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Hadronisation in Particle Collisions is modelled by some Monte-Carlo generators by a model called the Lund
Model. With a recent increase in strange enhancement seen in high multiplicity collisions at ALICE, a
review of the Lund Model and it’s formulation is undertaken. Further, investigation into modifying the
Schwinger Model in QCD is conducted in order to realise the new phenomena, by using a lower order expo-
nential dependence, similar to a thermal distribution like Boltsmann’s Distribution. We find that this sort of
parametrisation suits desired suppressive behaviour, however have yet been able to test this modification in
event generators such as PYTHIA due to timing constraints of this project.

This article is aimed for undergraduate use, seem-
ing the project was completed by an Undergrad-
uate Student. The language should be accessi-
ble for anyone who has studied undergraduate
physics.

I. INTRODUCTION

In recent results, seen at the ALICE collaboration2 at
CERN, a higher density of strange particles has been
observed in charged particle high multiplicity collisions.
‘High multiplicity’ refers to the presence of other parti-
cles. In this case, we talk about the presence of other
charged quarks.

Current Monte-Carlo event generators such as
PYTHIA8, DIPSY or EPOS, which simulate the produc-
tion rates of different particles by running Monte-Carlo
algorithms on theoretical models, currently do not reflect
the behaviour seen in these results. This motivates in-
vestigation into the underlying models that dictate the
production probability spectrum.

This paper specifically looks into the Lund Model,
which is used in PYTHIA. The Lund Model is a theoreti-
cal framework for modelling the production of Quarks in
particle collisions. Largely developed by Bo Andersson1,
this theory has successfully provided insight to pro-
cesses observed at the LHC, supporting modelling and
providing predictions for experimental data. This re-
port focuses specifically on String Fragmentation, which
describes the decay of strings (strong fields) between
quarks. This model uses the “Massless Relativistic
String” to derive it’s probabilities. This provides nec-
essary foundations for the Lund Model.

To explain the Lund Model with enough detail for
an undergraduate audience to understand, this paper
will cover background theory to the Massless Relativistic
String, such as light cones in Minkowski space and quark
basics. We will then investigate the Schwinger Model in
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Quantum Chromodynamics (QCD), and begin analysing
the distribution effects of these models and modifications
we make.

A. Just 3 Dimensions? ‘No way’, Minkowski says...

Although we perceive the world in three dimensions,
for particle physicists it’s much more natural to consider
a fourth dimension; time. We call this set of dimen-
sions space-time. By considering a distance between two
coordinates, given by the difference in spacial and time
co-ordinates, physicists can categorise various events.

X = (ct, x, y, z)

= (t, ~x)
(1)

Here ‘c’ is the speed of light. The distance from the
origin can be calculated as such:

|X| =
√
X2

=

√
c2t2 − ~x2

(2)

You may be surprised by the negative sign, but that is
essential to describing how time and space can interact.
This metric is called Minkowski Space, and it calculates a
magnitude by the evaluating the difference between the
light and space components (squared). We also apply
the same metric for other similar vectors, such as To-
tal Energy and Momentum (energy-momentum or four-
momentum), and four-velocity.

Given Minkowski space, the notion of lightcones can be
described. Imagine you travel at the speed of light from
one point in space to another. Then we can describe your
coordinate transform as:

X → X + ∆X

→ (c (t+ ∆t) , ~x + ∆~x)
(3)

By using the distance light travels in time,

∆~x = c∆t (4)
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we can now consider your displacement from the orig-
inal point.

|∆X| =
√

(X2 −X1)2

=

√
[(c (t+ ∆t) , ~x + ∆~x)− (ct, ~x)]

2

=

√
c2(∆t)2 − (∆~x)

2

= 0

(5)

We call this behaviour lightlike, when there is a zero
magnitude difference between the coordinates. We can
think about this like having travelled the same speed as
light between to spacial coordinates.

Analogously, if the distance between two coordinates
is negative, we have a spacelike event. How might you
think of this? It is the case where light itself cannot
travel fast enough to cover the space gap, or something
has travelled faster than the speed of light (impossible).
It suggests the events are independent of each other.

