomething(t)

dt
dt

)
. (163)

Substituting this into equation (161) gives:

dPfirst(T ) = dPsomething(T ) exp

(
−
∫ T

0

dPsomething(t)

dt
dt

)
. (164)

We now need to relate the time variable to one of our two variables dk⊥ or z. To do so we must consider what
we mean by the first emission. Earlier we said that the hard process is the one which has the largest virtuality
Q2, and that with each emission the emitting particle loses some virtuality (because it has lost four-momentum).
Therefore, an earlier emission is associated with a larger Q2 than a later emission. This ties nicely into equation
(164), since time is inversely related to energy, and therefore earlier times are associated with larger four-momenta,
or equivalently larger Q2. We can relate the virtuality to the energy fractions using [61]:

Q2 = E2
cm(1− x2) , (165)

and from equation (152) we know that:

k2
⊥ = E2

cm(1− x1)(1− x2) = (1− x1)Q2 . (166)

Therefore we see that:
dk2
⊥

k2
⊥

=
dQ2

Q2
, (167)

which relates k2
⊥ to Q2 and hence to the first emission. Therefore the probability of a process in our shower occurring

in terms of k2
⊥ is [63]:

dP = dP0 exp

(
−
∫ k2

⊥max

k2
⊥

dP0

dk2
⊥
dk2
⊥

)
=
dσ

σ0
exp

(
−
∫ k2

⊥max

k2
⊥

1

σ0

dσ

dk2
⊥
dk2
⊥

)
, (168)
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where dσ/σ0 is given by the equations above, k2
⊥max

corresponds to the earliest possible emission and k2
⊥ corresponds

to the actual emission. We therefore describe the order of emissions as going from the largest k2
⊥ to the smallest

k2
⊥. Note that the exponential in equation (168) is called the Sudakov factor, and that in the regions of phase space

where dσ/σ0 → ∞, the Sudakov factor approaches 0 exponentially, ensuring a finite answer. Therefore, including
the Sudakov factor is a computationally cheap method of approximating all cancellations between loop level and
tree level, hence the parton shower is better than matrix elements at handling the soft and collinear regions of phase
space [35,61,62].

3.2.2 Improving parton showers with matrix elements

We can improve parton showers by including correction factors. We give here a brief outline of one such approach,
without explaining any of its details. In this method we calculate the parton-shower approximation and correct the
antenna function with a multiplicative correction factor [35,59,61]. This can be sketched as:

Exact =
Exact

Approximate
×Approximate , (169)

where ”approximate” refers to the parton shower approximation, and the fraction is the correction factor. This
factor is, in more detail:

Exact

Approximate
=
|Mn+1|2∑
a|Mn|2

, (170)

where the sum is over all possible shower histories which could create the final state. We have therefore replaced
the antenna function with the exact ratio of matrix elements, and the corrected emission is thus correct to leading
order in the perturbative expansion. To do this obviously requires us to be able to calculate the fixed-order matrix
element, for which we can use VinciaMHV.
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4 Calculating the MHV amplitude

We wrote a C++ program called VinciaMHV which uses the techniques described in section 2 to calculate the
full colour-summed MHV squared amplitude (hereafter called the FC MHV squared amplitude) for qg → q + ng,
n = 1, 2, 3, 4, or any other crossing-related 2 → n process. VinciaMHV can also calculate the kinematic colour-
ordered n-gluon amplitude, however we did not have enough time to add the colour information. We can use our
program to help calculate the basic hard scatter matrix element and to help correct parton showers using matching
(see section 3.2.2). In Section 4.1 we consider the frequency with which we can use VinciaMHV. We then give an
overview of the structure of VinciaMHV in Section 5, including what the program can calculate, how it does this,
and instructions on how to use it. Note that since VinciaMHV uses header files from PYTHIA, it will not work on
a computer on which PYTHIA is not installed. For instructions on how to install PYTHIA see [6] .

4.1 MHV frequency

It is worthwhile to ask what fraction of the time we will sample the MHV configuration for qg → q+ng, n = 1, 2, 3, 4,
and hence how often we will use VinciaMHV to calculate the amplitude for this process. The first thing to notice
is that for 4 or 5 partons, the only non-vanishing amplitude is the MHV amplitude, hence we can use VinciaMHV
to calculate the entire matrix element for these multiplicities. How about for 6 or 7 partons? A naive method
of calculating how often we are in the MHV configuration i.e. of calculating the MHV frequency, would be to
calculate the ratio of MHV configurations to all non-vanishing helicity configurations. For the 6 parton mostly-
plus MHV configuration, we have 2 different ways to choose the quark and anti-quark helicities, and 4 possible
choices for position of the remaining negative helicity gluon. Since we can also do this for the mostly-minus MHV
configuration, we find that there are 2 × 2 × 4 = 16 possible MHV configurations. The non-MHV configuration
for 6 partons, also called the NMHV configuration, has 3 positive and 3 negative helicity partons. The quark and
anti-quark have opposite helicities, and there are 2 ways of this occurring. We now have 4C2 = 4!/(2!2!) = 6 ways
in which to choose the positions of the 2 remaining positive helicity gluons, and hence 12 ways of obtaining the
NMHV configuration. The ratio of MHV configurations to all non-vanishing helicity configurations for 6 partons is
therefore:

MHV

All
=

16

28
= 0.57 . (171)

A similar treatment of the 7 parton case shows that there are 2×2×5 = 20 MHV configurations, and 2×(5C2+5C3) =
40 NMHV configurations. Therefore, the ratio of MHV to all non-vanishing helicity configurations is:

MHV

All
=

20

60
= 0.33 . (172)

At first glance these do not look promising. However for these ratios to be the MHV frequency, every helicity
configuration must contribute equally to the total amplitude. If the MHV configurations contribute more to the total
amplitude than non-MHV configurations, then we have an enhanced probability of being in the MHV configuration.
To test these contributions we used the RAMBO algorithm to generate a million uniform random phase space points,
and used VINCIA’s interface with MadGraph4 [25] to calculate the fraction |MMHV

n |2/|Mn|2 for each phase space
point. We then plotted the probability of each of these fractions occurring, which is shown in Figure 9. The first
thing to notice in Figure 9 is that for 4 and 5 partons, we are always in the MHV configuration as expected. More
interesting is that for 6 partons, the MHV amplitude contributes 55−80% of the amplitude about 90% of the time,
while for 7 partons, the MHV amplitude contributes 35− 60% of the amplitude about 90% of the time. From this
we conclude that the naive frequency given by ratios is the lower bound of the true frequency, and that the average
MHV frequency is about 15% higher than the simple ratio of possible configurations.

We can find a more accurate MHV frequency by sampling phase space more frequently near the singularities,
since the probability of being near them is high. This sampling becomes very interesting when considering the

29



Figure 9: The fractions of the total amplitude given by the MHV amplitudes, and the probability of obtaining
these fractions. Phase space was scanned a million times using RAMBO, and amplitudes calculated using VINCIA
interfaced with MadGraph4. Notice in the top right-hand corner that for 4 and 5 partons the MHV configuration
is the only contributing configuration. Error bars indicate a single standard deviation.

helicity structure of the collinear singularity. Consider the case in which partons a and b become collinear, such
that the intermediate momentum kP ≡ ka + kb goes on shell. We have that:

k2
P = 2ka · kb

a‖b−−→ 0 , (173)

and:
ka ≈ zkP , kb ≈ (1− z)kP , (174)

for 0 < z < 1. Similarly, since the momenta are (almost) collinear, we have that:

λa ≈
√
zλP , λb ≈

√
1− zλP , (175)

and similar for λ̃a and λ̃b where λi is a two-spinor as defined in section 2.4. It can be shown that in this case we
have [2]:

An(. . . , aha , bhb , . . . )
a‖b−−→

∑
hP=±

Split−hP (aha , bhb ; z)An−1(. . . , PhP , . . . ) , (176)

where hi is the helicity of particle i, An−1 is assumed to be an MHV amplitude and Split−hP (aha , bhb ; z) is a
splitting function, which, in the case q → qg, is given by:

Split−(q+, g+) =
1√

1− z〈qg〉
, Split−(q+, g−) = − z√

1− z[qq]
,

Split−(g+, q̄+) =
1√
z〈gq̄〉

, Split−(g−, q̄+) = − 1− z√
z[gq̄]

, (177)

where the opposite quark helicity case is not shown, and can be calculated using charge conjugation. Note that
particle P is going into Split with helicity hP (see Figure 10), but in the all outgoing convention we must flip the
helicity of P , hence we have Split−hP . For An to be MHV we require the positive helicity P to split into two
positive helicity particles a and b, which corresponds to the two splitting functions on the left of equation (177).
What we notice is that the non-MHV cases on the right of equation (177) are suppressed by z and 1−z respectively.
If we build up radiation starting from the 5 parton MHV case we find that, in the collinear limit, we obtain the
MHV configuration most often. Therefore a weighted scan of phase space may find an even higher MHV frequency
than the flat scan in Figure 9. We can therefore use VinciaMHV to calculate significant fractions of the total FC
amplitude.
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Figure 10: Factorisation of the QCD amplitude when colour-connected partons a and b become collinear. Figure
courtesy of [2].

