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Abstract

Hadronisation is an essential stage of high-energy particle collisions within QCD, describ-
ing how quarks and gluons come to produce particles that can be measured by a detector.
Motivated by recent observations of discrepencies betwen popular models of hadronisation
and LHC measurements, this thesis revisits some of the theoretical underpinnings of the
Lund string model of hadronisation. The goal is to investigate the consequences of a time-
dependent string tension, loosely based on recent theoretical work on expanding strings. We
find that this modification results in an increased average transverse momentum for strange
hadrons compared to non-strange hadrons, which could be observable already in the relatively
clean environment of electron-positron collisions.
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1 Introduction

Quantum Chromodynamics (QCD) is an SU(3) gauge theory which models the strong force.
The primary method used to tackle QCD is perturbation theory, which can be used to sys-
tematically calculate useful values at fixed orders [1, p.17]. For instance, the process of gluon
bremsstrahlung (the emission of gluons by quarks) was first proposed as a result of perturba-
tive QCD calculations. The discovery of three-jet events due to gluon bremsstrahlung at the
PETRA e+e− collider in the 1970s was a resounding confirmation of the existence of gluons,
and of the success of perturbative QCD [2].

However, not all interactions in QCD can be modelled as small perturbations. The
applicability of perturbation theory is directly related to the coupling- if the coupling is not
small, then perturbation theory cannot be applied. A clear example of this issue can be seen
in the coupling of the strong force, as calculated from perturbative QCD [3, p.8]:

αs(Q
2) ∝ 1

ln(Q2/Λ2
QCD)

(1)

Q here corresponds to the renormalisation energy scale, while ΛQCD in the above equation
has been determined experimentally to be around 0.2 GeV. Renormalisation in quantum field
theory is the process of rewriting formulae in terms of measureable quantities, so as to avoid
any infinities that arise from using “bare” unrenormalised quantities [4]. The renormalisation
scale Q is one of these renormalised quantities. Q is therefore essentially arbitrary, but is
usually chosen to be near the energies and momenta being exchanged in a given event so as
to minimise the contribution of divergent terms [5].

The size of the strong coupling can be seen to vary significantly with respect to Q, which
relates to the energy present in the collision. This sizeable ”running” of the strong coupling
is a point of differentiation from other field theories such as quantum electrodynamics, which
has a coupling that runs much more slowly as energy increases, and with opposite sign [6].
The strong coupling has a clear divergence in the ln(Q2/Λ2

QCD) term when Q ' ΛQCD. At
energies of ΛQCD or lower, the perturbative QCD coupling blows up, indicating the strong
interaction can no longer be modelled within this framework.

1.1 What is Hadronisation?

The focus of this thesis is the process of hadronisation, which describes how partons (quarks
and gluons) are converted into hadrons (composite particles made of partons) [1, p51]. When
partons produced by a collision reach distances of the order of femtometres, their separation
(inverse distance) approaches 1

r
' Q ' ΛQCD. Hadronisation operates at this scale, and

therefore requires non-perturbative techniques in order to accurately describe it. In particle
colliders, showers of quarks and gluons can be produced by a collision before combining to
form hadrons. These hadrons and their decay products can then be detected in the form of
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a jet of particles. Understanding hadronisation is therefore essential in order to study the
results of particle collisions.

Hadronisation is a direct result of the behaviour of the strong force. From lattice QCD
calculations, it is known that there exists a potential between quarks of around 0.9 GeV/fm, or
0.18 GeV2 [8, p39]. Lattice QCD is a framework that allows for non-perturbative calculations
of the strong force. It does this by dividing space-time into discrete regions and then using
discretised quantum fields to computationally measure strong interactions in a static fashion
[9]. Evidence for a linearly increasing potential can be seen in the below plot of the QCD
potential [10]:

Figure 1: Plot of QCD potential as a function of separation between quarks using lattice
QCD. The legend on the bottom right refers to lattice parameters that are beyond the scope
of this thesis.

Figure 1 corresponds to the potential between a static quark-antiquark pair placed on a
lattice. The axes are scaled by units of the string tension

√
κ = 420 MeV. A constant V0 has

been subtracted from every point, and the dashed line is given by V (R) = R − π
12R

. This
plot is generated in the quenched approximation, when the string is not allowed to break.
Even at relatively short distances, it is clear that the potential between two quarks has an
increasingly linear form. As such, as quarks are moved further apart from one another, the
potential between the quarks also increases, which is equivalent to a “strong” force pushing
the quarks back together.
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This essential aspect of QCD is called quark confinement, explaining why quarks are held
together in hadrons rather than existing individually in a stable state. There currently ex-
ists no formal mathematical proof for quark confinement, despite the experimental fact that
quarks have never been observed directly in an isolated state [7]. This problem forms part
of the Yang-Mills Millennium Prize, for which there is a million US dollar reward for anyone
who can find a correct solution.

A necessary aspect of confinement is that any quark-antiquark pairs created experimen-
tally will experience increasingly large potential as they move apart. If the separation and
resulting potential is large enough, quark-antiquark pairs can be created [11]. This in turn
results in cascades of hadrons as the created quarks combine in a process called hadronisation.

1.2 Beginnings of Strings

One way in which non-perturbative modelling of hadronisation was developed is the Lund
string model [12]. Built on ideas from Artru and Mennessier in the 1970’s [13], the Lund
Model represents the strong force field spanned between two quarks by a string stretched
between them. In doing so, the force pulling quarks together is described by the potential of
a string:

V (r) = −κr, (2)

with a string tension κ. This string tension is a constant, so the potential increases lin-
early as the particles are pulled further apart. The potential therefore replicates the form
seen in figure 1 at large separations. In this way, the complex field-theoretic interaction
between quarks is simplified to that of a 1+1-dimensional string object.

In order to compare the Lund Model to observation, the mathematical underpinnings of
the model were implemented in the form of computer code within Monte Carlo event gen-
erators. Monte Carlo event generators are widely used to simulate particle physics events
that are too complicated to be calculated directly. This is done by splitting the overall un-
solvable event into individually solvable stages, which are then connected probabilistically
using Monte Carlo mathematical methods [14]. One of these stages is hadronisation, with
popular event generators such as PYTHIA [15] using the theoretical framework of the Lund
Model. Comparisons between the predictions of these event generators and experimental re-
sults have generally favoured the Lund string model, ever since early gluon jet measurements
of electron-positron collisions in 1979 by the JADE detector at the PETRA collider [16].

1.3 Experimental Difficulties

However, recent observations in proton-proton collisions at the Large Hadron Collider (LHC)
are not as well described by the Lund model. In particular, measurements show that a higher
amount of strange hadrons is being produced than is predicted by event generators such as
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PYTHIA. A strange hadron is any hadron that contains a strange quark. The enhanced
strangeness has been seen clearly in the ALICE detector at the LHC, from which the below
graph was generated [17]:

Figure 2: Plot of ratios of strange particle yields to pion yields as a function of particle
multiplicity.

Here, the number of strange particles detected is plotted on the y axis as a ratio of the
number of pions detected. On the x axis is the particle multiplicity, or the number of charged
particles that were produced in the collision. The different coloured data corresponds to dif-
ferent types of strange hadrons. The solid circles represent the experimental data obtained
from proton-proton collisions at the LHC, and the solid lines are the predictions made by
PYTHIA. For each particle species, the experimental data indicates that there should be
increasing yield ratios of strange particles as particle multiplicity increases, as shown by the
upward trend in the red, green and blue data points. This is not reflected in PYTHIA, which
predicts a flat line in each case. The cause of this difference is the fact that the Lund model
does not incorporate any interaction between nearby strings. If there are more particles
around, as in high multiplicity events, then there are also more strings around in the hadro-
nisation stage. Since the strings in the Lund model are unaffected by any strings nearby,
there is no reason why an increase in particle multiplicity should change any of the Lund
model’s predictions. Hence, PYTHIA tells us to expect a value for the hadron yield ratio
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that is independent of particle multiplicity, and we see a constant line in the above plot.

Given this anomaly in the predictions by PYTHIA, there is clear motivation to revise the
Lund string model on which PYTHIA is partly based. Specifically, in this project we will
be considering possible differences between the static qq̄ lattice QCD potential and that of a
dynamically expanding string. This is not intended to explain the ALICE measurements by
itself, but is an important step towards a greater understanding of how strange particles are
produced in hadronisation.

2 Basics of Lund String Model

2.1 The Yoyo Mode

A full description of the Lund string model is required before any modifications can be
considered. The simplest scenario within the Lund model is that of a stable meson, consisting
of a quark-antiquark pair. Under the Lund model, the quarks are represented as oscillating
back and forth continuously with a string extended between them. The string has a constant
tension κ. This is called the Yoyo mode, and is depicted below [18]:

Figure 3: Light cone diagram of a stable meson in Lund String model.

Figure 3 is an idealised light cone diagram in which the quarks are assumed to have no
mass, and to therefore propagate at the speed of light. As the quarks move apart, their
kinetic energy is converted into potential energy stored in the string, until they become sta-
tionary and begin to move back towards one another.

The underlying mathematics of this picture starts from the assumption that the quarks
are under the influence of a constant force κ, equal to the string tension. This assumption
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is based on the linear potential from eq.(2). For a single relativistic quark of rest mass m, a
force equation can be formed [19, p.115]:

dp

dt
= −κ, (3)

This differential equation has the solution:

p(t) = p0 − κt = κ(t0 − t). (4)

One of Hamilton’s equations of motion from classical mechanics is:

dx

dt
=
dE

dp
=

p

E
, (5)

E is here the relativistic particle energy, given by:

E =
√
p2 +m2. (6)

Using the chain rule, the change in energy with respect to the spatial coordinate is:

dE

dx
=
dE

dp

dp

dt

dt

dx
, (7)

From eq.(5), dE
dp

dt
dx

= 1, so:

dE

dx
=
dp

dt
= −κ, (8)

This differential equation has the same solution form as for momentum:

E(x) = E0 − κx = κ(x0 − x). (9)

The spatial coordinate x is related to the separation of the quarks (r) by r = 2x. Neglect-
ing the factor of 2, eq.(9) replicates the form of eq.(2), thereby obtaining a linear potential
as is expected. Substituting solutions for energy and momentum into eq.(6), we have:

m2 = E2 − p2 = κ2[(x0 − x)2 − (t0 − t)2]. (10)

Eq.(10) defines a hyperbola in space-time, with intersection between asymptotes at (t0, x0).
The turning point of this hyperbola is positioned a distance m

κ
from this intersection. The

turning point occurs when momentum is equal to zero, which is at t0 = E0

κ
according to

eq.(10). Visually, this looks like:
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Figure 4: Hyperbolic motion of a massive quark under a constant force κ.