Lastly, timelike events are the usual ordinary events,
for anything with matter and mass. Our physical world
is bounded by causality, the idea that events have a de-
pendence on past events in time. We also consider that
we have finite velocity smaller than the speed of light.

Interpreting these light cones as geometric shapes, we
can add meaning to a cone. Consider a 1D space that
we can move in. The ‘lightcone’ will contain all possible
velocities that anything physical can travel at, limited by
the speed of light. From here on this paper uses natural
units, which assume c = 1.

B. Motivations To Go Deeper

Scattering and observing the collisions of particles has
been done ever since Rutherford scattered alpha nuclei off
nuclear targets. By doing so, physicists have been able to
gain appreciable understanding of atomic physics, decays
and surface charges. This was progressed by using more
significant, energetic beams, probing into the structure
of the nucleus. Later, single nucleons were used allowing
the study of protons and neutrons. We began to discover
that a proton wasn’t a single point charge, but rather a
smear of charges. Then began the discovery of quarks,
and their resonances seen in distributions. As we keep
probing deeper into the foundations of our Universe, it’s
exciting to reflect on the progress made within the last
100 years. We can expect to understand more exciting
physics, and if not we’re much better off for trying.

C. Brief introduction to Quarks

Quarks are one of the achievements seen in the late
20th century by particle accelerators. Quarks, Lep-
tons and Bosons make up the core of the ‘Standard

Model’, the current used model for fundamental parti-
cles. Quarks (and Gluons) are also referred to as Par-
tons, which were proposed by Richard Feynman in the
late 1960’s. There are 6 different known Quarks, as seen
in Figure 1.

FIG. 1. The Standard Model Of Particle Physics5

Each quark is distinguished experimentally by it’s
mass. The Top quark was only discovered in 1995 due
requiring high enough beam energies to appropriately de-
tect it’s large mass, seen by the Tevatron, at Fermilab,
in Illinois USA. Up and Down quarks, the two light-
est quarks, are what constitute the protons and neu-
trons that we commonly talk about in nuclear science.
A Strange quark is the next heaviest quark, however it
is not seen in what we consider stable particles like the
Neutron and Proton. For example, a Kaon (K+,K−,K0),
which is constituted by a strange quark and a up/down
quark, has a lifetime of order 10ns, where as a proton
hasn’t been observed to naturally decay, but some ’the-
ories’ give it a lifetime of order 1029 years. Because of
it’s heaviness, the energy needed to create it, we expect
to see strange quarks produced less in energetic particle
collisions.

A very nice concept of quarks is confinement. Quarks
interact through a force called the strong force, it’s study
called Quantum Chromodynamics (QCD). Quarks are
never seen individually, because they have a colour charge
in addition to their electric charge. This colour can never
have a net colour - it needs to maintain neutrality. There
are three colours (six include anti-colour of antiparticles),
and they are often represented as Red, Green & Blue
(RGB), conforming to the primary colours of human vi-
sion. Confinement requires there to be a neutrality of
colour locally for quarks to exist. For example, having
{1 × R, 1 × G, 1 × B} (a hadron) gives neutrality, like
white, and so does {1×R, 1× R̄} (a meson).
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II. THE LUND MODEL

The Lund Model is used to formulate a distribution
function for generating a shower of partons - the process
of fragmentation. In this section, it will be shown how
to derive the two key probability distribution functions
that contribute to the fragmentation of ‘strings’ (to be
explained).

The first of these is the probability of having a string
break at a particular coordinate. This coordinate is given
as the hyperbolic coordinate Γ, but it’s conceptual mean-
ing is a bit harder to understand. This will be elaborated
on below.

H(Γ) = CΓa exp (−bΓ) (6)

The second of these is the probability of using a per-
centage z of a pool of energy momentum.

f(z) = N
1

z
(1− z)−a exp

(
−bm2

z

)
(7)

The origin of these equations was investigated in order
to see if one could change the order of mass term in the
function f(z).

A. The Massless Relativistic String

This finally brings us the beginning of the massless
relativistic string (MRS) model!

From studying the behaviour of QCD (Quantum Chro-
modynamics) it is known that the potential of quarks has
a linear component which becomes dominant at still rel-
atively short distances. This implies we can approximate
a constant force between quarks, and a linear ‘string’ po-
tential.