4.2 Structure of VinciaMHV

VinciaMHV is broken up into two classes: SpinorProducts and SPBag, both contained within a single header
file 2 Quarks.h. The second class inherits spinor products from the first, and calculates the FC MHV squared
amplitude for qg → q + ng, n = 1, 2, 3, 4, or any other 2 → n crossing-related process. This structure was chosen
because spinor products are universal, and we want to retain the flexibility to use different classes to calculate
different types of MHV amplitudes. Note that it would be easy to combine these two classes into one. As the name
suggests, the main purpose of the former class is to calculate spinor inner products. It requires the input of two
four-momenta and should be called as:

• MHV.spinorProdPos(Vec4 k i, Vec4 k j);, to calculate 〈ij〉.

• MHV.spinorProdNeg(Vec4 k i, Vec4 k j);, to calculate [ij].

where MHV is an object of class SpinorProducts or SPBag, k i and k j are the particles’ four-momenta, stored
as type Pythia8/Basics::Vec4, inner products were calculated using equations (73) and (77), and we calculated
k+ = k0 + k3 using Pythia8/Basics::pPos(). Note that the momentum inputs have (natural) units of energy
and, while the exact unit is unimportant, for definiteness we will assume that all momentum inputs in this thesis
have units of GeV. Further note that we will call all objects of these two classes MHV throughout this thesis.

The main purpose of the class SPBag is to calculate the FC MHV squared amplitude. It is also possible to
use this class to calculate the kinematic amplitude for any colour order, and to calculate the leading-colour (LC)
squared amplitude i.e. a single colour-ordered kinematic amplitude squared, multiplied by the diagonal entry of the
relevant colour matrix. To calculate the FC MHV squared amplitude we need two functions: one to construct the
object of type SPBag and calculate all of the spinor inner products; and another to actually calculate the FC MHV
squared amplitude. The constructor needs four inputs:

• The (int) number of partons in the process.

• A vector of input type Pythia8/Basics::Vec4 containing the four-momentum of each particle.

• A vector of input type double containing the helicities ±1.0 of each particle.

• A vector of input type int containing the particle IDs (see Table 2).

The constructor should be called as follows:

• SPBag MHV(nPartons, momenta, helicities, IDs);.

Note that it is important that the ith input of each vector refers to the same particle, and that these inputs are
uncrossed (i.e. containing both incoming and outgoing particles).

The first job of the constructor is to cross the two incoming particles into the outgoing formalism of section 2,
and rearrange the particles so that they are in the order q, g1, g2, . . . , gn−2, q̄, as shown in Table 3. The constructor
also checks that we have all of the correct tools to calculate the MHV amplitude. It checks the following: the
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Particle ID
u 1
d 2
s 3
c 4
b 5
g 21

Table 2: The IDs of each particle used in our code. Note that the ID of each anti-quark is just the negative of the
quark ID, and that we follow the standard MC particle numbering scheme [70].

Input Crossed
particle 4-momentum Helicities particle 4-momentum helicity Colour order

q (5, 0, 0, 5) − q̄ (−5, 0, 0, −5) + 4
g (5, 0, 0, −5) − g (−5, 0, 0, 5) + 2
q (5, 3, 4, 0) − q ( 5, 3, 4, 0) − 1
g (5, −3, −4, 0) − g ( 5, −3, −4, 0) − 3

Table 3: An example of input 4-momenta and helicities for VinciaMHV, and the crossed momenta, helicities, particle
types and colour-order. The 4-momenta are in units of GeV and given as (E, k1, k2, k3), while the colour order
starts at the quark, moves through the gluons in the order in which they appear, and finishes at the anti-quark.

helicity configuration of each particle; that there is exactly one quark and anti-quark with opposite helicities; that
all other particles are gluons; and that we are in the MHV configuration. If there is an error, VinciaMHV will
output to the screen what the error is, and set all complex variables to the complex error value pie, defined as:

pie = −π + ei . (178)

If we ask for the LC or FC squared amplitude VinciaMHV will return the unphysical squared amplitude |Mn|2 = −1.
If there is no error, VinciaMHV begins to calculate spinor inner products. Since the FC MHV squared amplitude

requires every possible colour connection, and therefore every possible spinor inner product (see sections 2.3.4 and
2.8), the constructor calculates each unique spinor inner product and store them in an n × n array which we call
spBag. This array has the following structure:

〈qq〉 〈q1〉 . . . 〈q(n− 2)〉 〈qq̄〉
〈1q〉 〈11〉 . . . 〈1(n− 2)〉 〈1q̄〉

...
...

. . .
...

...
〈(n− 2)q〉 〈(n− 2)1〉 . . . 〈(n− 2)(n− 2)〉 〈(n− 2)q̄〉
〈q̄q〉 〈q̄1〉 . . . 〈q̄(n− 2)〉 〈q̄q̄〉

 , (179)

where q and q̄ are the quark and anti-quark four-momenta respectively, and 1, 2, . . . , (n − 2) are the gluon four-
momenta in the order of input. Note that since 〈ij〉 = −〈ji〉, and since SPBag is symmetric, we only calculate
the upper diagonal using SpinorProducts::spinorProdPos, and fill the lower diagonal by calculating the negative
of the upper diagonal. We also save computational time by not calculating the diagonal inner products, instead
pre-setting each 〈ii〉 = 0. For spinor inner products of type [ij] we do the exact same procedure, replacing each
〈ij〉 with [ij]. Note that we often re-use the same inner product to calculate the FC MHV squared amplitude.
Therefore, the advantage of this method is that we only have to calculate each spinor inner product once, and then
just retrieve their values from this array when needed. Further note that this is not an efficient method if we are
only interested in a single LC amplitude squared.

The second important function of class SPBag is the function fullColourAmp, which calculates either the LC or
FC MHV squared amplitude. It takes a single integer input, and is called as:

• MHV.fullColourAmp(type);,

where the input type tells the computer what to compute:
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• type = 0: Computes the LC amplitude squared, with the colour-order of the gluons given by the order of
input.

• type = 1: Computes the FC MHV squared amplitude.

Note that a particular LC amplitude may not diverge, even if the FC amplitude diverges. This would happen if there
are two collinear partons i and j which are not colour-connected in the LC amplitude. However, to calculate the
FC MHV squared amplitude we sum over every colour connection (see Section 2.3.4), hence the FC MHV squared
amplitude diverges, even though the LC amplitude did not. Therefore we should exercise additional caution when
interpreting the results of a LC amplitude.