If the mass of the quark is set to zero then eq.(10) implies (x0−x) = (t0− t). This means
the quark moves directly along the asymptotes depicted in figure 4. If we now consider a sec-
ond massless quark moving in the −x direction, the light cone diagram becomes the same as
the Yo-yo mode in figure 3. Light cone diagrams from now on will represent quarks as being
massless for visual simplicity, so that they move in straight lines rather than in a hyperbolic
fashion.

2.2 Lorentz Invariance

A crucial aspect of this model is that it is Lorentz invariant. Assume that in the original
frame x = ±t and E = ±p. Under a Lorentz boost β in the positive x direction (only
longitudinal boosts are considered here), time and momentum transform as [8, p.40]:

t′ = γ(t− βx) = γ(1∓ β)t, (11)

p′ = γ(p− βE) = γ(1∓ β)p, (12)

Therefore:

κ′ =
dp′

dt′
=
dp

dt
= κ, (13)
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So the string tension is unchanged under a Lorentz boost. The total area spanned by the
string in one period is also invariant under a Lorentz boost. This can be seen by considering
the area spanned by the string for the Yo-yo mode in figure 3. By dividing the area into 8
equilateral triangles of side length t0 = E0

κ
, the area must be equal to:

A = 8

(
1

2

)(
E0

κ

)(
E0

κ

)
= 4

E2
0

κ2
=
m2

κ2
(14)

Since m is the invariant mass and κ has been shown to be invariant under a Lorentz boost,
the area must be Lorentz invariant as well. Pictorially, a boost in the negative x direction
can be represented as [20]:

Figure 5: Yo-yo mode in a boosted frame along negative x direction.

A Lorentz boost in a direction corresponds to slanting the usual light cone diagram in
the opposite direction, conserving the area spanned by the string.

3 String Fragmentation

Up until this point, the addition of a string within the Lund model might seem unnecessary.
Stable hadrons could be perfectly well described by just a force field between quarks that
increases as they move apart, without invoking a string tension at all. However, a key aspect
of a string is that it can break if it is strectched enough. For the Lund model, these string
breaks correspond to the decay of the string state into a pair of smaller strings via the creation
of a new quark-antiquark pair. This is intended to reflect experimental observations, which
demonstrate that quark-antiquark pairs with higher energy than that of stable hadrons will
decay into particles with smaller mass [21]. A visual representation of these string breaks is
shown below [19, p.140]:
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Figure 6: Light cone diagram of multiple string breaks.

The initial quark-antiquark pair are moving with equal momentum in opposite direc-
tions, with too much energy to exist as a single stable hadron in the Yoyo mode. The string
stretched between them must therefore break. Each red dot on this diagram corresponds to a
string break and the creation of a quark-antiquark pair. These points are named vertices, and
the overall diagram is describing the process of string fragmentation. There is no limit to the
number of string breaks that can occur as long as there is enough energy available, and the
breaks need not be symmetric even if the original quarks have equal and opposite momentum.

In this case, the string initially breaks in two places, with two sets of quark-antiquark
pairs created. Further string breaks may occur if the energy contained in the string fragments
is high enough, otherwise the quarks will join together in the Yoyo mode. The numbered
states in the Yoyo mode depicted in figure 6 therefore correspond to stable hadrons. In
essence, figure 6 describes how we can go from a single quark-antiquark pair into a cascade
of observable hadrons that can be detected experimentally as a particle jet.

3.1 Causality

Consider now a single string fragment of the previous process, shown below:
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Figure 7: Light cone diagram of single string fragment.

Let qA be created at vertex A = (xA, tA), q̄B be created at vertex B = (xB, tB) with the
two quarks meeting at point O = (xO, tO). According to eq.(4) and eq.(9), the energy and
momentum of each quark is given by:

pA = κ(tA − tO), pB = κ(tO − tB), (15)

EA = κ(xA − xO), EB = κ(xO − xB). (16)

The total energy and momentum of the qAq̄B state is:

p = pA + pB = κ(tA − tB), (17)

E = EA + EB = κ(xA − xB). (18)

Since this state corresponds to the Yoyo mode of a meson, it must follow eq.(10):

m2 = E2 − p2 = κ2[(xA − xB)2 − (tA − tB)2]. (19)

According to this equation, the mass of the resultant meson will only be real (positive) if
the distance between the vertices A and B is spacelike. This implies the two vertices cannot
be causally connected; in other words, information cannot be shared between them.

In fact, this result can be generalised to all vertices due to the fact that the Lund model
framework is Lorentz invariant. In figure 7, the string break at vertex A appears to hap-
pen before the string break at vertex B. However, it is a property of Lorentz boosts that
we can always find a frame in which one event appears to take place before another. If we
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boost to a frame in which vertex B occurs first in time, then the same reasoning that led to
eq.(19) can be repeated in this frame, since the physics of the Lund model is unchanged un-
der Lorentz boosts. The A and B subscripts would be switched around in that case in eq.(19).

Therefore, the spacelike separation must hold between all vertices, no matter what order
they appear to occur in any given frame. Conceptually, the causal disconnect between ver-
tices means that there is nothing special about any particular vertex. They all perform the
same function, and their space-time location in a specific frame does not affect the overall
output of the string fragmentation process. This will allow us to treat all vertices equally
when it comes to calculating useful quantities from the Lund model. Importantly, this also
allows us the freedom to pick the order in which we will consider the vertices, without needing
to time order them.

3.2 The Schwinger Mechanism

The event of a string break as it has been explained thus far is somewhat arbitary. An un-
stable string state can fragment in any number of ways, with the only condition being that
the energy of the qq̄ pair exceeds that of a stable hadron. In order to quantify the process of
string breaks, a further quantum mechanical framework needs to be invoked. The relevant
idea is called the Schwinger model, borrowed from quantum electrodynamics (QED). Within
QED, it is possible for virtual electron-positron pairs to be created out of quantum fluctua-
tions of the vacuum in the presence of a strong electric field [22]. The Schwinger mechanism
by which these virtual particles can be created involves quantum mechanical tunnelling, with
a corresponding Gaussian probability distribution [23].

The Lund model assumes that quark-antiquark pairs can be created with the same prob-
ability distribution as that of the electron-positron pairs in QED. A string break therefore
occurs with a Gaussian probability distribution given by [24]:

P (m2, p2⊥) = exp

(
−πm

2

κ

)
exp

(
−πp

2
⊥
κ

)
(20)

m is the mass of the produced quark, while pT is the transverse momentum “kick” given
to the produced quark by the string break. Transverse momentum is the momentum per-
pendicular to the direction the string is travelling. Conceptually, this equation describes the
probability that a quark-antiquark pair will ”tunnel out” into a classical region and become
real. The production of heavier quarks such as strange and charm quarks is also suppressed,
since a higher mass leads to a smaller probability in the above equation. This string break
probability is crucial, as we now have a probabilistic model that can tell us what particles to
expect at the end of a full fragmentation process, depending on how much energy an original
qq̄ pair has.
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3.3 Hadron Distribution Functions

Based on the string fragmentation model, distributions can be determined for the probability
that a hadron is produced with a certain fraction of the total energy and momentum. This
is an essential step in developing a model of hadronisation that is actually useful in simulat-
ing real particle events. Once we have these dsitributions, we can iteratively calculate the
probability of a hadron being produced at each step of the fragmentation process. It will be
easier to do this if we work in hyperbolic space-time coordinates, defined as [19, p.149]:

y =
1

2
log

x+
x−
, (21)

Γ = κ2x+x−. (22)

Here, x± = t ± x corresponds to light cone space-time. y is then the rapidity, or the
hyperbolic angle. Rapidity ranges from negative infinity along the left side of the positive
light cone to positive infinity along the right side of the positive light cone, and is equal to
zero along the time axis x = 0. An important property of rapidity is that it is additive under
multiple Lorentz boosts, unlike velocity which asymptotes as a particle approaches the speed
of light. Meanwhile, Γ is related to the squared proper time of the vertex, τ 2 = x+x− = t2−x2.
Γ is therefore directly proportional to the energy-momentum of an eventual particle. This is
because a change in the time at which a vertex/string break occurs will change the available
area for a hadron in the light-cone diagram. The change in area corresponds to a change in
invariant mass of the hadron according to eq.(14), which is in turn related to the energy-
momentum. Visually, hyperbolic coordinates can be depicted like [25]:

Figure 8: Visual representation of hyperbolic coordinates.

The green lines correspond to constant rapidity, while the blue lines correspond to con-
stant Γ (or, equivalently, constant squared proper time τ 2).
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Having made this change of coordinates, we can derive the probability distribution func-
tion for a meson to be produced. We first consider an arbitrary stage in a string fragmentation
process, where multiple string breaks have occured. Let us pick two arbitrary vertices that
will result in a stable meson between them, as shown below:

Figure 9: Meson production from two arbitrary vertices.

The initial quark-antiquark pair travel along the light cone with an energy-momentum
W+ and W− respectively. z+ and z− are then the fractions of energy-momentum used from
the respective initial energy-momentum to form a meson with invariant mass m2. Using
these definitions, the hyperbolic coordinate Γ can be written for each vertex:

Γ1 = (1− z−)W−W+, (23)

Γ2 = (1− z+)W−W+. (24)

The mass squared can also be written using the area of the rectangle labelled by m2 in
figure 9:

m2 = (z−W−)(z+W+), (25)

Eliminating W±:

Γ1 =
m2(1− z−)

z+z−
, (26)

Γ2 =
m2(1− z+)

z+z−
. (27)

There are now two probabilities that need to be introduced. First, there is the probability
of reaching vertex 1 with energy-momentum W+, given by H(Γ1)dΓ1dy1. In order for this
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probability to be Lorentz invariant, the distribution H must not depend on rapidity y1, since
it is not a Lorentz invariant quantity. Second, there is the probability of the meson being
produced by using the energy-momentum fraction z+. This is given by f(z+)dz+. These two
events are independent; z+ is just a ratio, it does not depend on how much energy is available
in the form of W+.

