Hadronization \& Underlying Event

Peter Skands (Monash U \& CERN)

Lecture Notes:

P. Skands, arXiv:1207.2389

Asia-Europe-Pacific School of High Energy Physics Puri, India, November 2014

Lecture 4

From Partons to Pions

Here's a fast parton

Fast: It starts at a high
factorization scale
$\mathrm{Q}=\mathrm{Q}_{\mathrm{F}}=\mathrm{Q}_{\text {hard }}$

It ends up at a low effective factorization scale $\mathrm{Q} \sim \mathrm{m}_{\rho} \sim 1 \mathrm{GeV}$

From Partons to Pions

Here's a fast parton

Fast: It starts at a high
factorization scale
$Q=Q_{F}=Q_{\text {hard }}$

It showers	It ends up
(perturbative	at a low effective
bremsstrahlung)	factorization scale
	$Q \sim \mathrm{~m}_{\rho} \sim 1 \mathrm{GeV}$

How about I just call it a hadron?
\rightarrow "Local Parton-Hadron Duality"

Parton \rightarrow Hadrons?

Early models: "Independent Fragmentation"

Local Parton Hadron Duality (LPHD) can give useful results for inclusive quantities in collinear fragmentation
Motivates a simple model:

But ...

The point of confinement is that partons are coloured
Hadronization $=$ the process of colour neutralization
\rightarrow Unphysical to think about independent fragmentation of a single parton into hadrons
\rightarrow Too naive to see LPHD (inclusive) as a justification for Independent Fragmentation (exclusive)
\rightarrow More physics needed

Colour Neutralization

A physical hadronization model
Should involve at least TWO partons, with opposite color charges (e.g., \mathbf{R} and anti-R)

Strong "confining" field emerges between the two charges when their separation $>\sim 1 \mathrm{fm}$

Color Flow

Between which partons do confining potentials

 arise?Set of simple rules for color flow, based on large- N_{C} limit

$$
g \rightarrow q \bar{q}
$$

$$
\begin{array}{ll}
g \rightarrow g g \\
\text { vecer } \rightarrow=
\end{array}
$$

Illustrations from: P.Nason \& P.S., PDG Review on MC Event Generators, 2012

Color Flow

For an entire Cascade

Coherence of pQCD cascades \rightarrow not much "overlap" between singlet subsystems \rightarrow Leading-colour approximation pretty good

LEP measurements in WW confirm this (at least to order $10 \% \sim 1 / \mathrm{Nc}^{2}$)

Note: (much) more color getting kicked around in hadron collisions \rightarrow more later

Confinement

Potential between a quark and an antiquark as function of distance, R

$$
\begin{gathered}
\text { Long Distances ~ Linear } \\
\text { Potential }
\end{gathered}
$$

Short Distances ~
"Coulomb"

Partons

Quarks (and gluons) confined inside hadrons

What physical

 system has a linear potential?$$
F(r) \approx \mathrm{const}=\kappa \approx 1 \mathrm{GeV} / \mathrm{fm} \Longleftrightarrow V(r) \approx \kappa r
$$

~Force required to lift a 16-ton truck

From Partons to Strings

Motivates a model:
Let color field collapse into a (infinitely) narrow flux tube of uniform energy density $\mathrm{k} \sim 1 \mathrm{GeV} / \mathrm{fm}$
\rightarrow Relativistic $1+1$ dimensional worldsheet - string

String Breaks

String Breaks

In "unquenched" QCD $\mathrm{g} \rightarrow \mathrm{qq} \rightarrow$ The strings would break

The (Lund) String Model

Map:

- Quarks \rightarrow String Endpoints
- Gluons \rightarrow Transverse Excitations (kinks)
- Physics then in terms of string worldsheet evolving in spacetime
- Probability of string break (by quantum tunneling) constant per unit area \rightarrow AREA LAW

See also Yuri's $\mathbf{2 n d}^{\text {nd }}$ lecture

Gluon = kink on string, carrying energy and momentum \rightarrow STRING EFFECT

Physics now in terms of strings, with kinks, evolving in spacetime Very simple space-time picture, few parameters at this point

Fragmentation Function

Having selected a hadron flavor

How much momentum does it take?