The first task of the fullColourAmp function (when type = 1) is to calculate each of the kinematic amplitudes,
and store them in an array, which we call ampBag. This calculation was optimised by noting that the entire
numerator, as well as the term 〈q̄q〉 in the denominator of equation (136), is common to each kinematic amplitude
in ampBag. Hence we only calculate this common factor once, and then, for each amplitude in ampBag, divide
this factor by the relevant inner products in the denominator. We use the function std::next permutation()

to permute the n − 2 gluons after each colour-ordered kinematic amplitude is created. This permutes the gluons
lexicographically, which means that if we replace the numerical sequence 1, 2, 3, . . . , n with the alphabetical sequence
a, b, c, . . . , n, then the set of permutations is in alphabetical order. For example, the lexicographical order of 1, 2, 3
is:

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1),

and ampBag would have the following entries:

ampBag = [A5(1, 2, 3), A5(1, 3, 2), A5(2, 1, 3), A5(2, 3, 1), A5(3, 1, 2), A5(3, 2, 1)] ,

where A5(1, 2, 3) refers to the kinematic MHV amplitude with gluons given by colour-order (1, 2, 3). If amplitude
i has a singularity, then ampBag[i]= pie, fullColourAmp(type) returns −1, (i.e. |Mn|2 = −1), and an error
message is output to the screen. If there is no error we use the matrix equation (see equation (39)):

|Mn|2 = A∗i (Cn)ijAj , (180)

to calculate the FC MHV squared amplitude (without the factor of g2n−4
s ), where Ai is the ith component of ampBag,

and (Cn)ij is the colour matrix for n partons given in Appendix H. We used a MadGraph4 interface to calculate
each colour matrix, corrected for both the difference in t-matrix and gluon-permutation conventions, and stored
each Cn in the header file 2 Quarks.h. Since equation (180) is symmetric, we optimised VinciaMHV by calculating:

|Mn|2 =
∑
i>j

2[Re(A∗i )Re(Aj) + Im(A∗i )Im(Aj)](Cn)ij +
∑
k

|Ak|2(Cn)kk , (181)

instead of equation (180). Note that equation (181) is independent of the running coupling, and is therefore scale
invariant. Further note that the squared amplitude has (natural) units of E8−2n, where E is energy. Other useful
functions in the class SPBag are:

• printMatrix(): Prints spBag (equation (179)).

• printAmps(): Prints all of the colour-ordered kinematic amplitudes in ampBag.

• amplitude(type): Calculates colour-ordered kinematic amplitudes. If type = 0, it calculates the colour-
ordered kinematic amplitude An(1, 2, . . . , n − 2), and if type = 1, it calculates all colour-ordered kinematic
amplitudes and stores them in ampBag.
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5 Comparing VinciaMHV to MadGraph4

We used an existing interface to MadGraph4 to compare VinciaMHV’s output with a known, conventional solution
for the process qg → q + ng, n = 1, 2, 3, 4. We tested both the LC and FC MHV squared amplitudes for accuracy,
and compared the time it takes each program to calculate the FC MHV squared amplitude.

5.1 Validation at specific phase-space points

We compared the VinciaMHV 4-parton LC squared amplitude against MadGraph4 for pre-determined phase-space
points. One such point is shown in Table 4, and shows that we successfully crossed and re-ordered our partons,
and calculated the correct LC squared amplitude. It additionally validates equation (138), which states that the
mostly-plus and mostly-minus squared MHV amplitudes are equivalent. Note that we will only include unique
MHV squared amplitudes from this point on.

We tested the VinciaMHV 4-parton FC MHV squared amplitude against MadGraph4 for three different mo-
mentum configurations. The configurations and their results are given in Tables 5 - 7, and show agreement between
the two programs up to at least 8 significant figures. Notice that for the second momentum configuration, shown
in Table 6, the quark and gluon scatter mostly in the forwards direction, leading to an enhanced amplitude, while
for the third momentum configuration, shown in Table 7, the quark and gluon scatter mostly in the backwards
direction, hence dampening the amplitude as expected. We also chose specific phase-space points for the 5-parton
and 6-parton processes and validated VinciaMHV for these multiplicities, as shown in Tables 8 and 9 respectively.

To validate VinciaMHV for the 7-parton process we used RAMBO to provide ten million uniform random
four-momenta, and at each of these compared the FC MHV squared amplitude calculated by VinciaMHV to that
calculated by MadGraph4. In Table 10, we show two such comparisons which demonstrate the divergent nature of
MHV amplitudes. In the first configuration, each particle has roughly an equal share of the incoming energy, and
is well separated. Therefore the FC MHV squared amplitude has the relatively small value of 1.457× 103 GeV−6.
In the second configuration, the final gluon is soft compared to every other particle, and is approximately collinear
to the incoming gluon, hence the FC MHV squared amplitude has the much larger value of 2.878× 1011 GeV−6.

Helicities MadGraph4 VinciaMHV
−−−− 170.7 170.7
−+−+ 42.67 42.67
+−+− 42.67 42.67
+ + ++ 170.7 170.7

Table 4: Validation of VinciaMHV LC squared amplitude, and the equivalence of the mostly-minus and mostly-plus
squared amplitudes. Four-momenta are taken from Table 3, and helicities are uncrossed. Note that the 4-parton
squared amplitude is dimensionless.
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Particle E k1 k2 k3

q 5 0 0 5
g 5 0 0 −5
q 5 3 4 0
g 5 −3 −4 0

Helicities MadGraph4 VinciaMHV
−−−− 234.66667 234.66667
−+−+ 58.666667 58.666667

Table 5: VinciaMHV 4-parton FC MHV squared amplitude for transverse scattering. Momentum is uncrossed and
in units of GeV and the 4-parton squared amplitudes are dimensionless.

Particle E k1 k2 k3

q 5 0 0 5
g 5 0 0 −5
q 5 4 0 3
g 5 −4 0 −3

Helicities MadGraph4 VinciaMHV
−−−− 1226.6667 1226.6667
−+−+ 785.06667 785.06667

Table 6: VinciaMHV 4-parton FC MHV squared amplitude for mostly forward scattering. Momentum is uncrossed
and in units of GeV and the 4-parton squared amplitudes are dimensionless.

Particle E k1 k2 k3

q 5 0 0 5
g 5 0 0 −5
q 5 −4 0 −3
g 5 4 0 3

Helicities MadGraph4 VinciaMHV
−−−− 181.66667 181.66667
−+−+ 7.2666667 7.2666667

Table 7: VinciaMHV 4-parton FC MHV squared amplitudes for mostly backward scattering. Momentum is un-
crossed and in units of GeV and the 4-parton squared amplitudes are dimensionless.

Particle E k1 k2 k3

q 5 0 0 5
g 5 0 0 −5
q 4.167 2.5 3.333 0
g 3.333 0 −3.333 0
g 2.5 −2.5 0 0

Helicities MadGraph4 VinciaMHV
−−−−− 442.5 442.5
−−−−+ 44.25 44.25
−−−+− 9.834 9.834
−+−−+ 5.532 5.532
−+−+− 19.67 19.67
−+−+ + 76.83 76.83

Table 8: VinciaMHV 5-parton FC MHV squared amplitude for a chosen phase-space point. Momentum is uncrossed
and in units of GeV and the 5-parton FC MHV squared amplitude has units of GeV−2
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Particle E k1 k2 k3

q 5 0 0 5
g 5 0 0 −5
q 3 1 2.333 1.599
g 2 1 0.667 −1.599
g 2 −2 0 0
g 3 0 −3 0

Helicities MadGraph4 VinciaMHV
−−−−−− 1.348× 104 1.348× 104

−−−−++ 18.22 18.22
−−−+−+ 24.01 24.01
−−−+ +− 288.1 288.1
−+−−−+ 253.2 253.2
−+−−+− 37.51 37.51
−+−+−− 163.9 163.9
−+−+ ++ 2850 2850

Table 9: VinciaMHV 6-parton FC MHV squared amplitude for a chosen phase-space point. Momentum is uncrossed
and in units of GeV and the 6-parton squared amplitudes have units of GeV−4

Particle E k1 k2 k3

q 5 0 0 5
g 5 0 0 −5
q 1.347 −0.041 −0.305 −1.312
g 1.389 −1.134 −0.504 −0.624
g 2.341 2.020 −1.071 0.505
g 2.812 0.656 2.726 0.214
g 2.110 −1.501 −0.846 1.218

Helicities MadGraph4 VinciaMHV
−−−−−−− 1.457× 103 1.457× 103

Particle E k1 k2 k3

q 5 0 0 5
g 5 0 0 −5
q 4.066 −2.204 −3.203 1.192
g 1.782 −0.865 1.450 −0.572
g 2.318 1.668 0.886 −1.345
g 1.810 1.402 0.866 0.748
g 2.3× 10−2 −4× 10−4 4× 10−4 −2.3× 10−2

Helicities MadGraph4 VinciaMHV
−−−−−−− 1.872× 1015 1.872× 1015

Table 10: VinciaMHV 7-parton FC MHV squared amplitudes for two phase-space points. Momentum is uncrossed
and in units of GeV, and the 7-parton squared amplitude has units GeV−6.
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5.2 Singularity structure

A region in which it is possible to lose numerical precision is the collinear region. For VinciaMHV, this loss would
occur because the spinor inner product is defined numerically as:

〈ij〉 =
√
k+
j e

iφi −
√
k+
i e

iφj , (182)

along with a similar expression for [ij]. If the two partons i and j are almost collinear, we will subtract similar terms
in equation (182), and hence lose numerical precision. Since the collinear spinor inner product gives the dominant
contribution to the FC MHV squared amplitude, any loss in numerical precision will be significant. Similarly, it
is possible for MadGraph4 to lose numerical precision in the collinear region of phase space since the cancellations
between diagrams may be very significant in this region.