The overall probability of a meson being produced with a given energy fraction z+ at a
certain proper time Γ1 is therefore given by multiplying the probabilities of these two events
occurring:

H(Γ1)dΓ1dy1f(z+)dz+, (28)

A similar equation is obtained for the second vertex by applying the same reasoning:

H(Γ2)dΓ2dy2f(z−)dz−. (29)

This is exactly the useful quantity we want to obtain from the Lund string model as a
whole. If we know the distributions H and f , we can calculate the probability that a given
meson will be produced.

A full derivation of the distributions H and f is provided in appendix A. These are the
forms of the distributions we obtain:

H(Γ) = CΓa exp(−bΓ) (30)

f(z) = N
1

z
(1− z)a exp

(
−bm2

z

)
(31)

These distributions depend on two parameters a and b, which can be determined exper-
imentally, while N and C are normalisation constants. Since our choice of vertices at the
beginning was entirely arbitrary, the same form of the probability will apply to all vertices.
We now have an exact form for the distributions H(Γ) and f(z), which together provide the
probability of a meson being produced at a certain time with a certain energy-momentum
fraction, using eq.(28). This allows us to iteratively calculate the probability of a hadron
being produced at each step of the hadronisation process. H(Γ) and f(z) form the basis for
Monte Carlo event generators such as PYTHIA to numerically simulate hadronisation, and
are enshrined within the code contained in such programs. This is a realisation of the aim of
the Lund string model to non-perturbatively describe the overall process of hadronisation.

4 Thermal String Tension

Having described the normal formulation of the Lund model, we can begin the process of
modifying it. This will be performed by introducing a time-dependent thermal string tension
instead of the usual constant κ. Before making this significant adjustment, we will describe
why we have made this change in the first place.
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4.1 Motivation

There have long been speculations about the existence of a thermal component in the hadro-
nisation stage. From decades-old electron-positron collisions at LEP, it is possible to obtain
particle multiplicities that have a reasonable fit to a thermal form. Specifically, the parti-
cle multiplicities appear to closely resemble a Boltzmann distribution at a temperature T [27].

Another piece of evidence is the discovery of a “ridge” of enhanced particle production
around the azimuthal angle of trigger jets in proton-proton collisions at the ATLAS detector
[28]. This ridge had previously only been seen in heavy-ion collisions, where it is due to the
formation of a quark-gluon plasma [29]. A quark-gluon plasma is a thermal object, so its po-
tential presence in proton-proton collisions points to the possible existence of a temperature
of some kind. The standard Lund model has no explanation for the thermal features seen in
these experiments, suggesting it is inadequate in its current state to describe the entirety of
hadronisation.

There are further theoretical arguments for why a thermal element could be relevant
within the Lund model. Berges, Floerchinger and Venugopalan have argued that the or-
dinary Lund conception of a string ignores the fact that different QCD string regions are
necessarily entangled [30]. Within the density matrix formalism of quantum information,
one can define a reduced density matrix for a region A by performing a trace over the Hilbert
space corresponding to another region B [31]:

ρA = TrBρ (32)

Here, ρ correponds to the mixed quantum state of the two string regions. The entangle-
ment entropy is then defined as the Von Neumann entropy associated with region A:

SA = −Tr[ρA ln ρA] (33)

Entanglement entropy is a measure of the entanglement between two regions [32]. In the
same way as a statistical mechanical system can define a temperature associated with its
entropy, a temperature can be defined corresponding to the entropy between two entangled
regions. Therefore, by ignoring entanglement, the standard Lund model is also ignoring any
associated thermal effects. Berges, Floerchinger and Venugopalan go on to show that the
entanglement entropy between regions of the QCD string has a temperature that depends
inversely on proper time, T = 1

2πτ
. The proper time is defined here in hyperbolic coordinates,

corresponding to the blue lines in figure 8. In other words, the string has a high temperature
to begin with, which cools off as time goes on. This thermal dependence on proper time will
be very important when it comes to defining a thermal string tension.

The central claim of this thesis is that the temperature associated with the entanglement
of quarks linked by a string can be modelled as an increase in the string tension of the nor-
mal Lund model, so that κ is no longer a constant. In order to justify this step, a more
detailed description of the QCD vacuum is required, in the context of superconductivity.
A simple traditional electromagnetic superconductor consists of loosely bound states of two
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electrons, called ”Cooper pairs.” An external applied magnetic field will induce a supercur-
rent of Cooper pairs in a material according to Lenz’s law, such that an induced magnetic
field is created in the superconducting medium that opposes the external field [19].

There exist two different types of electromagnetic superconductors, type I and type II.
The classification of a superconductor is based on two parameters: ξ, the spatial extent of
the Cooper pair states; and λ, the penetration depth of the external magnetic field in oppo-
sition to the induced magnetic field [33]. For type I superconductors, ξ >> λ and neither
the Cooper pairs nor the applied magnetic field can move to the area between the super-
conducting state and the rest of the material. The superconducting state will then try to
minimise these boundary regions, condensing the field energy into a spherical shape since
a sphere has the smallest ratio of boundary-to volume. If the Cooper pairs are stretched
longitudinally, then a cylindrical ”flux tube” minimises the boundary area of the field. For
type II superconductors, λ >> ξ and there exists no restriction on where the magnetic field
and Cooper pairs can populate within the material. For a critical range of external magnetic
field strength, the superconducting material is punctuated by a series of vortices that each
carry a single quantum of magnetic flux, Φ0 = h

2e
.

In QCD, the vacuum is taken to behave analogously to a superconducting material, where
the colour field is the equivalent of the electromagnetic field and quark-antiquark pairs replace
Cooper pairs. However, the sizes of ξ and λ of the superconducting QCD vacuum are not
currently determinable a priori, leaving it on the borderline between type I and type II [34].
If the QCD vacuum is a type II superconductor, then we can obtain a physical interpretation
of the string described in the Lund model. The ends of the vortices are usually treated as
monopoles exerting a force proportional to a quantum of magnetic flux, in the same way as
in the electromagnetic case [35]. This force is then a potential physical description of the
string tension, and the medium that is “heating up” due to entanglement is in fact the QCD
vacuum itself. There have been no studies performed either experimentally or theoretically
to investigate the dependence of this force on temperature, since the exact microdynamics of
superconductors remain difficult to pin down [36]. However, it does not appear incoherent to
state that the presence of a temperature will increase the force associated with flux/vortex
lines, thereby increasing the string tension.

This argument is not intended as a definitive proof that thermal effects will affect the
string tension of the Lund model, rather it is an attempt to describe a conceivable way in
which the existence of a temperature might change the standard conception of strings in the
context of hadronisation. There are other possible ways in which a temperature could be
incorporated into the Lund model, such as through thermal fluctuations in the string tension
[37]. However such a model does not introduce an explicit dependence on temperature, and
as such it lacks a physical explanation of the thermal effects in terms of entanglement entropy.
One could also argue that the existence of a temperature will mean that the string no longer
follows the same simple motion of the Lund model, requiring a complete reformulation of the
string’s mechanics. Perhaps it is no longer meaningful in such a thermal context to speak of a
string at all. Before entertaining this possibility, it is worth pointing out that the Lund model
has seen decades of success in predicting a plethora of experimental results. The few thermal
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features that are unaccounted for should not necessarily motivate a complete overhaul of
the model, it seems more likely that there is a small effect that is not currently taken into
account. An increased string tension that depends on temperature is able to incorporate
such a thermal effect, without undermining the structure of a model that provides largely
correct experimental predictions.

4.2 Description

A simple general form can now be postulated for the new temperature-dependent string
tension κtherm:

κtherm = κ0 + αT (34)

κ0 refers to the zero-temperature constant string tension, T is the temperature and α is an
unknown constant to be determined. Borrowing from the definition of temperature provided
by Berges, Floerchinger and Venugopalan, we state that the temperature in fact depends on
the proper time, according to T = 1

2πτ
. Substituting the expression for the temperature into

the above equation:

κtherm = κ0 +
α

2πτ
(35)

This expression diverges as τ → 0, however we expect perturbative QCD to apply at
those very early times anyway. In order to regulate this divergence, we introduce a constant
τ0:

κtherm = κ0 +
A

τ + τ0
(36)

As τ → 0, κtherm → κ0 + A
τ0

which is a constant defining the maximum string tension.
This is the form of the thermal tension that will be used, giving us two free parameters built
into the model. A plot is shown below of the thermal string tension as a function of proper
time compared to the zero-temperature string tension:
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Figure 10: Form of thermal string tension compared to normal tension as a function of proper
time for τ0 = 1, A = 1.

The thermal tension reduces to the constant κ0 = 0.18 GeV2 at late times, while the
maximum tension A

τ0
occurs at τ = 0.

To check if this is a reasonable form for the tension, we can calculate the potential by
solving the differential eq.(3). This means integrating the tension with respect to the spatial
coordinate x, in the same way as for eq.(9). This is not as simple as multiplying all the terms
in κtherm by x as in eq(9), since τ is itself a function of x, τ =

√
t2 − x2. The full solution to

the differential equation is:

E(x) = E0+κ0x+

τ0 arctan

(
x√
−t2+τ20

)
√
−t2 + τ 20

−
τ0 arctan

(
τ0x√

−t2+τ20
√
t2−x2

)
√
−t2 + τ 20

−arctan

(
x
√
t2 − x2

−t2 + x2

)
(37)

While this complicated equation might appear on the surface to be an undesireable form
for the potential, plotting it against x for several values of time (not proper time) reveals a
linear form:
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Figure 11: Form of potential as a function of x-coordinate at different values of time for
τ0 = 1, A = 1, E0 = 0.3.

Thus, the linear form of the potential is retained under the new thermal string tension, in
accordance with figure 1 from lattice QCD. The presence of the temporal component t acts
to change the gradient of the potential slightly, but since lattice QCD calculations are static
by design they would not be sensitive to such a variation. The lattice actually does see a
steeper gradient at small separations anyway, ascribed to the Coulomb part of the potential
below 0.5 fm in figure 1, which is neglected in the standard Lund model. The fact that the
potential is linear with respect to the x coordinate is enough to suggest that our introduction
of a thermal string tension is not implausible.