FIG. 2. Lattice QCD Potential7

The ‘string’ actually represents the field lines between
quarks, which are approximately linear at a small dis-
tance scale. You can think of these field lines similar to
electric charge field lines.

When the quarks are really close, it’s not so linear, but
it’s a useful approximation for our purposes. This is used
to explain the confinement behaviour of quarks; that as
spatially separate, they rapidly loose momentum to this
linearly growing potential.

FIG. 3. A string between two quarks with momenta p.

Jets, which are collections of Partons (Quarks and Glu-
ons), can be observed in particle detectors. The general
idea in quark production is that initially, a pair(s) of
quarks (a quark and it’s anti-quark) will be created in
the high energy collision, with a large amount of momen-
tum. We refer to this combined quantity as the Energy-
momentum. These quarks travel short distances before
producing more particles, eventually seen as ‘showers’ of
hadrons, in a process called ‘hadronization’. This is seen
in Figure 4.

FIG. 4. Cross Section of a Detector, in a Collider Event10

The role of The Lund Model and the MRS is to gener-
ate this distribution of hadronic constituents, the quarks.
This is modelled by the breakup of the ‘string’ as the
length of the string increases as the quarks separate from
each other.

In this article we will primarily investigate the 1D MRS
model, which assumes the strings have momentum and
fragment in the same axis. Of course there is momentum
transverse to this, which can be included in the mass
terms as a transverse mass (ie. m2

⊥ = m2 + p2⊥).
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We also approximate particles to be ‘massless’, mean-
ing that they will move exactly along the lightcone axis.
Realistically, their paths would be hyperbolic in nature,
curving as they slow down to a stationary point.

B. Coordinates

A discussion of the coordinates used in these deriva-
tions is required to conceptually understand the Lund
Model.

Firstly, space-time coordinates are used to locate
points of interest, such as where a string breaks (a ver-
tex) or when a quark becomes stationary. A good ex-
ample to discuss is a produced pair of quarks that have
a small amount of energy momentum; the string won’t
break (Figure 5).

FIG. 5. Yoyo-mode - Pair of Quarks

Analysing the diagram, we can observe that at a cer-
tain time, the quarks become stationary. At this point all
the kinetic energy is stored as potential in the string, or
strong field. After this time the quarks proceed to come
back towards each other. For this reason, the state is
considered a ‘yoyo’ mode, and alludes to a stable meson
(hadron consisting of two quarks).

However, space-time coordinates aren’t that useful
in Particle Physics. We’re more concerned about the
amount of energy the particles have, and consequently
it’s more useful to describe evolution of the string in
terms of the lightcone energy-momentum components.
So first we’ll transform the space-time to lightcone coor-
dinates, by the following transformation:

x± = t± x (8)

Now that we’re in lightcone space-time, we can scale
from space-time into energy-momentum space. The field
strength is defined a constant between quarks.

∂E

∂x
=
∂p

∂t
= −κ (9)

Because the Lund String Model begins with the pro-
duction of a pair of quarks with some energy-momentum
quantity, it’s actually more intuitive to work in this
space. The space-time model depends on the energy-
momentum space; The initial energy-momentum deter-
mines the amount of space a pair of quarks will traverse.

We now need to consider a hyperbolic conversion of
the coordinates. We are doing this because it will prove
useful in deriving our function H(Γ). Traditionally, hy-
perbolic coordinates map from {x,y}→{u,v}. We do the

same, with {x−,x+}→{
√

Γ,y}, but treat Γ as the coordi-
nate.

Γ = κ2x−x+ (10)

y =
1

2
ln

(
x+
x−

)
(11)

The iterations of these transformations is shown in Fig-
ure 6.

FIG. 6. Spacetime, Lightcone and Hyperbolic Coordinates

In often trying to find some intuition as to how to
understand Γ and y in relation to a vertex, it’s clear that
y is the same quantity known as the Rapidity.

A rapidity in this 1D case will provide a ratio of mo-
mentum to energy of the particle, with high magnitude
rapidities producing large velocity particles. However,
this is only useful in considering the distance between
two vertexes and the resultant produced particle, rather
y in this case is just a coordinate for a vertex.

Γ, is known as the ‘squared proper time of the vertex’.
This seems to suggest a magnitude of energy-momentum.