To test the relative precision of the two programs in the collinear limit we used a simple 5-parton collinear
phase-space point, and used Pythia8/Basics::Vec4::rot(ε,0) to rotate the final-state partons by a small polar
angle ε. We used both programs to calculate the FC MHV squared amplitude, and plotted the relative precision
between them for decreasing values of ε. We used two different helicity configurations, one in which the two collinear
partons have the same helicity, and one in which their helicities differ. This plot is shown in Figure 11. Note that
the relative precision is defined as:

Relative VinciaMHV Precision =
|VinciaMHV−MadGraph4|
VinciaMHV + MadGraph4

, (183)

and that the specific momentum configuration is shown in Table 11. From Figure 11, we see that the two programs
diverge from one another in the collinear limit, and if the two collinear helicities differ in the all-outgoing convention,
then this divergence is enhanced. The two programs diverge from one another at ε < 10−5 for the opposite helicity
case, while for the same helicity case this divergence occurs for ε < 10−7. Further, Table 12 shows that MadGraph4
gives the more singular result at the asymptote. Figure 11 also shows that any loss of precision in VinciaMHV
will occur beyond any phase space cuts, which are typically at the order of 1GeV, which corresponds to ε ≈ 10−3.
Finally, we also see that the two programs appear to converge in the region in which they will be used, something
which will be confirmed in the next section.

Particle E k1 k2 k3

q 1 0 0 1
g 1 0 0 −1
q 0.417 0.333 0.250 0
g 0.333 −3.333 0 0
g 0.250 0 0 −0.250

Table 11: Uncrossed momentum inputs for Figure 11.

ε MadGraph4 VinciaMHV
1.00× 10−7 3.53× 1029 1.78× 1019

5.62× 10−7 7.75× 1022 5.63× 1017

1.00× 10−6 7.91× 1020 1.78× 1017

5.62× 10−5 5.64× 1013 5.64× 1013

Table 12: MadGraph4 and VinciaMHV FC MHV squared amplitudes in the collinear limit for the (−,+,+,−,−)
helicity configuration. These values are all from the asymptotic region of Figure 11.
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Figure 11: Relative numerical precision of VinciaMHV compared to MadGraph4 near the singularities. The helicities
are given in the order q, q̄, g1, g2, g3, and are in the all-outgoing formalism. Error bars indicate a single standard
deviation.

Figure 12: Relative numerical precision of VinciaMHV compared to MadGraph4. Error bars indicate a single
standard deviation.
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5.3 Precision tests

We used RAMBO to generate ten million n-parton phase-space points for n = 4, 5, 6, 7, and calculated the FC
MHV squared amplitude using both VinciaMHV and MadGraph4. We calculated the relative numerical precision
of VinciaMHV, in this case normalised such that:

Relative VinciaMHV Precision =
|VinciaMHV−MadGraph4|

Average
, (184)

and plotted its probability distribution in Figure 12. We see that the two programs agree to better than one part
in a trillion 96% of the time, and to better than one part in a billion over 99% of the time, thus validating our
implementations. Additionally, we see that the difference between the two programs becomes slightly larger as we
increase the number of partons. This is as expected, because at increasing multiplicities MadGraph4 sums over
more diagrams, cancelling an increasing number of terms, and hence losing numerical precision in the kinematic
amplitude. Conversely, VinciaMHV uses multiplication to calculate this value, and therefore does not lose stability
with additional partons. For this reason we expect the very small observed difference between the two programs to
be in favour of VinciaMHV. Figure 12 also shows that one (or both) of the programs becomes numerically unstable
at certain phase space points, however this is rare, and the two programs are in near-perfect agreement in almost
all of phase space, hence we can use either program to calculate the same result.

5.4 Speed tests

In this thesis we aimed to increase the speed with which we calculate QCD amplitudes, especially those of high
multiplicity. Many programs use Feynman diagrams to calculate the squared amplitude, however the stronger than
factorial growth of the number of diagrams makes these programs very slow for high multiplicities. To test just
how slow, we tested the speed that it takes a single 3 GHz CPU (Mac Pro) to calculate an MHV amplitude using
MadGraph4, and, for comparison, tested the time it takes VinciaMHV to calculate the same amplitude. To do
this we used RAMBO to generate 10 million uniform random n-parton phase space points for n = 4, 5, 6, 7, and
calculated the average time it took each program to calculate each amplitude. The results are shown in Table 13.
For 4 and 5 partons MadGraph4 takes only a few microseconds per phase-space point, while for 6 partons we need
55.8 microseconds per phase-space point, and for 7 partons we decrease the speed per phase-space point by a factor
of 11.77 to 651.5 microseconds per phase space point. Excluding RAMBO, it took 108 minutes for MadGraph4 to
calculate the 7-parton FC MHV squared amplitude for every phase-space point generated.

Using VinciaMHV, the speed increases by a factor of 2.2 and 3.5 for 4 and 5-parton amplitudes respectively, and
because the MHV configuration is the only contributing configuration, we will always experience this gain. We saw
in Section 4.1 that for 6 partons the MHV configuration occurs between about 55− 80% of the time. Therefore, if
we use VinciaMHV to calculate the MHV amplitudes and MadGraph4 to calculate the non-MHV amplitudes, we
would expect the efficiency increase in calculating the total FC amplitude |Mn|2 to be a factor of about 55− 80%
of 10.2, i.e. a factor of about 5.6− 8.2. Similarly, since for the 7 parton amplitude we are in the MHV configuration
between about 35− 60% of the time, we expect the efficiency increase in calculating |Mn|2 to be a factor of about
8.2 − 14. If we use both programs to calculate ten million random phase space points using a weighted helicity
sample, we therefore expect the total time taken to be between 8 and 13 minutes. This is compared to the pure
MadGraph4 value of 108 minutes calculated earlier. Note that while MadGraph5 is the latest version, we still
expect that a speed test of MadGraph4 will be representative of the loss of speed at high multiplicities, since both
versions of MadGraph use Feynman diagrams to calculate their amplitude.

nParticles RAMBO MadGraph4 VinciaMHV Ratio
4 0.32 4.16 2.04 2.2
5 0.42 9.84 3.14 3.5
6 0.51 55.8 5.94 10.2
7 0.62 651.5 28.3 23.5

Table 13: Time it takes in microseconds to calculate a single FC MHV squared amplitude (including RAMBO). The
ratio is excluding RAMBO, and all speeds were benchmarked with a single 3GHz CPU (Mac Pro) using clang++
v3.6 -02.

It is interesting to note that the speed of VinciaMHV also decreases noticeably with particle multiplicity. This
is because the number of kinematic amplitudes grows factorially. Recall that to calculate the FC MHV squared
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amplitude we evaluate:

|Mn|2 =
∑
i>j

2[Re(A∗i )Re(Aj) + Im(A∗i )Im(Aj)](Cn)ij +
∑
k

|Ak|2(Cn)kk , (185)

where for the 4-parton amplitude we evaluate 2 terms in equation (185), for the 6-parton amplitude we evaluate 288
terms, and for the 7-parton amplitude we evaluate 7200 terms, hence why a 7-parton FC MHV squared amplitude
is calculated 14 times slower than a 4-parton FC MHV squared amplitude. This leads into our final comment that
a speed comparison for a single kinematic amplitude or a LC squared amplitude would yield even more impressive
looking results, since VinciaMHV would not have to sum any terms while MadGraph4 still sums its diagrams.
However, the LC squared amplitude does not take colour interference into account, and for realistic results we must
choose the FC squared amplitudes.