4.3 Effects

Having motivated and described the thermal string tension, we can now investigate what
changes will be made to string fragmentation. It is assumed that the mechanics of the string
motion remain the same, and that the means by which a string can fragment is still via the
Schwinger mechanism. It is further assumed that vertices remain causally disconnected, so
that we can treat all vertices equally as in the normal Lund model. There is a clear problem
with this assertion. It was claimed in section 5.1 that string regions are entangled, and so
it would seem that any vertex produced from a string would have to carry some shared in-
formation. As such, vertices cannot truly be causally disconnected. This argument is valid,
but we will continue with our assumption nonetheless. It should be pointed out that the
usual Lund model ignores this aspect of entanglement as well, and by invoking a thermal
string tension we are taking more entanglement effects into account than the normal model
does. Furthermore, it is unclear how a causal connection between vertices would affect string
fragmentation, if at all.
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In addition, even if we ignore entanglement, vertices do in some sense still have shared
information. Conservation of energy and momentum means that particles are sensitive to
the energies and momenta of other particles, implying that there is some overall information
transfer that must be taking place. Any effects this causal connection has are likely small,
and so it is a perfectly reasonable approximation to treat particles as causally disconnected.
We will make the same approximation in ignoring any entanglement effects on causal discon-
nection. Any information sharing from overall energy and momentum conservation is ignored
in the normal Lund model as well.

Crucially, the form of this new string tension retains the Lorentz invariance of the original
Lund model. The conserved quantity between frames is the area spanned by the string, given
by A = m2

κ2therm
after substituting the new tension into eq.(14). Since κtherm depends only on

τ , which is unchanged under a Lorentz boost by definition (proof in appendix B), the area
will also remain unchanged as before.

Another aspect of string fragmentation that will remain unchanged is the hadron distribu-
tion function f(z). f(z) is derived on the basis that the string breaks have already occurred,
and has no dependence on κ as a result. The derivation in section 3.3 proceeds in exactly
the same way, with the only difference being the definition of Γ in eq.(22):

Γ = κ2thermx+x− =

(
κ0 +

A

τ + τ0

)2

x+x− (38)

Changing the coordinate Γ in this way means Γ is no longer directly proportional to τ 2,
but the derivation of f(z) never invokes the form of Γ directly. The derivation also never
involves any dependence on τ , so a different relationship between Γ and τ should not affect
any of the steps in section 3.3.

Given that eqs.(23-27) are unchanged by the presence of a thermal string tension, we can
obtain an equation relating the energy-momentum fraction z to τ . By rearranging eq.(25),
we have:

z− =
m2

z+W−W+

(39)

Substituting into eq.(23):

Γ1 =

(
1− m2

z+W−W+

)
W−W+ (40)

Simplifying:

Γ1 = W−W+ −
m2

z+
(41)

Combining eq.(38) and eq.(41), and using x+x− = τ 2 with z+ = z since choice of vertex
is arbitrary:
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(
κ0 +

A

τ + τ0

)2

τ 2 = W−W+ −
m2

z
(42)

Now solving for z:

z =
m2

W−W+ −
(
κ0 + A

τ+τ0

)2
τ 2

(43)

Plotting z as a function of τ for both zero-temperature and thermal string tension:

Figure 12: Relationship between z and τ for A = 1, τ0 = 1, m = 1 and W− = W+ = 4.

The above plot demonstrates that the energy-momentum fraction increases to its max-
imum of 1 (when all the available energy-momenum is taken) at earlier times. This means
that an increased string tension results in more energetic hadrons being produced at earlier
times. In other words, though the choice of z through f(z) is the same as for the normal
Lund model, the time at which z occurs is pushed earlier by a thermal string tension. This
result will inform our intuition about what physical effects an enhanced tension has on the
string system.

Another effect of the increased string tension is a wider transverse momentum (p⊥) spec-
trum for produced quarks. The width σ2 of the p⊥ spectrum is given by the average value of
the p⊥ squared [38]:

σ2 =< p2⊥ > (44)

Since the p⊥ is factorised in the Schwinger tunneling probability (eq.(20)), the average
value can be written as [1]:
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σ2 =< p2⊥ >=
π

κ0

∫ ∞
0

p2⊥ exp

(
−πp2⊥
κ0

)
dp2⊥ (45)

Performing this integral, we obtain:

σ2 =
κ0
π

(46)

The width σ2 will therefore increase under an increased string tension κtherm. It should
be noted that this is the width of the quark p⊥ spectrum, since the Schwinger mechanism
only describes the p⊥ of quarks produced from a single string break. The hadrons will receive
p⊥ kicks from two quarks corresponding to two breakups, and so the actual width will be
twice as large.

The mass factor in the Schwinger probability also contains the string tension, and so the
probability of producing a quark with a given mass will change as well:

P (m2) ∝ exp

(
−πm

2

κ0

)
(47)

This change in P (m2) will manifest as a change in the ratio of strange quarks to up/down
quarks, since this ratio is given by:

P (s : u/d) =
P (m2

s)

P (m2
u/d)

=
exp

(
−πm2

s

κ0

)
exp

(
−
πm2

u/d

κ0

) (48)

Where ms is the mass of the strange quark and mu/d is the mass of the up/down quarks,
taken to be roughly the same here since we only care about the ratio to the strange quark.
It is known from experimental data that there is a general suppression of strange quark
production compared to up and down quarks, with a strangeness ratio of around 0.2-0.3 [39].
Under an increased string tension, the ratio becomes:

P ′(s : u/d) = exp

(
−

(m2
s −m2

u/d)

κtherm

)
(49)

Defining ∆m2 = m2
s −m2

u/d and writing in terms of κ0:

P ′(s : u/d) = exp

(
−∆m2

κ0

κ0
κtherm

)
(50)

Substituting eq.(48):

P ′(s : u/d) = P (s : u/d)
κ0

κtherm (51)

An increased string tension therefore corresponds to decreasing the power κ0
κtherm

, which

in turn increases P ′(s : u/d) since P (s : u/d) is a ratio (less than 1). We therefore expect
there to be an increased number of strange particles to up and down quarks in this thermal
string model compared to the Lund model.
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5 Implementation in PYTHIA

Having described the anticipated changes to be made to the Lund model, these results can
now be implemented in PYTHIA, a C++ Monte Carlo event generator used to simulate
particle collisions. Before doing so, it will be worth defining new free parameters that have
more physical meaning than A and τ0. A is currently arbitrary, acting as a dilation factor in
eq.(36), while τ0 translates the tension so as to avoid any divergence at τ = 0. τ0 must have
the same units as τ , since they are being added together in a denominator. Since τ 2 = t2−x2,
and in natural units [t] = [x] = GeV−1, the units of τ and τ0 must be GeV−1. The overall
units of the second term in κtherm must have the same units as κ0, which means it must be
in either GeV2 or GeV/fm depending on which units are chosen for the string tension. The
units of A will therefore be GeV or fm−1 given that the units of the denominator are GeV−1.

Although we know the units of A and τ0, it is not obvious how to interpret them physi-
cally, particularly the free parameter A. We will therefore reparameterise the string tension,
beginning by multiplying the second term in κtherm by τ0

τ0
= 1:

κtherm = κ0 +
A

τ0

τ0
τ + τ0

(52)

The factor A
τ0

has some physical significance. It defines the maximum size of κtherm, when
τ = 0, as shown in figure 10. The maximum value of the thermal tension is given by the
y-intercept, κmax = κ0 + A

τ0
. Let ∆κmax = A

τ0
= κmax− κ0. ∆κmax will be one of the new free

parameters, with units of [κ0] = GeV2 or GeV/fm. ∆κmax will therefore define the size of
the difference in string tension at maximum temperature compared to zero temperature.

In order to obtain a meaningful alternative to τ0, we will introduce another new parameter
k = τ0

<τ>
, where < τ > is the average value for τ . Since τ0 has the same units as τ , this will

mean k is a dimensionless quantity. In making this modification, the average value for τ will
have to be determined somehow. This will be done by brute force calculation in the next
section. The reparameterised form of the string tension can now by stated by substituting
in the new free parameters:

κtherm = κ0 + ∆κmax
k < τ >

τ + k < τ >
(53)

5.1 Veto Algorithms

PYTHIA contains a default settings database, which can be freely and easily altered by
initialising the main program with different settings. Within this database is the constant
StringFlav:ProbStoUD = 0.217, which defines the ratio of strange quark production to up-
/down quark production from string breaks. There is also the variable StringPT:sigma =
0.335, which defines the width of the p⊥ spectrum of produced hadrons. It might therefore
seem that all we need to do is increase these two constants in accordance with the increased
string tension to encapsulate the thermal effects of the new model. However, it is inap-
propriate to introduce a global modification for these variables. In our model, the string
tension depends on τ , the proper time at which a vertex occurs, and this varies for each
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produced hadron. Since the strangeness production ratio and p⊥ spectrum width depend
on κtherm, they will also be different for each hadron. We therefore need a way of changing
these parameters on a case-by-case basis, rather than imposing a blanket value for all hadrons.

The changes to the Lund model have been implemented in the form of a UserHook.
A UserHook is a piece of functionality within PYTHIA that allows a user to intervene at
various stages of a particle event and perform certain operations. By using a UserHook,
we don’t necessarily have to alter the source code of PYTHIA, and we can step in part-
way through the hadroniation process and make our changes on an individual basis. The
UserHook that will be utilised is called Modified Hadronization, and it contains multiple use-
ful methods. The first method is called doChangeFragPar, which allows the user to change
any relevant parameters before the string fragmentation is performed. We could therefore
change StringFlav:ProbStoUD and StringPT:sigma to be whatever we want. However,
the implementation of doChangeFragPar means that in order to change these parameters,
the relevant settings need to be reinitialised with the modified values. If we wanted to use
this method in this way, then we would need to reinitialise for every single string in every
event, which is very inefficient since we eventually want to build up statistics of many events.
This leaves us with the doVetoFragmentation method, which gives us information about
the current hadron about to be produced and allows us to choose whether we want to accept
or reject it. If we reject it, then PYTHIA will continue generating trial hadrons for us, until
we eventually decide not to veto.

