Introduction to QCD

1. Fundamentals of QCD
2. PDFs, Fixed-Order QCD, and Jet Algorithms
3. Parton Showers and Event Generators
4. QCD in the Infrared

Slides posted at: www.cern.ch/skands/slides

Lecture Notes:

P. Skands, arXiv:1207.2389

Factorization Summary

Factorization: expresses the independence of long-wavelength (soft) emission on the nature of the hard (short-distance) process.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right.
$$

Illustration by M. Mangano
$\vec{p}_{j}=x \vec{P}_{\text {proton }}$

$$
f_{a}\left(x_{a}, Q_{i}^{2}\right) \begin{aligned}
& \text { Parton distribution } \\
& \text { functions (PDF) }
\end{aligned}
$$

- sum over long-wavelength histories leading to a with x_{a} at the scale 2_{3}^{2} (ISR)

$$
\text { + (At H.O. each of these defined in a specific scheme, usually } \overline{\mathrm{MS}})
$$

Parton Densities

$$
\vec{p}_{j}=x \vec{P}_{\text {proton }}
$$

$f_{a}\left(x_{a}, Q_{i}^{2}\right)$ Parton distribution

- sum over long-wavelength histories leading to a with x_{a} at the scale $Q_{i}{ }^{\text {l(SR) }^{(1)}}$

Shape of $f(x)$ unknown (non-perturbative)
Different groups (CTEQ, MSTW, NNPDF, etc) use different ansätze
\rightarrow fit to measurements
Evolve to fixed small reference scale $\mathrm{Q} \approx \mathrm{m}_{\text {proton }}$

LHC Coverage
x and Q^{2}

Evolution in Q^{2} by DGLAP

Changing $Q^{2} \sim$ changing the scale at which we look at the parton (zooming in/out on the fractal)

However, setting the factorisation scale $\mu=Q$ is our choice; unphysical Require cross section independent of μ (at calculated order) \rightarrow RGE

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{x}^{1} d z p_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}-\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{0}^{1} d z p_{q q}(z) q\left(x, \mu^{2}\right)
$$

$p_{q q}$ is real $q \leftarrow q$ splitting kernel: $p_{q q}(z)=C_{F} \frac{1+z^{2}}{1-z}$
A gain-loss equation
First term: some partons flow from higher $x^{\prime}=x / z$ to x (POSITIVE) Second term: some partons at x flow to lower $x^{\prime}=z x$ (NEGATIVE)

Note: In this form, it looks pretty crazy for $z \rightarrow 1$

PDF DGLAP : Details

Awkward to write real and virtual parts separately. Use more compact notation:

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \underbrace{\int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}}_{P_{q q} \otimes q}, \quad P_{q q}=C_{F}\left(\frac{1+z^{2}}{1-z}\right)_{+}
$$

This involves the plus prescription:

$$
\int_{0}^{1} d z[g(z)]_{+} f(z)=\int_{0}^{1} d z g(z) f(z)-\int_{0}^{1} d z g(z) f(1)
$$

$z=1$ divergences of $g(z)$ cancelled if $f(z)$ sufficiently smooth at $z=1$

$$
\frac{d f_{i}\left(x_{i}, \mu_{F}^{2}\right)}{d \ln \mu_{F}^{2}}=\sum_{j} \int_{x_{i}}^{1} \frac{d x_{j}}{x_{j}} f_{j}\left(x_{j}, \mu_{F}^{2}\right) \frac{\alpha_{s}}{2 \pi} P_{j \rightarrow i k}\left(\frac{x_{i}}{x_{j}}\right)
$$

The (LO) DGLAP Evolution Kernels

$$
\frac{d f_{i}\left(x_{i}, \mu_{F}^{2}\right)}{d \ln \mu_{F}^{2}}=\sum_{j} \int_{x_{i}}^{1} \frac{d x_{j}}{x_{j}} f_{j}\left(x_{j}, \mu_{F}^{2}\right) \frac{\alpha_{s}}{2 \pi} P_{j \rightarrow i k}\left(\frac{x_{i}}{x_{j}}\right)
$$

LHC Coverage x and Q^{2}

Note: these are just the LO (oneloop)
ones

$$
\begin{aligned}
P_{\mathrm{q} \rightarrow \mathrm{qg}}(z) & =C_{F} \frac{1+z^{2}}{1-z}, \\
P_{\mathrm{g} \rightarrow \mathrm{gg}}(z) & =N_{C} \frac{(1-z(1-z))^{2}}{z(1-z)}, \\
P_{\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}}(z) & =T_{R}\left(z^{2}+(1-z)^{2}\right), \\
P_{\mathrm{q} \rightarrow \mathrm{q} \gamma}(z) & =e_{\mathrm{q}}^{2} \frac{1+z^{2}}{1-z}, \\
P_{\ell \rightarrow \ell \gamma}(z) & =e_{\ell}^{2} \frac{1+z^{2}}{1-z},
\end{aligned}
$$

Relate measurements at different Q^{2} Extrapolate to new energies (eg LHC)
 (Note: extrapolation in x more tricky ...)