40



6 Summary and outlook

In this thesis it was shown that the spinor-helicity formalism can be used to calculate the MHV amplitude very
efficiently. If put within the context of a MC event generator, it is possible to use this formalism to increase the
speed with which we calculate the QCD matrix elements needed for the hard process and matching. We created a
program called VinciaMHV which uses this formalism to calculate the MHV FC squared amplitude qg → q + ng
for n = 1, 2, 3, 4, or any other 2→ n amplitude related to this process by crossing. We explored the frequency with
which we can use VinciaMHV, explained how VinciaMHV calculates its MHV amplitudes, and gave instructions
on how to use it. We found that for 6 partons the MHV configuration occurs about 55 − 80% of the time, and
for 7 partons this occurs about 35 − 60% of the time. We tested the accuracy and speed of VinciaMHV relative
to MadGraph4, with which we had an existing interface. We chose MadGraph4 since we wanted to compare the
spinor-helicity method to the method of summing Feynman diagrams. We found that the two programs give the
same result for the FC MHV squared amplitude up to at least the 9th significant figure for over 99% of phase
space, thus validating VinciaMHV. Using clang++ v3.6 -02 on a single 3 GHz CPU (Mac Pro) to benchmark the
speed of both VinciaMHV and MadGraph4, and using RAMBO to generate ten million uniform random phase
space points, we found that on average VinciaMHV calculates the 7-parton FC MHV squared amplitude 23.5 times
faster than MadGraph4, with decreasing gain for smaller parton multiplicities. Using the fraction of the time we
expect to sample the MHV configuration, we found that using VinciaMHV together with MadGraph4 will increase
the matrix-element calculation by a factor of 5.6− 8.2 times for 6 partons, and by a factor of 8.2− 14 times for 7
partons.

In addition to the above, we did extensive work proving the current literature. A major issue was to obtain
a set of self-consistent conventions for the spinor-helicity formalism, since no complete set was available in the
literature. These conventions are given in Appendix A. To gain a better understanding of the amplitudes at hand,
we proved many of the spinor identities which we use to calculate the MHV amplitude. The results can be found in
Appendix C. In Appendix D we showed that we can choose reference momenta such that many gluon polarisation
contractions vanish. In Appendix F we calculated the parton energy fractions, and used them to reformulate the
qq̄ → qgq̄ antenna function. Finally, in Appendix G we partially calculated the n-gluon colour factor.

There are several possible extensions to this project. The simplest is to add the colour information to the all-
gluon MHV amplitude, and add another gluon to the qg → q + ng FC amplitude. Since we have a program which
converts a MadGraph5 colour matrix into a VinciaMHV colour matrix, these extensions should be trivial. Less
trivial is to extend VinciaMHV to calculate the MHV amplitude involving a second quark anti-quark pair, however
there is existing literature on this topic [16, 18, 27]. Once this is achieved we can further extend VinciaMHV to
include the case in which a massive electroweak boson decays to a lepton pair [12, 15, 18, 27]. Note that the spinor
helicity formalism is a natural way to describe electroweak decay since Z0 couples differently to left and right-handed
particles, while the W± only couples to left-handed particles. Additionally, we can further extend VinciaMHV by
including the process involving a Higgs boson and n partons [71,72]. Finally, we wish to also use the spinor-helicity
formalism to calculate the next-to MHV (NMHV) and next-to next-to MHV (NNMHV) etc. amplitudes so that we
can efficiently calculate any FC squared amplitude. We hope that with these extensions we can use VinciaMHV
within VINCIA to accurately simulate 7 or more jets at the LHC.
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A Conventions

Due to the unfortunately large number of conventions used within physics it is useful to explicitly define those
which we use16. This thesis uses natural units in which c = ~ = 1. The metric tensor is defined to be:

gµν = gµν = diag(+1,−1,−1,−1) , (186)

where µ, ν = 0, 1, 2, 3 are spacetime indices. we will use indices in the middle of the Greek alphabet (µ, ν, ρ, ...
to indicate spacetime indices17 while indices from the start of the Greek alphabet (α, β, γ, ... = 1, 2) are spinor
indices. Contravariant four-vectors (e.g. position and momentum) are defined with raised indices, while covariant
four-vectors (e.g. derivatives) are defined with lowered indices:

xµ =(t, ~x) (187)

kµ =(E,~k) (188)

∂µ ≡
∂

∂xµ
=

(
∂

∂t
, ~∇∇∇
)
. (189)

The Pauli matrices σi, i = 1, 2, 3, are defined as:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (190)

and can be put into a two separate four-vectors:

(σµ)β̇α ≡ σµ ≡ σ+ =(12×2,−~σσσ)

(σµ)αβ̇ ≡ σ
µ ≡ σ− =(12×2, ~σσσ) , (191)

with ~σσσ ≡ (σ1, σ2, σ3). The Dirac gamma matrices γµ follow a Clifford algebra:

{γµ, γν} ≡ γµγν + γνγµ = 2gµν14×4 , (192)

and are considered to be in the Chiral representation:

γµ =

(
0 σµ

σµ 0

)
, (193)

where each component of the gamma matrices is itself a 2 × 2 matrix. The Dirac four-spinor U which obeys the
four-component massless Dirac equation /kU = 0 (/k = γµkµ) can be defined in terms of 2 independent projections
U±, where U+ (U−) defines a right-handed (left-handed) Dirac spinor, and U± = P±U with:

P± =
1

2
(1± γ5) . (194)

Here the sign convention of γ5 is:

γ5 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (195)

To move from the Dirac spinor to the Weyl spinor it is necessary to first use the projection operator and then
re-write U± in two component notation:

U+(ki) ≡ |i+〉 ≡ (λi)α =

(√
k+
i

eiφi

)
(196)

U−(ki) ≡ 〈i−| ≡ (λi)
α =

(
eiφi −

√
k+
i

)
(197)

U+(ki) ≡ 〈i+| ≡ (λ̃i)α̇ =
(
e−iφi −

√
k+
i

)
(198)

U−(ki) ≡ |i−〉 ≡ (λ̃i)
α̇ =

(√
k+
i

e−iφi

)
. (199)

16For example, while all of [18,49,53–55,73,74] explain or use spinor indices, none of them use the same conventions. Fortunately, an
excellent review by Dreiner, Haber and Martin explains how to manoeuvre between different conventions [49].

17for a pedagogical treatment of spacetime indices see the textbook by Riley, Hobson and Bence [48]).
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Note that equations (196) - (199) are just equations (43) - (49), with all symbols as previously defined. Hence we
have that:

U =

(
λα
λ̃α̇

)
, (200)

and similarly:
U =

(
λ̃α̇ λα

)
. (201)

The Levi-Cevita tensor used to raise or lower spinor indices is defined as:

ε12 = −ε21 = −ε12 = ε21 = 1 , (202)

which written in matrix notation is:

εαβ =

(
0 1
−1 0

)
and εαβ =

(
0 −1
1 0

)
. (203)

The epsilons obey the following identies:

εαβε
γδ = −δγαδδβ + δδαδ

γ
β , εα̇β̇ε

γ̇δ̇ = −δγ̇α̇δ
δ̇
β̇

+ δδ̇α̇δ
γ̇

β̇
, (204)

where δ is the Kronecker delta. From this it follows that:

εαβε
βγ = εγβεβα = δγα , εα̇β̇ε

β̇γ̇ = εγ̇β̇εβ̇α̇ = δγ̇α̇ . (205)

B QCD Feynman rules

The full (i.e. including colour) Feynman rules for massless QCD with all particles outgoing are [36,38]

Vertices:

= igsf
abc[gµν(k1 − k2)ρ + gνρ(k2 − k3)µ + gρµ(k3 − k1)ν ]