Both UserHooks have access to the Γ of the vertex within the StringEnd class, from
which we can calculate τ using eq.(38):

Γ =

(
κ0 + ∆κmax

k < τ >

τ + k < τ >

)2

τ 2 (54)

Once we know τ we can then calculate the modified string tension κtherm. It should be
pointed out that Γ is calculated within PYTHIA by using z in eq.(41), the energy-momentum
fraction. z is in turn calculated from the standard Lund fragmentation formula, eq.(31). This
demonstrates the importance of f(z) remaining unchanged under a thermal string tension.
If it was not, more significant changes to the process by which strings are fragmented in
PYTHIA would be required.

Solving for τ gives a complicated form (negative and non-real solutions are discarded):

τ =
1

2

(√
Γ

κ0
− k < τ > −∆κmaxk < τ >

κ0

)
+

1

2

√
Γ

κ20
− 2∆κmax

√
Γk < τ >

κ20
+

∆κ2maxk
2 < τ >2

κ20
+

2∆κmaxk2 < τ >2

κ0

(55)

As long as we have some way of calculating τ from Γ, it doesn’t matter how complex the
relationship between them is, we have all the necessary information.

28



At this point we can also calculate in PYTHIA the average proper time of a vertex, < τ >.
We replace κtherm in eq.(54) with the default κ0, which gives a much simpler equation for τ :

τ =

√
Γ0

κ0
(56)

We then use the above equation to find τ in a UserHook with nothing changed from
baseline PYTHIA. By looping over many events, adding up the total τ and then dividing
by the number of times the UserHook was called, the average τ can be calculated by brute
force. After 1,000,000 events, < τ > was found to be equal to 1.2152 GeV−1. This value will
be used in the string tension from now on.

Since doVetoFragmentation does not allow us to directly change any parameters, we will
need some way of altering the string fragmentation process only through vetos. The Veto
Algorithm will provide the mathematical basis for us to do exactly that. It is used in different
forms in a variety of contexts, such as emission probabilities in parton showers, where it is
called the Sudakov Veto Algorithm [40]. For a given trial probability P̂ , the Veto Algorithm
states that in order to obtain an actual probability of P , we accept with a probability of [41]:

Paccept =
P

P̂
(57)

In our context, the trial strangeness ratio or p⊥ spectrum can be identified as P̂ , and P
is the actual strangeness ratio or p⊥ spectrum that we want. The accept proability that we
put into doVetoFragmentation will then be equal to the ratio of P to P̂ . In this way, we can
change the string fragmentation parameters while avoiding having to reinitialise constantly
with doChangeFragPar.

5.2 Strangeness Ratio

First, let us determine the accept probability for an enhanced strangeness ratio which we will
implement in doVetoFragmentation. The ratio of strange to up/down quarks is ordinarily
given by the trial probability of obtaining a strange quark divided by the trial probability of
obtaining an up/down quark:

P (s : u/d) =
P̂s

P̂u/d
(58)

Since we always accept whatever quark we are given normally, the trial probabilities are
equal to the actual probabilities. However, the new probabilities after the potential for a
veto are given by:

P ′(s : u/d) =
Ps
Pu/d

(59)

Here, Ps 6= P̂s, and Pu/d 6= P̂u/d, since we are not necessarily accepting the trial quark we
were given. We will first calculate the probability of obtaining an up/down quark, then the
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probability of obtaining a strange quark, before dividing them to find the new strangeness
ratio according to the above equation.

Pu/d is equal to the probability of getting an up/down trial quark times the probability
of accepting it, plus the probability that the up/down quark was rejected but the next trial
quark was up/down and was accepted, plus the probability that the second up/down quark
was rejected but the third trial quark was up/down, and so on. Pu/d is in fact an infinite
series:

Pu/d = P̂u/dPaccept + P̂u/dPreject(P̂u/dPaccept + P̂u/dPreject(P̂u/dPaccept + P̂u/dPreject(... (60)

Given that we want to primarily study the effects of an increased strangeness ratio, we
assume that all trial strange quarks are accepted (in principle one could include a probability
to reject P̂s, in which case there would be additional terms in the above equation correspond-
ing to the cases where we reject a trial strange quark and accept the next up/down quark).
Since Preject = 1− Paccept:

Pu/d = P̂u/dPaccept + P̂u/d(1− Paccept)(P̂u/dPaccept + P̂u/d(1− Paccept)(... (61)

Expanding first bracket:

Pu/d = P̂u/dPaccept+ P̂ 2
u/dPaccept(1−Paccept) + P̂u/d(1−Paccept)(P̂u/dPaccept+ P̂u/d(1−Paccept)(...

(62)
Further expansions will lead to an infinite sum:

Pu/d = P̂u/dPaccept + P̂ 2
u/dPaccept(1− Paccept) + P̂ 3

u/dPaccept(1− Paccept)2 + ... (63)

Factorising:

Pu/d = P̂u/dPaccept(1 + P̂u/d(1− Paccept) + P̂ 2
u/d(1− Paccept)2 + ...) (64)

Using the sum of an infinite geometric series:

Pu/d = P̂u/dPaccept

(
1

1− P̂u/d(1− Paccept)

)
(65)

This is the probability of obtaining an up or down quark, the denominator in eq.(59).
Now we need to find Ps in order to determine the eventual accept probability that we want to
implement in PYTHIA. The probability of obtaining a strange quark has a slightly simpler
form, since strange quarks are always accepted, however we still need to take into account
the possibility of an up/down quark being rejected and then a strange quark being accepted:

Ps = P̂s + P̂u/d(1− Paccept)(P̂s + P̂u/d(1− Paccept)(... (66)

Expanding and then factorising in the same way as for Pu/d:

Ps = P̂s(1 + P̂u/d(1− Paccept) + P̂ 2
u/d(1− Paccept)2 + ...) (67)
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Ps = P̂s

(
1

1− P̂u/d(1− Paccept)

)
(68)

Now that we have Pu/d and Ps, we can find the new strangeness ratio by substituting
them into eq.(59):

P ′(s : u/d) =
Ps
Pu/d

=
P̂s

(
1

1−P̂u/d(1−Paccept)

)
P̂u/dPaccept

(
1

1−P̂u/d(1−Paccept)

) (69)

P ′(s : u/d) =
P̂s

P̂u/dPaccept
(70)

We know the form of the modified probability in terms of κtherm from eq.(51):

P ′(s : u/d) = P (s : u/d)
κ0

κtherm =
P̂s

P̂u/dPaccept
(71)

Solving for the accept probability:

Paccept =
P̂s

P̂u/dP (s : u/d)
κ0

κtherm

(72)

Since P̂s
P̂u/d

is equal to the original strangeness ratio in eq.(58):

Paccept =
P (s : u/d)

P (s : u/d)
κ0

κtherm

= P (s : u/d)
1− κ0

κtherm (73)

This is the probability for us to accept a given quark which will be implemented in
PYTHIA. Since the the normal strangeness ratio P (s : u/d) and the normal string tension κ0
are constants, we can calculate the probability for the quark to be accepted by substituting
in the trial values for P̂s, P̂u/d, and the calculated value for κtherm based on the τ of the
vertex. The veto probability will then be 1− Paccept.

5.3 Transverse Momentum

We can also develop an accept probability for trial p⊥ spectra. This will be more complicated,
since the trial p⊥ can take on a range of values instead of a single value. A standard two-
dimensional Gaussian probability distribution in momentum is given by:

P (px, py) =
1

πσ2
exp

(−p2x − p2y
σ2

)
(74)

px and py take on values from −∞ to ∞, and in its current state this Gaussian is nor-
malised to 1. The change of variables px = p⊥ cos(φ) and py = p⊥ sin(φ) will allow us to
write the Gaussian in terms of p⊥. Since this is a conversion to cylindrical coordinates, an
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additional Jacobian factor of p⊥ is needed when integrating with respect to p⊥ and φ, so the
form of the Gaussian becomes:

P (p⊥, φ) =
p⊥
πσ2

exp

(
−p2⊥
σ2

)
(75)

Integrating with respect to φ gives additional factor of 2π since the Gaussian has no
dependence on φ:

P (p⊥) =
2p⊥
σ2

exp

(
−p2⊥
σ2

)
(76)

From eq.(46), σ2 = κ0
π

, so:

P (p⊥) =
2p⊥π

κ0
exp

(
−πp2⊥
κ0

)
(77)

This Gaussian matches the Schwinger probability, but is now properly normalised to 1
as required for a probability distribution function. Since p2⊥ = p2x + p2y, p⊥ takes on values
between 0 and ∞. The above Gaussian is the trial p⊥ spectrum ordinarily generated by
PYTHIA. The new Gaussian under a thermal string tension will be given by:

P ′(p⊥) =
2p⊥π

κtherm
exp

(
−πp2⊥
κtherm

)
(78)

A plot of the new Gaussian for different values of κtherm is shown below, to illustrate the
broadening of the p⊥ spectrum under an increased tension:

Figure 13: Change in p⊥ spectrum with increasing thermal string tension.

The Veto Algorithm states that the accept probability should be given by the ratio of the
new Gaussian to the old trial Gaussian:

Paccept =
P ′(p⊥)

P (p⊥)
(79)
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We can then implement this accept probability by calculating κtherm for each hadron, and
substituting it into the new Gaussian P ′(p⊥). We also need to calculate the old Gaussian
using the normal value for κ0, so that we can divide the two Gaussians.

We obviously also need access to the trial p⊥ of the hadron as generated by PYTHIA
in order to make these calculations. One must be very careful when picking this p⊥, since
it depends heavily on which frame one chooses. The transverse momentum that has been
discussed thus far is taken to be defined in the frame of the string. In the lab frame, the
transverse momentum would need to be modified by a Lorentz boost, and the relevant p⊥
would no longer be given by p2x + p2y. PYTHIA provides easy access to the p⊥ in the lab
frame through the event record, which keeps track of all the particles and their properties at
any given point in the event. Instead of using the lab frame p⊥ in the event record, we will
use the pxHad and pyHad variables taken from the StringEnd class, which we have access to
in the UserHooks. px and py will then be in the string frame, allowing us to calculate the p⊥
using p2x + p2y.