Spacetime Picture
 leftover string, further string breaks

Large System

Repeat for large system \rightarrow Lund Model

$$
\left|\frac{\mathrm{d} E}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} z}\right|=\left|\frac{\mathrm{d} E}{\mathrm{~d} t}\right|=\left|\frac{\mathrm{d} p_{z}}{\mathrm{~d} t}\right|=\kappa
$$

String breaks are causally disconnected
\rightarrow can proceed in arbitrary order (left-right, right-left, in-out, ...)
\rightarrow constrains possible form of fragmentation function
\rightarrow Justifies iterative ansatz (useful for MC implementation)

Left-Right Symmetry

Causality \rightarrow Left-Right Symmetry
\rightarrow Constrains form of fragmentation function!
\rightarrow Lund Symmetric Fragmentation Function

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)
$$

Small a
$a=0.9 \rightarrow$ "high-z tail"

Small b
\rightarrow "low-z enhancement"

Note: In principle, a can be flavour-dependent. In practice, we only distinguish between baryons and mesons

Iterative String Breaks

Causality \rightarrow May iterate from outside-in

The Length of Strings

In Space:
String tension $\approx 1 \mathrm{GeV} / \mathrm{fm} \rightarrow$ a $5-\mathrm{GeV}$ quark can travel 5 fm before all its kinetic energy is transformed to potential energy in the string.
Then it must start moving the other way. String breaks will have happened behind it \rightarrow yo-yo model of mesons

In Rapidity: $\quad y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right)$

For a pion with $\mathrm{z}=1$ along string direction
(For beam remnants, use a proton mass):

$$
y_{\max } \sim \ln \left(\frac{2 E_{q}}{m_{\pi}}\right)
$$

Note: Constant average hadron

 multiplicity per unit $y \rightarrow$ logarithmic growth of total multiplicityScaling in lightcone $p_{ \pm}=E \pm p_{z}$ (for $q \bar{q}$ system along z axis) implies flat central rapidity plateau + some endpoint effects:

$\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim$ Poissonian multiplicity distribution

Alternative: The Cluster Model

"Preconfinement"

+ Force $\mathbf{g} \rightarrow \mathbf{q q}$ splittings at $\mathbf{Q}_{\mathbf{0}}$
\rightarrow high-mass q-qbar "clusters"
Isotropic 2-body decays to hadrons according to $\mathrm{PS} \approx\left(2 s_{1}+1\right)\left(2 s_{2}+1\right)\left(p^{*} / m\right)$

Strings and Clusters

Hadron Collisions

Hadron Collisions

\qquad

\$ UAS 1982 DATA
\& UAS 1981 DATA

Do not be scared of the fallure of physical models (typically points to more interesting physics)

FIG. 3. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs simple models: dashed low p_{T} only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

Hadron Collisions

FIG. 3. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs simple models: dashed low p_{T} only, full including hard scatterings, dash-dotted also including initial- and final-state radiation.

FIG. 12. Charged-multiplicity distribution at 540 GeV , UA5 results (Ref. 32) vs multiple-interaction model with variable impact parameter: solid line, double-Gaussian matter distribution; dashed line, with fix impact parameter [i.e., $\widetilde{O}_{0}(b)$].

What is Pileup / Min-Bias?

We use Minimum-Bias (MB) data to test soft-QCD models
Pileup = "Zero-bias"
"Minimum-Bias" typically suppresses diffraction by requiring two-armed coincidence, and/or $\geq \mathrm{n}$ particle(s) in central region

\rightarrow Pileup contains more diffraction than Min-Bias
Total diffractive cross section $\sim 1 / 3 \sigma_{\text {inel }}$
Most diffraction is low-mass \rightarrow no contribution in central regions
High-mass tails could be relevant in FWD region
\rightarrow direct constraints on diffractive components (\rightarrow later)

What is diffraction?

Single Diffraction

Double Diffraction: both protons explode; gap inbetween Central Diffraction: two protons + a central (exclusive) system

What is Underlying Event?

"Pedestal Effect"

Useful variable in hadron collisions: Rapidity (now along beam axis)

$$
\begin{aligned}
& \begin{array}{c}
\text { Designed to be additive } \\
\text { under Lorentz Boosts along } \\
\text { beam (z) direction }
\end{array} \\
& y \rightarrow-\infty \text { for } p_{z} \rightarrow-E \quad y \rightarrow 0 \text { for } p_{z} \rightarrow 0 \quad y \rightarrow \infty \text { for } p_{z} \rightarrow E
\end{aligned}
$$

Questions

Pileup

How much? In central \& fwd acceptance?
Structure: averages + fluctuations, particle composition, lumpiness,
Scaling to 13 TeV and beyond
Underlying Event ~ "A handful of pileup" ?
Hadronizes with Main Event \rightarrow "Color reconnections"
Additional "minijets" from multiple parton interactions
Hadronization
Models from the 80ies, mainly constrained in 90ies Meanwhile, perturbative models have evolved

The Total Cross Section

Pileup rate $\propto \sigma_{\text {tot }}(s)=\sigma_{\mathrm{el}}(s)+\sigma_{\text {inel }}(s) \propto s^{0.08}$ or $\ln ^{2}(s)$?
Donnachie-Landshoff Froissart-Martin Bound

The Inelastic Cross Section

First try: decompose $\quad \sigma_{\text {inel }}=\sigma_{\text {sd }}+\sigma_{\text {dd }}+\sigma_{\text {cd }}+\sigma_{\text {nd }}$