= ig2
s [fabef cde(gµγgνρ − gµρgνγ) + facefdbe(gµρgνγ − gµνgγρ) + fadef bce(gµνgγρ − gµγgνρ)]

= − igstaijγµ

Propagators:

= − igµν
k2

δab

=
i

/k
δij

43



External Particles:

= ū±(ki) = 〈i±|

= v∓(ki) = |i±〉

= ε±µ (ki, pi)

where straight lines represent fermions, curly lines represent gluons, all momenta are considered outgoing and we
are in the Lorentz-Feynman gauge. By decoupling the colour indices a, b, c, d from the spacetime kinematical indices
µ, ν, ρ, γ we are able to factorise the full amplitude into a product of colour factors and kinematical factors (see
equations (12) and (37)). The colour factors are trivial (if tedious) to calculate using equations (9) and (10), and
the kinematical factors can be calculated in several ways. The brute-force approach is to use the colour-ordered
Feynman rules for massless particles [28]:

Vertices:

=
i√
2

[gµν(k1 − k2)ρ + gνρ(k2 − k3)µ + gρµ(k3 − k1)ν ]

= igµγgνρ −
i

2
(gµρgνγ + gµνgγρ)

= − i
√

2γµ

Propagators:

= − igµν
k2

=
i

/k

External Particles:

= ū±(ki) = 〈i±| = v̄±(ki)

= v∓(ki) = |i±〉 = u±(ki)

= ε±µ (ki, pi)

which are just the full Feynman rules above with all colour information removed. Note that the appearance of
√

2 in
many of these rules comes from our normalisation convention and that these rules are also in the Lorentz-Feynman
gauge. We can use the colour-ordered rules in the helicity basis to confirm the helicity amplitudes calculated in
section 2.5.
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C Proofs of Weyl-spinor identities

In this section we expand upon some results and statements made in sections 2.4.1 and 2.4.2. Note that these
proofs are very rarely recorded in the literature, and hence this appendix (along with appendix F and G) shows
evidence of our own work and understanding of the topics in this thesis. The Dirac equation is straightforward to
prove using spinor inner products. Recall one of the four massless Dirac equations:

(/ki)αα̇(λ̃i)
α̇ = 0 , (206)

for which we want to prove that the left hand side is indeed 0. Using equation (61) we have that:

(/ki)αα̇(λ̃i)
α̇ =(λi)α(λ̃i)α̇(λ̃i)

α̇

=(λi)α[ii] (207)

=0 ,

where we used that the inner product [ii] is antisymmetric. Next let us consider the momentum invariant sij =
(ki + kj)

2 = 2ki · kj = 〈ij〉[ji]. To prove this first recall the Fierz identity (equation (69)):

(σµ)α̇α(σµ)β̇β = 2δ β
α δβ̇α̇ . (208)

Next use equations (63) and (64) to write the momentum invariant as:

sij = 2ki · kj =
1

2
(λ̃i)α̇(σµ)α̇α(λi)α(λi)

β(σµ)ββ̇(λ̃i)
β̇ , (209)

and use the Fierz identity (equation (208)) and then the definitions of spinor inner products (equations (72) and
(77)) to show that:

sij = 2ki · kj =
1

2
(λ̃i)α̇(σµ)α̇α(λi)α(λi)

β(σµ)ββ̇(λ̃i)
β̇

=(λ̃i)α̇(λi)α(λi)
β(λ̃i)

β̇δαβ δ
α̇
β̇

=(λi)β(λi)
β(λ̃i)α̇(λ̃j)

α̇

=− 〈ij〉[ij]
=〈ij〉[ji] , (210)

where in the last line we used that the inner products are antisymmetric. To prove charge conjugation, recall from
equation (67) that:

(σµ)α̇α = εαβεα̇β̇(σµ)ββ̇ . (211)

Inserting this into the 2-component definition of the Lorentz vector gives:

(λ̃i)α̇(σµ)α̇α(λj)α =(λ̃i)α̇ε
αβεα̇β̇(σµ)ββ̇(λj)α

=(λj)
β(σµ)ββ̇(λ̃i)

β̇

=(λj)
α(σµ)αα̇(λ̃i)

α̇ , (212)

or equivalently that:
〈i+|γµ|j+〉 = 〈j−|γµ|i−〉 . (213)

The Fierz rearrangement (equation (87)) follows from charge conjugation and the Fierz identity (equation (69)). It
is best shown in 2-component notation that:

(λ̃i)α̇(σµ)α̇α(λj)α(λ̃k)β̇(σµ)β̇β(λl)β = (λ̃i)α̇(σµ)α̇α(λj)α(λl)
β(σµ)ββ̇(λ̃k)β̇

= (λ̃i)α̇(λj)α(λl)
β(λ̃k)β̇(σµ)α̇α(λj)α(σµ)ββ̇

= (λ̃i)α̇(λj)α(λl)
β(λ̃k)β̇

(
2δαβ δ

α̇
β̇

)
= 2(λ̃i)α̇(λ̃k)α̇(λj)β(λl)

β

= 2[ik]〈lj〉 , (214)
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where we used charge conjugation in the first line, the Fierz identity in the third line and the definitions of the
inner products (equations (72) and (76)) in the last line. The equivalent expression in 4-component notation is:

〈i+|γµ|j+〉〈k+|γµ|l+〉 = 〈i+|γµ|j+〉〈l−|γµ|k−〉 = 2[ik]〈lj〉 . (215)

The first Schouten identity (equation (88)) can be proven by direct substitution of the inner products (equation
(73)). First we use that the inner products are antisymmetric to write that:

〈pq〉〈rs〉+ 〈qr〉〈sq〉+ 〈ps〉〈qr〉 = 0 , (216)

and then use the definition of the inner products to show that the left hand side indeed vanishes:

〈pq〉〈rs〉+ 〈qr〉〈sq〉+ 〈ps〉〈qr〉 = (p1q2 − p2q1)(r1s2 − r2s1) + (p1r2 − p2r1)(s1q2 − s2q1)

+ (p1s2 − p2s1)(q1r2 − q2r1)

= p1q2r1s2 − p1q2r2s1 − p2q1r1s2 + p2q1r2s1 − p1r2s2q1 − p2r1s1q2

− p1q2r1s2 + p1q2r2s1 + p2q1r1s2 − p2q1r2s1 + p1r2s2q1 + p2r1s1q2

= 0 , (217)

while the second Schouten identity (equation (89)) is proven similarly using equation (77). The third Schouten
identity (equation (90)) is easy to prove in 2-component notation:

〈i−|/km|j−〉 ≡ (λi)
α(/km)αα̇(λ̃j)

α̇ = (λi)
α(λm)α(λ̃m)α̇(λ̃j)

α̇ = 〈im〉[mj] , (218)

where we used that /kαα̇ = λαλ̃α̇. The fourth Schouten identity (equation (91)) can be proven analogously, or by
using charge conjugation and re-labelling on the third Schouten identity.

D Gluon polarisation vector

External gluon polarisations appear in the QCD Feynman rules (see Appendix B) and hence need to be well
understood to calculate the S-matrix in the helicity basis. The following derivation of the gluon polarisation was
introduced by Xu, Zhang and Chang18 [77] and this section is heavily based on the review by Mangano and
Parke [27]. Note that the following description uses the four-component Dirac spinors.