There is, however, a clear problem with the accept probability for a trial p⊥ as it is
currently formulated. At some point, the broader p⊥ distribution will be greater than the
original distribution, resulting in an accept probability that is greater than 1. In other words,
the accept probability will only be usable for p⊥ values less than the intersection points in
figure 14. We could address this problem by simply setting the probability to be equal to 1 if
the modified distribution is larger than the unchanged distribution. However this means we
cannot sample the entire modified p⊥ distribution (for further discussion see appendix C).

A possible solution is to increase the amplitude of the original Gaussian distribution, so
that the intersection point is pushed higher and more of the spectrum is sampled. This could
be done with an equation like:

Paccept =
1

N

P ′(p⊥)

P (p⊥)
(80)

By increasing N, the size of the trial Gaussian will be increased. The accept probability
will then be less than 1 for higher p⊥ values, meaning fewer data points will be blindly
accepted. There is an issue with this as well, as can be seen by plotting the accept probability
again but for different values of N:
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Figure 14: Form of accept probability for different values of N, at a string tension of 2κ0.

We find that in order to push the accept probability to incorporate higher values of p⊥,
we require N to grow almost exponentially. The probability to accept p⊥ less than 1 GeV
can be seen to decrease to almost zero in the above plot as N is increased to 1000. At the
same time, the trial distribution is giving us p⊥ values that are mostly in this region, as can
be seen in figure 15. As such, we will be rejecting almost all particles that are given to us,
except for the very few that happen to fall in the range where the probability is substantial.
This means our efficiency is reduced enormously, since we have to continue generating trial
hadrons until we finally get one with a high enough accept probability. It can also be seen
that as N is increased, the form of the accept probability tends more and more towards a
vertical line. This means we are effectively not sampling any p⊥ values below this peak,
which was what we were trying to avoid in the first place.

We will therefore return to the doChangeFragPar method, in which we can reinitialise
the StringPT:sigma with an enhanced p⊥ width. While this is an inefficient method, it is
still much more efficient than using a high value of N, and this way we can be sure that
we are sampling the whole modified distribution. We will keep the veto algorithm for the
strangeness ratio, since it means we don’t also have to reinitialise a second time with a new
ProbStoUD as well.

6 Results

The following reults were generated by simulating electron-positron collisions at 91 GeV that
annihilate to produce a Z boson, which then decays to a single quark-antiquark pair. This
allows us to study the simplest case of a single string stretched between two quarks. A copy
of the UserHook code used to modify the hadronisation process is in appendix D. Each data
point corresponds to 10,000 events.
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6.1 Proof of Concept

We will first consider the results of our modifications in an ideal case, where the quark-
antiquark pair are produced directly along the z axis. This is not a realistic scenario, but
it will help give us an undestanding of the effects we would expect to observe if we knew
exactly what axis to measure the transverse momentum with respect to. We will later study
the case where we don’t know what direction the quarks are produced along, requiring us to
approximate the necessary axis as experimentalists do. We will also turn off hadron decay
and final state radiation, again to simplify the situation.

As an initial check, we can plot the average p⊥ and strangeness ratio as a function of the
free parameters to make sure they are increasing as expected. The average p⊥ is determined
by averaging over the p⊥ of all produced hadrons, while the strangeness ratio is calculated
by adding up all the accepted quarks in the string fragmentation process for each flavour,
and then dividing the number of strange quarks by the number of up/down quarks. If we
first plot the average p⊥ as a function of ∆κmax:

Figure 15: Change in average p⊥ as a function of ∆κmax at k = 1 compared to baseline
PYTHIA value.

The values chosen for ∆κmax range between 0 and 6 GeV2, in increments of 0.25 GeV2,
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which will be maintained across all future plots as well. This range is chosen since it covers
small enhancements to the string tension all the way to massive enhancements. The usual
value for κ0 is 0.18 GeV2, so a value of ∆κmax = 1 GeV2 is already a sizeable increase to the
string tension. If k = 1 and τ takes on its average value of 1.2152 GeV−1, then according
to eq.(53) the enhanced string tension is equal to 0.5 GeV2, which is nearly three times the
baseline value. We extend the range for ∆κmax up to 6 GeV2, since beyond that value the
string tension becomes so high that the accept probability in eq.(73) is very small, and the ef-
ficiency is drastically reduced. At that point we are effectively only accepting strange quarks
anyway, so extending ∆κmax further is unlikely to give us much more new information. At
∆κmax = 6 GeV2, the string tension is also so energetic that we can question whether we are
even considering an entirely non-perturbative system anymore. We therefore only include
these higher values for the sake of completeness, and to see what happens to the model when
it is taken to an extreme.

It can be seen that an increased ∆κmax, corresponding to an increased thermal string
tension, results in an increased average p⊥ as expected. The size of the difference is substantial
at this stage, with the average p⊥ approaching nearly twice the zero temperature value at
high ∆κmax. It is also clear that the new model reduces to the original Lund model when
∆κmax is set to zero, at which point the average p⊥ is the same in both cases. The relationship
between the two variables appears approximately linear, before leveling off as ∆κmax reaches
very large values. An explanation for this levelling off effect is that there is only so much
energy available in the event to be given to the p⊥. As a result, the p⊥ cannot be increased
indefinitely by increasing the string tension. In order to check if this is a valid explanation,
we can plot the average p⊥ again with twice the centre of mass energy of the previous plot
(182 GeV):
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Figure 16: Change in average p⊥ as a function of ∆κmax at k = 1 for 182 GeV.

Compared to the previous plot, the average p⊥ reaches a higher value and the linear shape
is retained for slightly longer. This suggests that the levelling off of the average p⊥ is a phase
space effect, and if we increased the centre of mass energy far enough then the p⊥ would
effectively increase indefinitely with the string tension.

Another reason why increasing the centre of mass energy would increase the average p⊥
is that it minimises the endpoint effects of the string. When the initial quark-antiquark pair
are produced from the hard process decay of the Z boson, they have zero p⊥. It is only
the quarks produced from string breaks via the Schwinger mechanism that receive any p⊥
kicks. By increasing the centre of mass energy, more string breaks occur, and there are more
particles with non-zero p⊥ to offset the original endpoint quarks with zero p⊥. On average,
therefore, the p⊥ will increase.

It is also worth plotting the average p⊥ as a function of the other free parameter k:
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Figure 17: Change in average p⊥ as a function of k at ∆κmax = 1 compared to baseline
PYTHIA.

It is apparent that increasing k also increases the average p⊥ somewhat, though it begins
to level off at lower values than that of ∆κmax. If we revisit the form of the thermal string
tension in eq.(53), it is clear that increasing k will increase the fraction k<τ>

τ+k<τ>
towards a

value of 1, if τ is held constant. For example, at τ =< τ >, the fraction becomes k
1+k

, so
increasing k will cause this term to get closer to 1. In other words, increasing k will cause the
overall string tension to increase towards κtherm = κ0 + ∆κmax. We would therefore expect
the thermal string tension to asymptote as k becomes large, and since p⊥ depends linearly
on the string tension when ∆κmax = 1, the p⊥ should also asymptote as we have observed.
Small values of k will not reproduce the zero temperature value of average p⊥, since the
presence of a non-zero ∆κmax means the tension will still be enhanced.

We will hold k at a constant value for the rest of these results. This is partly for the
sake of brevity, to avoid presenting twice as many plots. We also primarily want to examine
here the dependence of various quantities on the size of the string tension, which is already
encapsulated by ∆κmax. It may nevertheless be worth considering variations in k in future
work. k is correlated with the time-dependence of the thermal string tension, so there may
be some additional interesting information captured by this free parameter.
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Now the strangeness ratio can be plotted as a function of ∆κmax:

Figure 18: Change in strangeness ratio as a function of ∆κmax compared to baseline PYTHIA.

The strangeness ratio is here taken as the ratio of strange to down quarks accepted, but
it could equally be taken as the ratio of strange to up quarks. The ratio is seen to increase as
expected, with the baseline value of 0.217 recovered at ∆κmax = 0. The ratio again flattens
out, due to there only being so much energy available to convert into the heavier strange
quarks compared to up and down quarks. The centre of mass energy can be increased again
to increase the strangeness ratio further, as in the case of average p⊥.

So far we’ve seen that the presence of a thermal string tension results in an increased
amount of strange hadrons, as well an increased average p⊥. A natural next step would be to
predict that strange hadrons in particular are receiving more p⊥ than hadrons without any
strange content. If found, this would demonstrate a link between average p⊥ and strangeness.
Such a link would be an interesting prediction of the model by itself, given that there exists
no current analysis of electron-positron collisions that investigates the dependence of p⊥ on
hadrons with specifically strange content. If such an analysis were performed, the theoretical
results of our model could potentially be observed. There does exist experimental evidence
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that a link between p⊥ and strangeness is possible. In proton-proton collisions at the RHIC
(Relativistic Heavy Ion Collider), an analysis of average p⊥ for different hadron types was
performed, yielding the following plot [42, 43]:

Figure 19: Average p⊥ as a function of particle mass in proton-proton collisions.

The first data point corresponds to the average p⊥ of pions, the second point to kaons and
the third to rho mesons. The key point here is that the data (black points) is well described
by PYTHIA (blue points) for pions and rho mesons, whereas the kaons appear to have more
p⊥ than is predicted. A difference between these types of mesons is the fact that pions and
rho mesons have no strange content, whereas kaons contain a strange quark. This suggests
a possible conection between strangeness and enhanced p⊥, even in proton-proton collisions
which are much more complicated than electron-positron collisions.

In order to test if our model predicts that strange hadrons have more p⊥ than non-
strange hadrons, the ratio of different hadron average p⊥ to pion average p⊥ was calculated
as a function of ∆κmax. This will tell us how the average p⊥ of different types of hadrons
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varies compared to the average p⊥ of pions under a thermal string tension. Various different
strange mesons were chosen for this analysis, along with both charged and neutral pions
and rho mesons as a point of comparison. Positively and negatively charged particles were
grouped together and labelled with just a positive sign. On this basis, the following plot was
generated:

Figure 20: Average p⊥ ratio to pions as a function of ∆κmax for different meson types.