 + Parametrizations of diffractive components: $\mathrm{dM}^{2} / \mathrm{M}^{2}$PYTHIA:

$$
\left\{\begin{aligned}
\frac{\mathrm{d} \sigma_{\mathrm{sd}(A X)}(s)}{\mathrm{d} t \mathrm{~d} M^{2}} & =\frac{g_{3 \mathbb{P}}}{16 \pi} \beta_{A \mathbb{P}}^{2} \beta_{B \mathbb{P}} \frac{1}{M^{2}} \exp \left(B_{\mathrm{sd}(A X)} t\right) F_{\mathrm{sd}} \\
\frac{\mathrm{~d} \sigma_{\mathrm{dd}}(s)}{\mathrm{d} t \mathrm{~d} M_{1}^{2} \mathrm{~d} M_{2}^{2}} & =\frac{g_{3 \mathbb{P}}^{2}}{16 \pi} \beta_{A \mathbb{P}} \beta_{B \mathbb{P}} \frac{1}{M_{1}^{2}} \frac{1}{M_{2}^{2}} \exp \left(B_{\mathrm{dd}} t\right) F_{\mathrm{dd}}
\end{aligned}\right.
$$

+ Integrate and solve for $\sigma_{\text {nd }}$

The "Rick Field" UE Plots

There are many UE variables.

The most important is $\left\langle\Sigma \mathrm{p}_{\mathrm{T}}\right\rangle$ in the "Transverse Region"

The Pedestal

(now called the Underlying Event)

LHC from 900 to 7000 GeV - ATLAS

"Away"

Track Density (TRANS)

Not Infrared Safe
Large Non-factorizable Corrections
Prediction off by $\approx 10 \%$
Truth is in the eye of the beholder:
R. Field: "See, I told you!"
Y. Gehrstein: "they have to fudge it again"

From Hard to Soft

Main tools for high- $p_{\text {T }}$ calculations
Factorization and IR safety
Corrections suppressed by powers of $\Lambda_{\mathrm{QCD}} / \mathrm{Q}_{\text {Hard }}$ Soft QCD / Min-Bias / Pileup

NO HARD SCALE
Typical Q scales \sim ^ecd
Extremely sensitive to IR effects
\rightarrow Excellent LAB for studying IR effects

$\sim \infty$ statistics for min-bias
\rightarrow Access tails, limits
Universality: Recycling PU $\leftrightarrow \mathrm{MB} \leftrightarrow \mathrm{UE}$

Is there no hard scale?

Compare total (inelastic) hadron-hadron cross section to calculated parton-parton (LO QCD $2 \rightarrow 2$) cross section

$\rightarrow 8 \mathrm{TeV} \rightarrow 100 \mathrm{Tev}$

\rightarrow Trivial calculation indicates hard scales in min-bias

Physics of the Pedestal

Factorization: Subdivide Calculation

Multiple Parton Interactions go beyond existing theorems
\rightarrow perturbative short-distance physics in Underlying Event
\rightarrow Need to generalize factorization to MPI

Multiple Parton Interactions

= Allow several parton-parton interactions per hadron-hadron collision. Requires extended factorization ansatz.

How many?

Naively
 $$
\left\langle n_{2 \rightarrow 2}\left(p_{\perp \min }\right)\right\rangle=\frac{\sigma_{2 \rightarrow 2}\left(p_{\perp \min }\right)}{\sigma_{\mathrm{tot}}}
$$

 Interactions independent (naive factorization) \rightarrow Poisson

$$
\mathcal{P}_{n}=\frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle}
$$

Real Life
Color screening: $\sigma_{2 \rightarrow 2 \rightarrow 0}$ for $p_{\perp} \rightarrow 0$
Momentum conservation suppresses high-n tail
Impact-parameter dependence

+ physical correlations
\rightarrow not simple product

Impact Parameter

1. Simple Geometry (in impact-parameter plane)

Simplest idea: smear PDFs across a uniform disk of size $\pi r_{p}{ }^{2}$ \rightarrow simple geometric overlap factor ≤ 1 in dijet cross section Some collisions have the full overlap, others only partial \rightarrow Poisson distribution with different mean <n> at each b
2. More realistic Proton b-shape

Smear PDFs across a non-uniform disk
MC models use Gaussians or more/less peaked Overlap factor $=$ convolution of two such distributions
\rightarrow Poisson distribution with different mean <n> at each b
"Lumpy Peaks" \rightarrow large matter overlap enhancements, higher <n>
Note: this is an effective description. Not the actual proton mass density. E.g., peak in overlap function (>1) can represent unlikely configurations with huge overlap enhancement. Typically use total $\sigma_{i n e l}$ as normalization.