Interestingly enough, in (energy-)momentum space,
the encapsulated by a yoyo-mode determines it’s effec-
tive mass. An example of this is the orange and blue
areas seen in Figure 7.
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Intuiting this, the larger that the Γ of a vertex becomes
the less kinetic energy will be seen in a resulting particle.
This is because the potential area of yoyo-modes will be
diminished the earlier a vertex is created (or when the
string breaks). An example is shown in Figure 7.

FIG. 7. String Fragmentation. Here splitting occurs at an
early time. Consider if splitting occurred at ta.

C. Breakup Distribution

Having introduced most of the terminology and back-
ground to the MRS in the Lund Model, the distribution
for the production of a hadron (in this case meson) will
be derived.

There is a scenario where we consider that the string
has already broken at an arbitrary number of places
counting down a light cone. This process is considered
independent of past events; each vertex is spacelike from
each other. This is shown in Figure 8. In particular we
consider two arbitrary vertexes (where the string breaks)
that will produce a hadron between them. They have
coordinates {Γ1,y1} and {Γ2,y2}.

FIG. 8. Hadron Production between Vertexes 1 & 2

Because there are an arbitrary number of vertexes be-
fore considered vertexes 1 & 2, it is noted that there
is initially W± amount of energy-momentum left in the
± lightcone to produce the hadron from. However, the
hadron doesn’t necessarily use all this energy-momenta,
and consequently two random variables z± determine the
percentage of the remaining lightcone to be used.

Using Figure 8, the equations for the mass of the sys-
tem and the coordinates can be noted.

Γ1 = (1− z−)W−W+ (12)

Γ2 = W−(1− z+)W+ (13)

m2 = (z−W−)(z+W+) (14)

We can now write the probability of producing a
hadron.

First, we have a distribution H(Vertex1), which deter-
mines the probability of arriving at vertex 1 with W+

remaining energy-momentum in the positive lightcone.
Therefore, H is actually a function of the coordinates
Γ and y. However, the Lund Model argues that H is
independent of y, for reasons that will be explored in
subsection E.

Secondly we have a distribution f12(z+) which deter-
mines the probability of taking another ‘step’ to vertex
2, using z percentage of the remaining W+ lightcone.

The probability of producing the hadron can then be
written as a joint product of these two probabilities:

H (Γ1) ∂Γ1∂y1f12(z+)∂z+ (15)

By the same method, we can also write a second proba-
bility for considering the energy-momenta of the negative
Lightcone.

H (Γ2) ∂Γ2∂y2f21(z−)∂z− (16)

We will proceed to equate these two probabilities to-
gether, in an effort to generate independent solutions for
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H and f . Note that the integrals over y can be cancelled,
seeming all functions are independent of y.

Using equations (12-14) to remove W± dependence,
and then differentiating Γ1 & Γ2 WRT z∓, we find that:

∂Γ1

∂z−
=
−m2

z2−z+
(17)

∂Γ2

∂z+
=
−m2

z−z2+
(18)

This results in:

H(Γ1)z+f12(z+) = H(Γ2)z−f21(z−) (19)

Taking the logarithm of this, the probability can be
written in terms of a sum. Here g(z) = exp (z−f(z−))
and h(z) = exp (H(Γ)).

h(Γ1) + g12(z+) = h(Γ2) + g21(z−) (20)

h1 + g+ = h2 + g− (21)

Differentiate WRT z+

∂h1
∂z+

+
∂g+
∂z+

=
∂h2
∂z+

+
∂g−
∂z+

(22)

Note that neither g± has a dependence on g∓.

∂h1
∂z+

+
∂g+
∂z+

=
∂h2
∂z+

(23)

and now Differentiate WRT z−.