All the particles with strange content (K0, K+, K∗0, K∗+, η, η′, φ) can be seen to have
an increased average p⊥ relative to the pions, compared to their zero-temperature values.
This difference grows as ∆κmax increases. In particular, the φ meson consists of two strange
quarks, and has the largest p⊥ enhancement of any of the particles considered here, more
than 25% at its peak. The kaon average p⊥ is moderately enhanced, since they all contain
one strange quark. The η and η′ mesons both have a slightly enhanced p⊥, since they only
have a strange quark some of the time. The p⊥ of the ρ meson (no strangeness) increases
only slightly, if at all, which demonstrates a stark difference between the p⊥ of hadrons with
and without strange content.

A point of concern might be the difference between the average p⊥ for charged and un-
charged kaons, which is present with the enhanced string tension turned off at ∆κmax = 0
and is consistent across all values of ∆κmax. On the face of it, there is no reason why there
should be this difference, since a charged kaon differs by an uncharged kaon only by picking
up an up quark rather than a down quark. Since our model of hadronisation treats up and

41



down quarks equally, it seems very unlikely that this difference is due to a modification we
have made.

A plausible explanation is that there is an asymmetry in the production of up and down
quarks from the hard process Z decay. As explained earlier in this section, initial quarks
produced from the hard process have zero p⊥. If more up quarks are produced from the
Z decay than down quarks, then the p⊥ of any resulting kaons that pick up an up quark
(charged) will be lower than for any kaons that pick up a down quark (uncharged). Since
this is an effect of the endpoints of the string, we can again increase the centre of mass energy
to minimise the effects of the hard process, expecting that the difference between charged
and uncharged kaons should be reduced. This is indeed what we see when the centre of mass
energy is doubled:

Figure 21: Average p⊥ ratio to pions as a function of ∆κmax for different meson types at 182
GeV.

The initial difference between charged and uncharged kaons is smaller at zero temperature
compared to the previous plot at 91 GeV, and remains so for non-zero values of ∆κmax. The
difference is therefore most likely due to endpoint quarks. This is an interesting feature of
the model, since it allows us to observe any endpoint effects, or instead study the hadrons
created purely from fragmentation by simply increasing the centre of mass.

We might wonder at this point how it is possible for there to be more average p⊥ as well
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as more heavy strange particles, both of which require more energy, given that there is the
same amount of centre of mass energy available. We seem to be getting more energy for free,
which is impossible. The answer to this problem is that there are actually fewer particles
being produced per event. This is a problem, since particle multiplicity per event is a well
measured quantity that is closely reproduced by the baseline parameters within PYTHIA
[43, 44]. In order to restore the number of particles back to the original amount, we can tune
the input values of StringFlav:ProbStoUD and StringPT:sigma to be lower than normal
when we are first initialised in PYTHIA. This will partially offset the increase in strangeness
and p⊥, while increasing the number of particles. We can see this effect in the below plot of
particle number as a function of the tuned value for StringPT:sigma:

Figure 22: Number of particles in 10000 events as a function of tuned p⊥ spectrum width, at
k = 1 and ∆κmax = 2.

This plot shows that the number of particles is significantly lower at the usual value of
StringPT:sigma = 0.335 GeV when the thermal string tension is in effect compared to when
it is not. Decreasing StringPT:sigma increases the number of particles back to its original
number.

If we want to always have the same number of particles per event under our thermal
string tension, then we would need to tune StringFlav:ProbStoUD and StringPT:sigma

like this for every value of the free parameters we choose. This is too time-consuming, since
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it would involve manually observing the number of particles without the thermal string ten-
sion turned on, then tuning until the number of particles is roughly the same after turning
the thermal tension on, and repeating for every ∆κmax, and then repeating the whole process
again for every set of results we want to study. Instead, we will tune for just a few values
of ∆κmax, to see what effect it is having specifically on the relationship between strangeness
and p⊥ in figure 20. This was done by decreasing the values of StringFlav:ProbStoUD and
StringPT:sigma until the total number of particles was within 1% of the original number
of particles with no enhanced tension. We also turned on hadron decays and final state
radiation, in order to obtain the most realistic total number of particles. It should be noted
that for values of ∆κmax between 0 and 0.5, there is no need to tune at all, since the number
of particles does not differ by more than 1%.

After performing this tuning procedure, the following plot was generated:

Figure 23: Average p⊥ ratio to pions as a function of ∆κmax for different mesons after tuning.

The starting ratio for each meson may look slightly different than in figures 20 and 21.
This is due to the fact that hadrons are being allowed to decay here, which can obviously
result in different types of particles being produced with different momenta. The key ob-
servation is that after an initial increase in average p⊥ for the strange mesons compared to
the pions, the ratio then starts to flatten out as the tuning kicks in around 0.5 GeV2. This
indicates that if we want to maintain roughly the same number of particles as we had before
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introducing the enhanced tension, we will need to accept a significant dampening of the in-
creased strangeness p⊥ above ∆κmax = 0.5 GeV2.

6.2 A Realistic Analysis

So far we have been investigating the effects of our new model in an ideal case where the
string axis coincides with the z axis of the collider. In reality, the quark-antiquark pair can be
produced in any direction. This poses a problem for experimentalists in measuring the p⊥ of a
given particle in an event. They cannot immediately tell what direction the quark-antiquark
pair was produced, since the quarks are not measurable directly, and so the p⊥ cannot be
measured nicely along a predetermined axis. Instead, they have to approximate the direction
in which the quarks were most likely produced, based on where they observe measureable
particles like hadrons and leptons in their detectors. This is usually done in electron-positron
collisions by calculating a sphericity axis, or a thrust axis, and then measuring the p⊥ with
respect to that axis. The sphericity axis is defined using a sphericity tensor [45]:

Sαβ =

∑
i p

α
i p

β
i∑

i |pi|2
(81)

Here, α and β run over the x, y and z components of the momentum. After diagonalizing
this tensor, one can define three eigenvectors with three associated eigenvalues. The spheric-
ity axis then defined as the eigenvector with the largest eigenvalue.

In order to find the thrust axis, a quantity called thrust (T ) must be calculated [46]:

T =

∑
i |n.pi|∑
i |pi|

(82)

The thrust axis is then defined as the vector n that maximises the quantity T . Thrust
has an advantage over sphericity in that it is infrared safe. An infrared safe quantity is
insensitive to any physics occuring at low energy [47]. Sphericity is not infrared safe, since it
has a dependence on the momentum squared. This means that the sphericity tensor will be
different for a single particle compared to two collinear particles, if the total momentum is
the same in each case. Note that it is possible to obtain an infrared safe version of sphericity
called linearised sphericity, given by [48]:

Sαβ =

∑
i
pαi p

β
i

|pi|∑
i |pi|

(83)

Even though there is this important difference between thrust and sphericity, we will
calculate both in our results since both options have been used in the past to measure the
average p⊥.

First of all, the average p⊥ will be plotted again as a function of ∆κmax, this time with
respect to the sphericity axis:
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Figure 24: Change in average p⊥ with respect to sphericity axis as a function of ∆κmax at k
= 1.

There remains a clear increase in average p⊥ as the string tension is increased, though
the increase is around 50% rather than nearly double as was the case when measuring along
the string axis. We expect any effects of our model to be reduced in this way when mea-
suring with respect to an experimental axis. The experimental axis cannot exactly replicate
the actual string axis, and so the full increase in average p⊥ will not be completely carried
through. A plot of average p⊥ with respect to the thrust axis results in a simiar increase in
average p⊥.

There is one last step to be taken to have an entirely realistic simulation of electron-
positron collisions, and that is to turn on hadron decays and final state radiation. The plot
of average p⊥ as a function of ∆κmax then becomes:
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Figure 25: Change in average p⊥ with respect to sphericity axis as a function of ∆κmax with
hadron decay and final state radiation on.

With hadron decays and final state radiation in place, the increase in average p⊥ is further
reduced. However, the increase is not completely washed out, since it now reaches around a
15% increase compared to the zero temperature value at high ∆κmax.

We can now see what the relationship between p⊥ and strangeness looks like when mea-
suring the p⊥ with respect to an experimental axis. For the sake of using both thrust and
sphericity, the next plot will be performed by measuring with respect to the thrust axis,
though similar results were obtained for sphericity. Plotting the average p⊥ ratio to pions as
a function of function of ∆κmax for the same types of hadrons as before:
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Figure 26: Average p⊥ ratio to pions as a function of ∆κmax for different mesons with respect
to thrust axis.

Measuring with respect to the thrust axis seems to amplify the difference between charged
and uncharged particles, since the charged kaons begin much lower than the neutral kaons
and grow at a slower comparative rate. The neutral pion also seems to have an increasing p⊥
compared to the charged pion, highlighting a difference that wasn’t present when measuring
exactly along the string axis. This difference between charged and uncharged particles is
most likely to be a result of the mechanics involved in thrust and sphericity, and is therefore
irrelevant to our study of the effects of our enhanced string tension. The more interesting
result is that the φ meson, along with the charged kaons and η mesons, have an average p⊥
that increases at a faster rate than the hadrons without strange content, ignoring charged
particles. The π0 and ρ mesons are clearly increasing by less than the neutral strange mesons,
implying that there is still a measureable difference in average p⊥ between strange and non-
strange mesons.

7 Conclusion

We have developed in this thesis a model for hadronisation that incorporates a time dependent
thermal string tension, based on the highly successful Lund model. This modification has
been implemented using an easily accessible plug-and-play UserHook code. In doing so, we
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have demonstrated that more strange quarks will be produced with enhanced transverse mo-
mentum at early times, when the string is “hottest.” This will result in an increased average
p⊥ for strange hadrons compared to non-strange hadrons, as seen within the PYTHIA particle
collision simulator. Such an effect should therefore be measureable in electron-positron colli-
sions. The primary difficulty in observing this effect is isolating the different types of hadrons,
so that the average p⊥ can be compared between different species. However, the presence of a
clear enhancement of average p⊥ in neutral kaons and φ mesons would be significant motiva-
tion to attempt an analysis of existing electron-positron data to see if such a difference exists.