Number of MPI

Minimum-Bias pp collisions at 7 TeV

Averaged over all pp impact parameters
(Really: averaged over all pp overlap enhancement factors)

*note: can be arbitrarily soft

Caveats of MPI-Based Models

Main applications:
 Central Jets/EWK/top/
 Higgs/New Physics

Extrapolation to soft scales delicate.

Impressive successes with MPI-based models but still far from a solved problem

Form of PDFs at small x and $\mathrm{Q}^{2} \longleftrightarrow$ Saturation
Form and E_{cm} dependence of $\mathrm{p}_{\text {т }}$ regulator Modeling of the diffractive component Proton transverse mass distribution Colour Reconnections, Collective Effects

Poor Man's Saturation

[^0]
1: A Simple Model

The minimal model incorporating single-parton factorization, perturbative unitarity, and energy-and-momentum conservation

$$
\underset{\text { Parton-Parton Cross Section }}{\sigma_{2 \rightarrow 2}\left(p_{\perp \min }\right)=\langle n\rangle\left(p_{\perp \min }\right) \sigma_{\text {Hadron-Hadron Cross Section }} \sigma_{\text {tot }}}
$$

I. Choose $p_{T \text { min }}$ cutoff
$=$ main tuning parameter
2. Interpret $\langle n\rangle\left(p_{T \min }\right)$ as mean of Poisson distribution

Equivalent to assuming all parton-parton interactions equivalent and independent \sim each take an instantaneous "snapshot" of the proton
3. Generate n parton-parton interactions (pQCD $2 \rightarrow 2$)

Veto if total beam momentum exceeded \rightarrow overall (E,p) cons
4. Add impact-parameter dependence $\rightarrow\langle n\rangle=\langle n\rangle(b) \stackrel{\text { Oriman }}{\downarrow}$

Assume factorization of transverse and longitudinal d.o.f., \rightarrow PDFs : $f(x, b)=f(x) g(b)$
b distribution \propto EM form factor \rightarrow JIMMY model Butterworth, Forshaw, Seymour Z.Phys. C72 (1996) 637
Constant of proportionality $=$ second main tuning parameter
5. Add separate class of "soft" (zero-pt) interactions representing interactions with $p_{T}<p_{T \min }$ and require $\sigma_{\text {soft }}+\sigma_{\text {hard }}=\sigma_{\text {tot }}$
\rightarrow Herwig++ model Bähr et al, arXiv:0905.467।

2: Interleaved Evolution

$<\mathrm{PT}_{\mathrm{T}}>$ vs N_{ch}

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

- The colour flow determines the hadronizing string topology
- Each MPI, even when soft, is a color spark
- Final distributions crucially depend on color space

Color Correlations

Each MPI (or cut Pomeron) exchanges color between the beams

- The colour flow determines the hadronizing string topology
- Each MPI, even when soft, is a color spark
- Final distributions crucially depend on color space

Color Connections

Better theory models needed

Multiplicity $\propto \mathrm{N}_{\text {MPI }}$

Color Reconnections?

```
E.g.,


Better theory models needed
Do the systems really form and hadronize independently?


AM 54 6C 70
FM 88909294 〔

\section*{Tuning}
means different things to different people


\section*{MCnet Studentships}

MCnet projects:
- PYTHIA (+ VINCIA)
- HERWIG
- SHERPA
- MadGraph
- Ariadne (+ DIPSY)
- Cedar (Rivet/Professor)

Activities include
- summer schools (2014: Manchester?)
- short-term studentships
- graduate students
- postdocs
- meetings (open/closed)

\section*{Monte Carlo} training studentships


3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!
Application rounds every 3 months.


\section*{Come to Australia}


Establishing a new group in Melbourne
Working on Precision LHC phenomenology \& soft physics
PYTHIA \& VINCIA
NLO Event Generators
Support LHC experiments, astro-particle community, and future accelerators
Outreach and Citizen Science

Soon Advertising:
1 post doc in theoretical physics
2 PhD scholárships in QCD pheno
(1 joint with Warwick ATLAS group, UK)
+ you can apply for Monash scholarships


\section*{(+ Diffraction)}

\section*{"Intuitive picture"}

\section*{Compare with normal PDFs}

\author{
Hard Probe
}

Short-Distance

Long-Distance

\(P^{+}\)

\section*{(+ Diffraction)}

\section*{"Intuitive picture"}

\section*{Compare with normal PDFs}

\author{
Hard Probe
}

Short-Distance

Long-Distance


\section*{(+ Diffraction)}

\section*{"Intuitive picture"}

\section*{Compare with normal PDFs}

\author{
Hard Probe
}
```


[^0]: See also Connecting hard to soft: KMR, EPJ C71 (2011) 1617 + PYTHIA "Perugia Tunes": PS, PRD82 (2010) 074018 + arXiv:1308.2813