∂

∂z−

(
∂h1
∂z+

+
∂g+
∂z+

)
=

∂

∂z−

(
∂h2
∂z+

)
(24)

∂

∂z−

(
∂h1
∂z+

)
=

∂

∂z−

(
∂h2
∂z+

)
(25)

By the chain rule:

∂

∂z−

(
∂h1
∂Γ1

∂Γ1

∂z+

)
=

∂

∂z−

(
∂h2
∂Γ2

∂Γ2

∂z+

)
(26)

Expanding:

∂Γ1

∂z+

∂

∂z−

(
∂h1
∂Γ1

)
+
∂h1
∂Γ1

∂

∂z−

(
∂Γ1

∂z+

)
=

∂Γ2

∂z−

∂

∂z+

(
∂h2
∂Γ2

)
+
∂h2
∂Γ2

∂

∂z+

(
∂Γ2

∂z−

)
(27)

Simplifying:

∂Γ1

∂z+

∂Γ1

∂z−

∂h21
∂Γ2

1

+
∂h1
∂Γ1

∂2Γ1

∂z+∂z−
=

∂Γ2

∂z+

∂Γ2

∂z−

∂h22
∂Γ2

2

+
∂h2
∂Γ2

∂2Γ2

∂z+∂z−
(28)

Recognising that from (12-14) the following factors can
be derived:

∂2Γ1

∂z+∂z−
=

∂2Γ2

∂z+∂z−
=

m2

z2−z
2
+

(29)

∂Γ1

∂z+

∂Γ1

∂z−
=

m4

z3−z
3
+

(1− z−) (30)

∂Γ2

∂z+

∂Γ2

∂z−
=

m4

z3−z
3
+

(1− z+) (31)

We observe that (30)/(29) = Γ1 and (31/29) = Γ2.
Dividing (28) by (29), and using the observed property,
gives the following form:

∂h1
∂Γ1

+ Γ1
∂2h1
∂Γ2

1

=
∂h2
∂Γ2

+ Γ2
∂2h2
∂Γ2

2

(32)

We can simplify this:

∂

∂Γ1

(
Γ1
∂h1
∂Γ1

)
=

∂

∂Γ2

(
Γ2
∂h2
∂Γ2

)
(33)

(34)

Lastly, we recognise that each side of this equation is
independent upon it’s own Γ. This means that expression
is constant.

∂

∂Γ

(
Γ
∂h

∂Γ

)
= b (35)

By integrating and re-arranging, the form of h(Γ) is:

h(Γ) = −bΓ + a ln (Γ) + ln (C) (36)

Here C and a are arbitrary integration constants.
H(Γ) is found by taking the exponential of this:

H(Γ) = CΓa exp (−bΓ) (37)

Substituting (36) back into (20) allows us to solve for
g(z), in a similar manner.

g12(z+)− bΓ1 + a1 ln (Γ1) + ln (C1) =

g21(z−)− bΓ2 + a2 ln (Γ2) + ln (C2) (38)

Substituting Γ from (12-14) in terms of mass and z±,
the common constant factor cancels out.

g12(z+) +
bm2

z+
+ a1 ln

(
m2

z+z−
− m2

z+

)
+ ln (C1) =

g21(z−) +
bm2

z−
+ a2 ln

(
m2

z+z−
− m2

z−

)
+ ln (C2) (39)
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Rewrite the log terms ‘a ln
(

1−z+
z+z−

m2
)

’ as a sum:

g12(z+) +
bm2

z+
+ a1 ln

(
m2

z−

)
+ a1 ln

(
1− z+
z+

)
+ ln (C1) =

g21(z−) +
bm2

z−
+ a2 ln

(
m2

z+

)
+ a2 ln

(
1− z−
z−

)
+ ln (C2)

(40)

Again, re-arrange to gain independence in z±:

g12(z+) +
bm2

z+
− a2 ln

(
m2

z+

)
+ a1 ln

(
1− z+
z+

)
+ ln (C1) =

g21(z−) +
bm2

z−
− a1 ln

(
m2

z−

)
+ a2 ln

(
1− z−
z−

)
+ ln (C2)

(41)

Recognising that both sides of this equation are inde-
pendent, we use a constant n to describe their relation-
ship. We can ignore the constants ln (C), and include
them into n.

n = g12(z+)+
bm2

z+
−a2 ln

(
m2

z+

)
+a1 ln

(
1− z+
z+

)
(42)

Re-arrange for g12:

g12(z+) = n− bm
2

z+
+a2 ln

(
m2

z+

)
−a1 ln

(
1− z+
z+

)
(43)