This project could be extended to consider a possible dependence of the string tension
on an environment variable. We have already seen that an enhanced string tension leads
to increased strangeness. If the string tension could be further enhanced by the presence of
nearby strings, for example, then we would predict an increase in strangeness when more
particles are present in an event. This could go some way to explaining the dependence
of strangeness on particle multiplicity in proton-proton collisions seen in figure 2. Before
attempting this, a description of diquarks would need to be included in our model, since we
have not studied the generation of baryons in this thesis.
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Appendices

A Derivation of H and f Distributions

In order to determine H and f , we will set eq.(28) and eq.(29) equal to one another. Taking
the natural logarithm of both sides, and letting h(Γ) = ln(H(Γ)), g(z) = ln(zf(z)):

h(Γ1) + g(z+) = h(Γ2) + g(z−) (84)

Taking partial derivatives of both sides with respect to z+ and then z− will remove all
the dependence on g. We are eventually left with:

dh(Γ1)

dΓ1

+ Γ1
d2h(Γ1)

dΓ2
1

=
dh(Γ2)

dΓ2

+ Γ2
d2h(Γ2)

dΓ2
1

. (85)

In order to find this equation, the chain rule was used, along with eq.(26):

∂h(Γ1)

∂z+
=
dh(Γ1)

dΓ1

∂Γ1

∂z+
=
dh(Γ1)

dΓ1

(
−m

2(1− z−)

z−z2+

)
. (86)

Reversing the product rule:

∂

∂Γ1

(
Γ1
∂h1
∂Γ1

)
=

∂

∂Γ2

(
Γ2
∂h2
∂Γ2

)
, (87)

Since the left side only depends on Γ1 and the right side only depends on Γ2, this equation
can only be satisfied if each side individually is equal to a constant. Let this constant be
called −b, and drop indices 1 and 2 since the equation holds for both sides:

∂

∂Γ

(
Γ
∂h

∂Γ

)
= −b (88)

Integrating both sides and rearranging:

h(Γ) = −bΓ + a ln(Γ) + ln(C), (89)

a and C are arbitrary constants of integration. Exponentiating both sides:

H(Γ) = CΓa exp(−bΓ). (90)

This is the form of the distribution H we wanted to obtain. Since H is a probability
distribution, the constant C acts as a normalisation constant.

We can now find the distribution f by substituting eq.(97) into eq.(92). After rearranging
so that left side depends only on z+ and right side depends only on z−:
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g(z+) +
bm2

z+
− a1 ln

(
m2

z+

)
− a2 ln

(
1− z+
z+

)
+ ln(C1)

= g(z−) +
bm2

z−
− a2 ln

(
m2

z−

)
− a1 ln

(
1− z−
z−

)
+ ln(C2),

Since each side only depends on z+ or z−, the same reasoning as for distribution H can
be used to equate both sides to a constant. Let this constant be n, and then exponentiate
both sides dropping indices [26]:

f(z) = N
1

z
(1− z)a exp

(
−bm2

z

)
(91)

Here, N = exp(n), representing a normalisation constant. The same parameters a and b
from H(Γ) appear in this distribution.

B Lorentz Invariance of Proper Time

It can be readily proven that the quantity τ =
√
t2 − x2 is Lorentz invariant, as is required

for τ to define a proper time. Under a Lorentz boost by velocity v in the x direction, the
temporal component transforms as t′ = γ(t − vx), and the spatial coordinate transforms as
x′ = γ(x− vt), where γ = 1√

1−v2 . τ therefore transforms as:

τ ′ =
√
γ2((t− vx)2 − (x− vt)2) (92)

τ ′ = γ
√
t2 − 2vxt+ v2x2 − x2 + 2xvt− v2x2 (93)

τ ′ = γ
√

(1− v2)(t2 − x2) (94)

Since γ = 1√
1−v2 :

τ ′ =
√
t2 − x2 = τ (95)

τ is therefore unchanged under a Lorentz boost, meaning it is appropriate to describe τ
as a proper time.

C Gaussian Sampling Problem

Setting eq.(79) and eq.(80) equal to one another:

2p⊥π

κ0
exp

(
−πp2⊥
κ0

)
=

2p⊥π

κtherm
exp

(
−πp2⊥
κtherm

)
(96)
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exp

(
−πp2⊥

(
1

κ0
− 1

κtherm

))
=

κ0
κtherm

(97)

πp2⊥

(
1

κtherm
− 1

κ0

)
= ln

(
κ0

κtherm

)
(98)

πp2⊥

(
1

κ0
− 1

κtherm

)
= ln

(
κtherm
κ0

)
(99)

Multiplying left hand side by κtherm
κtherm

:

πp2⊥
κtherm

(
κtherm
κ0

− 1

)
= ln

(
κtherm
κ0

)
(100)

Solving for p⊥:

p⊥ =

√√√√√κtherm ln
(
κtherm
κ0

)
π
(
κtherm
κ0
− 1
) (101)

Since κtherm
π

is equal to the enhanced width σ2
therm:

p⊥ = σtherm

√√√√√ ln
(
κtherm
κ0

)
(
κtherm
κ0
− 1
) (102)

For a thermal string tension that is double the normal string tension, we find p⊥ =
0.833σtherm. This means that if we set the probability to be 1 above the intersection point,
then we are actually only sampling 83.3% of the enhanced Gaussian, and the rest we are just
accepting blindly. Ideally, we would like to sample at least 95% of the distribution since that
corresponds to 2 standard deviations either side of the mean. This information loss becomes
worse if we increase the ratio of tensions (triple the tension is 74.1%, quadruple is 68.0%,
and so on).

D UserHook Code

#inc lude ”Pythia8 /Pythia . h”
using namespace Pythia8 ;

//New free parameter definitions

double deltaKappaMax = −0.25; //Kappa’ maximum minus ordinary kappa

double k = 1 ; //Former tau0 divided by average unmodified tau

//Average tau calculated by brute force

double tauAverage = 1 . 2152 ;

//Declare StringPT object used to reset pT after modifications
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StringPT pTSaved ;

//Declare Settings object to be modified

Se t t i n g s sett ingsMod ;

//Declare original string tension globally

double kappaOld = 0 ;

//Declare UserHooks class

class MyUserHooks : public UserHooks {
public :

//Constructor and Destructor

MyUserHooks ( ) {}
˜MyUserHooks ( ) {}

//Enable Modified Hadronization UserHook methods

virtual bool canChangeFragPar ( ) {return true ;}

//Change pT Spectrum Width

virtual bool doChangeFragPar ( St r ingFlav ∗ f l avPtr , Str ingZ ∗ zPtr ,
StringPT∗ pTPtr , int idEnd , double m2Had, vector<int> iParton ,
const StringEnd∗ sEnd ) ove r r i d e {

pTSaved = ∗pTPtr ; //Save original pT given by Pythia

sett ingsMod = ∗ s e t t i n g sP t r ; //Define settings to be modified

sigmaOld = se t t i ng sPt r−>parm("StringPT:sigma" ) ; //Keep track of original sigma

kappaOld = pow2( sigmaOld )∗M PI ; //Calculate original string tension

//Gamma of vertex

double gamma = sEnd−>GammaNew;

//Tau of vertex

double tau = 0.5∗((−deltaKappaMax∗k∗ tauAverage/kappaOld)+( sq r t (gamma)/ kappaOld )
−k∗ tauAverage+sq r t ( ( pow2( deltaKappaMax∗k∗ tauAverage )/pow2( kappaOld))−
2∗( deltaKappaMax∗k∗ tauAverage∗ s q r t (gamma)/pow2( kappaOld ))+(gamma/pow2( kappaOld ) )
+(2∗deltaKappaMax∗k∗ tauAverage∗k∗ tauAverage/kappaOld )
+(2∗ s q r t (gamma)∗k∗ tauAverage/kappaOld)+pow2(k∗ tauAverage ) ) ) ;

//New tau-dependent kappa

double kappaNew = kappaOld + deltaKappaMax∗k∗ tauAverage /( tau+k∗ tauAverage ) ;

//New modified pT width

double sigmaNew = sq r t (kappaNew/M PI ) ;

//Modify pT width in settings object

sett ingsMod . parm("StringPT:sigma" , sigmaNew ) ;

//Reinitialise

pTPtr−> i n i t ( settingsMod , part i c l eDataPtr , rndmPtr , i n f oPt r ) ;
return true ;

}

//Veto Algorithm for strangeness ratio
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virtual bool doVetoFragmentation ( Pa r t i c l e had , const StringEnd∗ sEnd ) {

//Ratio of getting strange quark

double probStoUD = se t t i ng sPt r−>parm("StringFlav:probStoUD" ) ;

//Gamma of vertex

double gamma = sEnd−>GammaNew;

//Tau of vertex

double tau = 0.5∗((−deltaKappaMax∗k∗ tauAverage/kappaOld)+( sq r t (gamma)/ kappaOld )
−k∗ tauAverage+sq r t ( ( pow2( deltaKappaMax∗k∗ tauAverage )/pow2( kappaOld))−
2∗( deltaKappaMax∗k∗ tauAverage∗ s q r t (gamma)/pow2( kappaOld ))+(gamma/pow2( kappaOld ) )
+(2∗deltaKappaMax∗k∗ tauAverage∗k∗ tauAverage/kappaOld )
+(2∗ s q r t (gamma)∗k∗ tauAverage/kappaOld)+pow2(k∗ tauAverage ) ) ) ;

//New tau-dependent kappa

double kappaNew = kappaOld + deltaKappaMax∗k∗ tauAverage /( tau+k∗ tauAverage ) ;

//Veto algorithm (return true is a veto)

if ( ( abs ( sEnd−>flavNew . id ) == 2) &&
( rndmPtr−> f l a t ( ) < 1−(probStoUD )/(pow(probStoUD , kappaOld/kappaNew ) ) ) ) return true ;
if ( ( abs ( sEnd−>flavNew . id ) == 1) &&
( rndmPtr−> f l a t ( ) < 1−(probStoUD )/(pow(probStoUD , kappaOld/kappaNew ) ) ) ) return true ;

//Restore content of StringPT to its original value for the rest of Pythia

StringPT∗ pTPtr = sEnd−>pTSelPtr ;
∗pTPtr = pTSaved ;

return false ;
}

private :
} ;
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