In four dimensions the physical Hilbert space of a massless vector is isomorphic to the physical Hilbert space of
a massless spinor up to a Z2 transformation. This is because they both lie in one-dimensional representations of
the SO(2) rotation group. This isomorphism is realised through a linear transformation which relates like-helicity
vectors and fermions:

ε+µ (k) =AU+(k)γµV (219)

ε−µ (k) =
(
ε+µ (k)

)∗
, (220)

where ε±µ (k) is the polarisation vector of a positive energy massless vector of momentum k, U+ is a massless spinor
defined in equation (49), γµ the Dirac matrix, V an arbitrary Dirac spinor and A the normalisation constant. Note
that different gauge choices give different values for spinor V and we can always choose a gauge such that:

/pV (p) = 0 , p2 = 0 , p · k 6= 0 , (221)

so that spinor V (p) also obeys the massless Dirac equation and V and U+ are not parallel. Here p is called the
reference momentum, and can be arbitrarily chosen so long as equation (221) holds. Using the bra and ket notation
for spinors we see that:

ε+µ (k, p) =A〈k+|γµ|p+〉 (222)

ε−µ (k, p) =A∗〈k−|γµ|p−〉 . (223)

We must now normalise the polarisation vectors according to:

ε±µ (k, p) · ε±µ (k, p) = 0 ε±µ (k, p) · ε∓µ (k, p) = −1 . (224)

18This method was also independently introduced by Gunion and Kunszt [75], and by Kleiss and Stirling [76].
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Method Convergence neval/point Worse than MC in d >

Trapezoidal Rule 1/n2/d 2d 4
Simpson’s Rule 1/n4/d 3d 8

Monte Carlo 1/
√
n 1 -

Table 14: Convergence after n evaluations in d dimensions, for two common numerical methods and for Monte
Carlo. The third column shows the number of function evaluations required per point in d dimensions.

Using first charge conjugation (equation (85)) and then the Fierz Rearrangement (equation (87)) we have that:

ε+µ (k, p)(εµ)−(k, p) =|A|2〈k+|γµ|p+〉〈k−|γµ|p−〉
=|A|2〈k+|γµ|p+〉〈p+|γµ|k+〉
=2|A|2[kp]〈kp〉
=− 2|A|2〈kp〉[pk]

=− 2|A|2skp = −1 , (225)

where in the last line we used the spinor representation of the momentum invariant (equation (83)). Hence:

A =
eiφ(k,p)

√
2〈pk〉

A∗ =
e−iφ(k,p)

√
2[kp]

, (226)

where we used equation (84) to redefine skp in terms of positive and negative helicity spinors respectively and φ(k, p)
is some phase. If we set the phase equal to 0 we get our form for the polarisation vector:

ε±µ (k, p) = ±〈k
±|γµ|p±〉√
2〈p∓|k±〉

. (227)

All that remains is to prove that the polarisation is indeed orthogonal. Using the Fierz Rerrangement (equation
(87)) we see that:

ε+µ (k, p)(εµ)+(k, p) =
〈k+|γµ|p+〉〈k+|γµ|p+〉√

2〈pk〉2

=
2〈pp〉[kk]√

2〈pk〉2
= 0 , (228)

with a similar argument holding for ε−µ (k, p)(εµ)−(k, p). Notice that equation (228) is doubly zero. Hence we need
only one of these zeros for an epsilon contraction to vanish, leading to equation (96), namely:

ε±(k, p) · ε±(k′, p) = ε±(k, p) · ε∓(p, p′) = 0 . (229)

E Monte Carlo integration

To evaluate the total cross section of a 2 → n process we must evaluate a 3n − 4 dimensional integral, often for
n � 1 [37, 59]. This would be very slow for our usual 1-D integration methods such as Simpson’s rule or the
Trapezoidal rule, since the convergences of these methods both decrease with increased dimensionality (see Table
14). Conversely, the MC method of integration converges as 1/

√
n independently of the number of dimensions,

hence why we use MC integration to evaluate cross sections. Note that because MC integration uses random
numbers, we cannot rule out the possibility that the particular sequence of random numbers used leads to a
numerical integral which deviates strongly from the true value of the integral. Therefore we must slightly alter our
definition of convergence. We say that the sequence {A} converges to B if an n exists for which the probability for
|Ai>n −B| < ε for any ε > 0 is greater than P , for any P ∈ [0, 1] [78].

The MC integration is based on the fact that the value of an integral is equal to the average of the integrand [60].
That is:

I =

∫ x2

x1

dxf(x) = (x2 − x1) 〈f(x)〉 , (230)
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where 〈f(x)〉 is the average of f(x). Therefore taking N values of x distributed randomly in the region (x1, x2)
allows us to estimate the integral I using:

I ≈ IN = (x2 − x1)
1

N

N∑
i=1

f(xi) , (231)

where xi is given by:
xi = (x2 − x1) ρi + x1 , (232)

and ρi is a uniform random number between 0 and 1. In particle physics we are often interested in integrating
the function f(u1, . . . , ud) ≡ f(x) which depends on d variables (u1, . . . , ud) over the unit hypercube [0, 1]d [79].
Therefore we simplify equation (231) as:

IN =
1

N

N∑
i=1

f(xi) . (233)

To estimate the accuracy of equation (233) we must first introduce the variance σ2(f) of the function f(x):

σ2(f) =

∫
dx ((f(x)− I)

2
. (234)

We can then use the Central Limit Theorem to determine the standard deviation of IN . Doing so gives that:

lim
N→∞

Prob

(
σ(f)√
N
≤ 1

N

N∑
i=1

f(xi)− I ≤
σ(f)√
N

)
=

1√
2π

∫ 1

−1

dte−t
2/2 = 0.682 , (235)

and hence the standard deviation σMC of the MC integral is:

σMC =
σ(f)√
N

, (236)

or equivalently that the MC integral converges as 1/
√
N .

It is worthwhile to mention briefly that we have just described a flat distribution over phase space, i.e. each
point in phase space has an equal probability of being sampled. However the integral is almost always not flat, and
we are often most interested in the areas of phase space for which the integrand is strongly peaked. Therefore we
use techniques such as importance sampling or multi-channel integration to sample phase space more often in the
areas of interest. This has the benefit that the regions of interest converge faster than if we use a flat sampling.
While these methods are very important in MC event generators, their details are unimportant in this thesis. For
a review of these and other similar methods see e.g. [59, 79].

F Parton energy fractions

Figure 13: An example of 3-body decay. The Z0 is considered at rest

The purpose of this appendix is to derive equation (149) starting from equation (145), and therefore show our
understanding of the topic beyond just copying the literature. Before we do so, we first motivate the energy
fractions xi which we use. Consider the three body Z0 decay shown in Figure 13. We have from momentum
conservation that the momentum of the virtual quark (ki) is:

ki = kZ − k2 , k2
i = k2

Z + k2
2 − 2kZ · k2 , (237)
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where kZ is the Z0 momentum and k2 the anti-quark’s momentum. This implies that the off-shell mass of this
particle is:

m2
i = m2

Z +m2
2 − 2(E2EZ − ~kZ · ~k2) = m2

Z − 2EzE2 , (238)

where EZ , mZ and E2, m2 are the energies and masses of the Z0 and anti-quark respectively, and we’ve used that
the anti-quark is massless, and that the Z0 is at rest. Noting that EZ = Ecm, i.e. the centre of mass energy and
m2
i = s13 gives that:

s13 = E2
cm − 2EcmE2 , (239)

or that:
s13

Ecm
= 1− 2

E2

Ecm
= 1− x2 , (240)

Placing the sum of invariants in equation (145) on a common denominator and using equation (146) gives that:

2s12

s13s23
+

1

s

(
s13

s23
+
s23

s13

)
=

2(s)s12 + s2
13 + s2

23

s13s23s

=
2s12(s12 + s13 + s23) + s2

13 + s2
23

s13s23s

=
2s2

12 + 2s12s13 + 2s12s23 + s2
13 + s2

23

s13s23s
, (241)

and substituting equation (240) then expanding gives that:

2s12

s13s23
+

1

s

(
s13

s23
+
s23

s13

)
=

2s2(1− x3)2 + 2(1− x3)(1− x2) + 2(1− x3)(1− x1) + s2(1− x2)2 + s2(1− x1)2

s3(1− x2)(1− x1)

=
x2

1 + x2
2 + 8− 8x3 + 2x2

3 − 4x2 + 2x3x2 − 4x1 + 2x2x3

s(1− x2)(1− x1)

=
x2

1 + x2
2 + 2

[
(x3 − 2)2 + x2(x3 − 2) + x1(x3 − 2)

]
s(1− x2)(1− x1)

=
x2

1 + x2
2 + 2(x3 − 2) [x1 + x2 + x3 − 2]

s(1− x2)(1− x1)
. (242)

Now we the term in the square brackets and substitute the definition of x in terms energies (xi = Ei/Ecm):

x1 + x2 + x3 − 2 =
2(E1 + E2 + E3)