Taking the exponential of this equation:

z+f12(z+) = N

(
m2

z+

)−a1 (1− z+
z+

)a2
exp

(
−bm2

z+

)
(44)

f12(z+) = N (z+)
a1−a2−1 (1− z+)

a2 exp

(
−bm2

z+

)
(45)

where N = exp (n)×m−2a1 .
If we consider the case where a1 == a2 then the ex-

pression simplifies to

f(z) = N
1

z
(1− z)a exp

(
−bm2

z

)
(46)

This is actually slightly different to the equations in
The Lund Model1, but only because of a few algebraic
errors with signs, in the last few equations of the deriva-
tion. His normalisation constants in 8.18 for N are seem-
ingly incorrect, as well as a sign for the general case of
a1 6= a2.

D. Outcomes?

Having re-derived this result, it’s clear that there’s no
room to change the order of any of the terms, such as
the order of the mass contribution. This was a desired
change, because in current models a dependence on mass
is a constant ratio for different quarks, roughly in the
order observed6 as:

1×U : 1×D : 0.3× S : 10−11 × C (47)

In the next section this article will touch further
on this, and how else we might achieve our strange
enhancement at high multiplicity.

E. H independent of Rapidity?

The assertion was made earlier that the rapidity ele-
ments ∂y1 == ∂y2. Although not rigorously addressed,
some thought was put into why this might be. Consider
skipping this subsection as it is not very rigorous and
lacks conclusion.

In Hadron collisions, the production of particles across
different rapidity angles is observed to be constant. The-
oretically, it can be argued that only the magnitude of
the coordinate matters with respect to H(Vertex).

If we Lorentz boost, the magnitude of the momentum
vectors (the mass) stays the same, which Γ is propor-
tionate to. However, the rapidity is additive in a Lorentz
boost, suggesting if there was a dependency on y then
our frame of reference would change the probability of
a boosted vertex coordinate. But we require Lorentz
invariance, as all frames should behave with the same
physics.

We can see hints that this is possible. Consider that
the mass is invariant.

m2 = (z+W+) (z−W−) (48)

= κ2 (z+1x+1) (z−2x−2) (49)

Using the energy-momentum components along the light-
cones,

W−2(1− z−) = W−1 (50)

W+1(1− z+) = W+2 (51)

z can be expressed as

z− = 1− x−1
x−2

(52)

z+ = 1− x+2

x+1
(53)
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Substituting these into (49) gives

m2 = κ2 (x+1 − x+2) (x−2 − x−1) (54)

Now, consider a very small change in the one of the
coordinates. Because the mass is invariant, then to match
the change, we see:

∂(m2) = 0 = κ2 (∂x+1 − ∂x+2) (x−2 − x−1)

+κ2 (x+1 − x+2) (∂x−2 − ∂x−1) (55)

A possible solution to this is

∂x+1

∂x+2
= 1 (56)

∂x−2
∂x−1

= 1 (57)

If that is the case, consider the rapidity of each coor-
dinate:

y1 =
1

2
ln

(
x+1

x−1

)
(58)

y2 =
1

2
ln

(
x+2

x−2

)
(59)

If we consider that ∂y1 looks like 1
2 ln

(
∂x+1

∂x−1

)
, then by

(56 - 57) we know that 1
2 ln

(
∂x+2

∂x−2

)
looks the same:

∂x+1

∂x+2
× ∂x−2
∂x−1

= 1 (60)

∂x+1

∂x−1
=
∂x+2

∂x−2
(61)

In discussion with Cody Duncan, he considered the
possibility that the differential element ∂z covers any
variation in y. The reason for this is because we can
derive both rapidities to be:

y1 =
1

2

(
W+2

(1− z+)

1

W−1

)
(62)

y2 =
1

2

(
W+2

W−1
(1− z−)

)
(63)

Notice both forms have the same Momentum depen-
dence, they only rely upon z+ and z−, and these are
integrated by the ∂z′s.

III. LOOKING ELSEWHERE - THE SCHWINGER
MODEL

As a result of not being able to find a modification that
we could make to String Fragmentation at the breakup

level, Peter decided to look into an extension of the MRS
called the Schwinger Model.

The Schwinger Model was originally created for Quan-
tum Electrodynamics (QED), however it has since been
assumed that it’s features also apply to the field model
of Quantum Chromodynamics (QCD).

Because the Schwinger Model also contributes an ex-
ponential factor to the probability distribution, it is also
a candidate of interest that we might be able to modify.

A. Intro to Schwinger Model

The Schwinger Model deals with a vacuum in which
there are no particles. It deals with the idea that, due to
an external field, quantum oscillations will occur in this
vacuum drivings a breakdown of the no-particle state to
a new state. In this case we are considering a colour field,
opposed to QED.

In this project, the details of the Schwinger Model were
not rigorously investigated, due to the time scope. Be-
cause of this, we assumed that the Schwinger Model had
been ported from QED directly into QCD, without direct
reasoning as to why it should behave the exact same.

The contribution of the Schinger Model is currently
used given in a Gaussian format, meaning that the trans-
verse momentum and mass terms are separable as a re-
sult.

P (p⊥,m) = exp

(
−π
κ
m2
⊥

)
(64)

= exp

(
−π
κ

(p2⊥ +m2)

)
(65)

= exp

(
−π
κ
p2⊥

)
exp

(
−π
κ
m2

)
(66)

Our desired behaviour however, conforms more akin to
(67).

P (p⊥,m) = exp (−am⊥) (67)

This is because, as the transverse momentum (p⊥)
increases around mass scale, the ratio of different prob-
ability distributions for different quark masses will no
longer be a constant. Specifically, as a strange quark has
a larger mass, it will be suppressed more significantly at
smaller p⊥ values compared to it’s other flavours (quarks
are distinguished by flavour).

B. Using a Thermal Distribution

As you can see in Figure , other reasonable exponential
orders of m⊥ will actually give the opposite effect to our
desired numerical behaviour.
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Thermal behaviour generally occurs with a constant
scaling behaviour in the exponential (for example, a
boltzmann distrubtion). Thermal models appeal to us,
because we can think about the high multiplicity of
charged particles as a ‘soup’ that is quite thermally ‘hot’.

FIG. 9. Strange:Up Quark Supression - Different m⊥ Order
Behaviours

Note that the distributions for Up and Strange
suppression were not normalised in this graph.

Rather interestingly, this graph was produced for nat-
ural units, where most measurements are in terms of
eV. In Physics, different length scales are used for differ-
ent processes. It’s worth mentioning here that the field
strength κ is measured experimentally as 0.18GeV2 =
0.9GeV / fm. Out of interest, we can actually calculate
the length scale (what a meter is equivalent to) used for
string fragmentation.

` =
0.18GeV2

0.9GeV / fm
=

0.18× 1018

0.9× 109/10−15
= 2× 10−7 (68)

Returning to using the distribution in (67), we call
this a Thermal Distribution, because it is more akin to a
thermal behaviour 1

T , unlike the Gaussian.

C. Expectation of the Thermal Distribution

To investigate this formulation of the modified
Schwinger contribution, we can consider an expectation
value of the transverse momentum. This is useful be-
cause it provides a ballpark figure of what sorts of values
a might take.

In the Gaussian case, the resulting value9 for the ex-
pectation value is:

〈p2⊥〉 = σ2 =
κ

π
≈ (237 MeV)2 (69)

Here sigma is a ‘width’ of the p⊥ spectrum. This is
derived by the following steps (note that π

κ out the front
is the normalisation of the distribution itself.):

〈p2⊥〉 = 〈p2x + p2y〉2 (70)

=
π

κ

∫ ∞
−∞

∫ ∞
∞

dpxdpyp
2
⊥ exp

(
−π
κ
p2⊥

)
(71)

=
π

κ

∫
dp2⊥.p

2
⊥ exp

(
−π
κ
p2⊥

)
(72)

=
π

κ
×
(κ
π

)2
(73)

=
κ

π
(74)

If we follow the same approach for our new model, then
we find:

〈p2⊥〉 = 〈p2x + p2y〉2 (75)

=

∫∞
−∞

∫∞
∞ dpxdpyp

2
⊥ exp (−am⊥)∫∞

−∞ dpxdpy exp (−am⊥)
(76)

=
π
∫∞
0
dp2⊥p

2
⊥ exp

(
−a
√
m2 + p2⊥

)
π
∫∞
0
dp2⊥ exp

(
−a
√
m2 + p2⊥

) (77)

=
4 exp (−am)

(
3 + a2m2 + 3am

)
/a4

2 exp (−am) (1 + am) /a2
(78)

=
2

a2

(
3 (1 + am) + a2m2

1 + am

)
(79)

〈p2⊥〉 =
6

a2
+

2m2

1 + am
(80)

This is a very nice result to look at: there is
now a mass dependence in the expectation p⊥, that
with an increase in mass the expectation will grow larger.