Ecm
− 2 =

2Ecm
Ecm

− 2 = 0 , (243)

and hence:
2s12

s13s23
+

1

s

(
s13

s23
+
s23

s13

)
=

x2
1 + x2

2

s(1− x2)(1− x1)
. (244)

We then use this result, g2
s = 4παs, CF = 8/3 and that dx1 = −ds23/s and dx2 = −ds13/s to get that:

g2
sCF

[
2s12

s13s23
+

1

s

(
s13

s23
+
s23

s13

)]
1

16π2s
ds13ds23 =

2αs
3π

x2
1 + x2

2

(1− x1)(1− x2)
dx1dx2 . (245)

G Working for all-gluon squared colour matrix

In this appendix we repeat section 2.3.2 in more detail, to show evidence of a deeper understanding the topic than
one can get from simply copying the literature. Recall the notation:

(a1a2 . . . an) =Tr(taσ1(1)taσ1(2) . . . taσ1(n))

(b1b2 . . . bn) =Tr(tbσ2(1)tbσ2(2) . . . tbσ2(n)) , (246)

where σ1 and σ2 are two different permutations of the gluons. Therefore the colour matrix Cij can be re-written
as:

Cij =

N2
C−1∑

a1,...,an=1

(a1a2 . . . an)(b1b2 . . . bn)∗ . (247)
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Since σ2 is some permutation of σ1, and since the trace is cyclic we can re-write equation (26) as:

Cij =

N2
C−1∑

a1,...,an=1

(a1a2 . . . an)(b1b2 . . . bn)∗ =

N2
C−1∑

a1,...,an−1=1

∑
an

(a1a2 . . . an)(anamn−1
. . . am1

) , (248)

where {am} is the remaining ordered set of t matrices in the σ2 permutation. We can then write the traces in
component notation and use the Fierz identity (equation (13)) to get that:

Cij =

N2
C−1∑

a1,...,an−1=1

∑
an

(a1a2 . . . an)(anamn−1
. . . am1

)

=

N2
C−1∑

a1,...,an−1=1

∑
an

(a1)ij . . . (an−1)kl(an)li(an)pq(amn−1)qr . . . (bm1)sp

=

N2
C−1∑

a1,...,an−1=1

(a1)ij . . . (an−1)kl(amn−1
)qr . . . (am1

)sp

× [δlqδip −
1

NC
δliδpq]

=

N2
C−1∑

a1,...,an−1=1

[(a1)ij . . . (an−1)kl(amn−1)lr . . . (am1)si

− 1

NC
(a1)ij . . . (an−1)ki(amn−1)qr . . . (am1)sq]

=

N2
C−1∑

a1,...,an−1=1

[(a1a2 . . . an−1amn−1
. . . am1

)

− 1

NC
(a1a2 . . . an−1)(amn−1 . . . am1)] . (249)

The first term in the final line of equation (249) can have either of the following forms:∑
Λ,an−1

(Λ1an−1an−1Λ2) , or
∑

Λ,an−1

(Λ1an−1Λ2an−1) ,

where Λi is some string of t matrices. Note that in the second expression it is likely that we have had to cyclically
permute an−1 to the final position, such that Λ1 has more t matrices than Λ2. If we have the first form, then we
use equation (10) to get that19:∑

Λ,an−1

(Λ1an−1an−1Λ2) =
∑
Λ

(Λ1)ij(an−1)jk(an−1)kl(Λ2)li

=
∑
Λ

N2
C − 1

NC
δjl(Λ1)ij(Λ2)li =

∑
Λ

(Λ1Λ2) , (250)

and if we have the second form then we again use the Fierz equation to get that:∑
Λ,an−1

(Λ1an−1Λ2an−1) =
∑
Λ

(Λ1)ij(an−1)jk(Λ2)kl(an−1)li

=
∑
Λ

(Λ1)ij(Λ2)kl[δjiδkl −
1

NC
δjkδli]

=
∑
Λ

(Λ1)(Λ2)− 1

NC
(Λ1Λ2) . (251)

19Note that in SU(NC) we must generalise CF from CF = 8/3 to CF = (N2
C − 1)/Nc.
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We can keep doing this until we find terms proportional to:

(a1a1) =
N2
C − 1

NC
δii = N2

C − 1 , (252)

which allows us to calculate the colour factors Cij . Note that the leading contribution to the colour matrix comes
from the diagonal, i.e. when permutations σ1 = σ2. To leading order in NC the leading contribution to the colour
factor is [27]:

Cii =

N2
C−1∑

a1,...,an=1

(a1a2 . . . an)(a1a2 . . . an)∗ = Nn−2
C (N2

C − 1)[1 +O(1/N2
C)] . (253)

H VinciaMHV colour matrices

In this appendix we give the explicit colour matrices used in our MHV code. These were calculated using Mad-
Graph20 and can be derived using the method in section 2.3.4. Recall that we can write the full amplitude in the
form: ∑

colours

|Mn(q, g1, g2, . . . , q̄)|2 = g2n−4
s A†σiCijAσj , (254)

with σi and σj each being some permutation of the gluons. Equation (254) implies that the colour matrix Cij
is dependent on the order of gluon permutations. In our code we use the std::next permutation() function to
lexicographically permute the gluons. This means if we replace the numerical sequence 1, 2, 3, . . . , n with the alpha-
betical sequence a, b, c, . . . , n, then the set of permutations is in alphabetical order. For example, the lexicographical
order of 1, 2, 3, 4 is:

(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2),

(2, 1, 3, 4), (2, 1, 4, 3), (2, 3, 1, 4), (2, 3, 4, 1), (2, 4, 1, 3), (2, 4, 3, 1),

(3, 1, 2, 4), (3, 1, 4, 2), (3, 2, 1, 4), (3, 2, 4, 1), (3, 4, 1, 2), (3, 4, 2, 1),

(4, 1, 2, 3), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1), (4, 3, 1, 2), (4, 3, 2, 1) .

The colour matrix Cn for the process with a single quark anti-quark pair and n− 2 gluons is:

• n = 4:

C4 =
1

3

(
64 −8
−8 64

)
, (255)

• n = 5:

C5 =
1

9


512 −64 −64 8 8 80
−64 512 8 80 −64 8
−64 8 512 −64 80 8

8 80 −64 512 8 −64
8 −64 80 8 512 −64
80 8 8 −64 −64 512

 , (256)

• n = 6: The first row is given by:

27× (C6)1j = (4096, −512, −512, 64, 64, 640,

− 512, 64, 64, −8, −8, −80,

64, −8, 640, −80, 568, 496,

− 8, −80, −80, 496, 496, −224) , (257)

with all other rows given by the appropriate lexicographical permutation of the first row and relabelling. For
example, 27 × (C6)13 = −512 and relates to the gluon permutations (1, 2, 3, 4) and (1, 3, 2, 4). Relabelling
4 ↔ 3 gives the permutations (1, 4, 3, 2) and (1, 4, 2, 3), corresponding to the element (C6)65, and hence
27× (C6)65 = −512.

20In fact MadGraph uses the standard QCD convention for t matrices and a different gluon permutation technique. Therefore we had
to first correct the colour matrices so that they were consistent with our conventions.
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• n = 7: The first row is given by:

81× (C7)1j = (32768, −4096, −4096, 512, 512, 5120, −4096, 512, 512, −64,

− 64, −640, 512, −64, 5120, −640, 4544, 3968, −64, −640,

− 640, 3968, 3968, −1792, −4096, 512, 512, −64, −64, −640,

512, −64, −64, 8, 8, 80, −64, 8, −640, 80,

− 568, −496, 8, 80, 80, −496, −496, 224, 512, −64,

− 64, 8, 8, 80, 5120, −640, −640, 80, 80, 800,

4544, −568, 3968, −496, 4040, 4112, −568, 152, −496, −424,

− 1072, −352, −64, 8, −640, 80, −568, −496, −640, 80,

4040, −1072, −1072, 3536, 3536, −928, 8, 80, 80, −496,

− 496, 224, 80, 800, −496, 4112, −424, −352, −496, −424,

224, −352, 3536, −928, 4112, −352, −352, −928, −928, 1088) , (258)

and again all other rows are given by the appropriate lexicographical permutation of the first row and rela-
belling.
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