We note here that this is not a very rigorous way of
trying to find the parameter a. a will vary for each mass
body if we solve the last equation. In fact, solving this
cubic through Mathematica produces complex solutions
(extremely small magnitude though, assuming numerical
precision errors). We won’t display the algebra for the
solutions here, it’s quite messy and too large for these
pages, and likely still unhelpful without further analysis.

D. Thoughts on an a0 Value

One further approach Peter and I tried to follow was
to assign a value for a when the mass is equal to 0.

am=0 =

√
6

σ
(81)

By equating this to our known σ width we’d have a
starting point for an a value.
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This however, was not significantly useful when com-
paring various masses, although in Figure 9 a ballpark
p⊥ seems to give a value for the ratio of S : U of about
0.3 as desired.

FIG. 10. Strange:Up Quark Supression - Thermal a0

At this scale, the mass of a quark is not a rigorously
known value. The values we commonly known for the
masses of different particles come from a ‘scheme’4, which
re-normalises and solves various equation complexities in
a particular way. They are not defined in this same way
at this scale. Ballpark masses that we use for different
particles at this scale are as follows (in GeV):

mπ = 0.1 (82)

mU = 0.3 (83)

mD = 0.3 (84)

mS = 0.5 (85)

Because we used expectation values to figure out a pa-
rameterisation of a, but couldn’t find any simple solu-
tions for a given mass like the Gaussian case, we decided
to stop using the a0 approach.

E. Convolution - dual dependence?

Another idea Peter and I wanted to explore was run-
ning a convolution of the thermal distribution with itself.

This was on the basis that in order to produce a hadron
of some sort, multiple vertexes require creation, and con-
sequently there is a Schwinger contribution to both quark
constituents. This is also in the fact that if a strange
quark is generated by string fragmentation, then an anti-
strange quark is too, and both will combine to some final
state hadron, before perhaps decaying at a later time.

To explore this idea, an attempt at deriving a convo-
lution integral for two different masses was attempted.
However, because of the square root in the exponential,
the integral was found to be unsolvable.

P (p⊥,m1,m1) =

∫ ∫ ∞
−∞

dpx2dpy2 exp (−a1m⊥1)

× exp

(
−a2

√
m2

2 + (px2 − px1)
2

+ (py2 − py1)
2

)
(86)

Low Order Taylor expansions were attempted, as well
substitution methods used in deriving 〈p2⊥〉. Also refer-
ring to expressions in Tables of Integrals3,there was not
an identified equivalent expression.

F. PYTHIA & VINCIA

A reasonable amount of time in the last few weeks of
this project was investigating two C++ Libraries called
Vincia and Pythia, which are Monte-Carlo generators for
simulating particle colliders. In this time I was able to
understand how the software applies factors into generat-
ing distributions for various parameters, and began start-
ing to modify the code to direct to a thermal distribution
for the pperp. The software integrated with other various
programs such as CERN-Root and Jetset3. Having got-
ten simulations running of various parameters, I unfortu-
nately didn’t find time to begin analysing the effects of
our thermal model on the various parameters that Pythia
doesn’t quite perfectly match the experimental data.

IV. CONCLUDING REMARKS

In this project we have gained valuable insight to
the fundamental theoretical processes of The Lund
Model, and how it’s used to computationally produce
a hadronization spectrum. Unfortunately we couldn’t
find a way for the Lund Model to be modified to re-
flect the thermal behaviour of recent strange enhance-
ment observations, but were able to instead investigate
the Schwinger Model. The distributions and analytical
results proved hard to analyse for the thermal modifica-
tion, however we could still begin to simulate some of
these effects in Monte Carlo generators, namely Pythia.
This is still an exciting time to be rethinking particle
theory and explaining hadronization distributions seen
at the LHC!
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