Evolution in Q^{2} by DGLAP
 (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

Require cross section independent of μ_{F} (at calculated order) \rightarrow RGE

$$
\frac{d f_{i}\left(x_{i}, \mu_{F}^{2}\right)}{d \ln \mu_{F}^{2}}=\ldots
$$

LO vs NLO

(Advanced) PDF Uncertainties

Much debate recently on PDF errors

Attempt to propagate experimental errors through PDF fits $\rightarrow 68 \% \mathrm{CL}$

But "tensions" between different data sets
$\rightarrow 90 \%$, or something else?

+ Different groups (CTEQ, MSTW, NNPDF, etc) use different ansätze for shape of $f(x)$ at low-Q boundary

QCD at Fixed Order

Distribution of observable: O

In production of $X+$ anything

Fixed Order (All Orders)

Truncate at $k=0, \ell=0$,
\rightarrow Born Level $=$ First Term Lowest order at which X happens

Loops and Legs

Another representation

Loops and Legs

Another representation

Loops and Legs

Another representation

Cross sections at LO

Born:

$$
\sigma_{\mathrm{Born}}=\int\left|M_{X}^{(0)}\right|^{2}
$$

Born + n

$$
\sigma_{\mathrm{X}+1}^{\mathrm{LO}}(R)=\int_{R}\left|M_{X+1}^{(0)}\right|^{2}
$$

Infrared divergent (cf Lecture 1) \rightarrow Must be regulated
$\mathrm{R}=$ some Infrared Safe phase space region
(Often a cut on $p_{\perp}>n \mathrm{GeV}$)
Careful not to take it too low!
if $\sigma(X+n) \approx \sigma(X)$ you got a problem perturbative expansion not reliable
(see example on slide 23 of first lecture)

Cross sections at NLO

NLO:

$$
\sigma_{\mathrm{X}}^{\mathrm{NLO}}=\int\left|M_{X}^{(0)}\right|^{2}+\int\left|M_{X+1}^{(0)}\right|^{2}+\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]
$$

(note: this is not the I-loop diagram squared)
KLN Theorem (Kinoshita-Lee-Nauenberg)
Sum over 'degenerate quantum states' :
Singularities cancel at complete order (only finite terms left over)

$$
=\sigma_{\text {Born }}+\text { Finite }\left\{\int\left|M_{X+1}^{(0)}\right|^{2}\right\}+\text { Finite }\left\{\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]\right\}
$$

$$
\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\left(\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right.}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

The Subtraction Idea

How do I get finite\{Real\} and finite\{Virtual\} ?

First step: classify IR singularities using universal functions
EXAMPLE: factorization of amplitudes in the soft limit

Soft Limit $\left(E_{j} \rightarrow 0\right)$:

$\left|\mathcal{M}_{n+1}(1, \cdots, i, j, k, \cdots, n+1)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C}_{i j k} S_{i j k}\left|\mathcal{M}_{n}(1, \cdots, i, k, \cdots, n+1)\right|^{2}$

Universal
"Soft Eikonal"

$$
S_{i j k}\left(m_{I}, m_{K}\right)=\frac{2 s_{i k}}{s_{i j} s_{j k}}-\frac{2 m_{I}^{2}}{s_{i j}^{2}}-\frac{2 m_{K}^{2}}{s_{j k}^{2}}
$$

$$
s_{i j} \equiv 2 p_{i} \cdot p_{j}
$$

The Subtraction Idea

Add and subtract IR limits (SOFT and COLLINEAR)

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}} \underbrace{\left(\mathrm{~d}_{N L O}^{R}\right)}_{\text {Finite by Universality }}-\underbrace{\mathrm{d}_{N L O}^{S}}_{\text {Finite by KLN }}+\int_{\mathrm{d} \Phi_{m+1}}^{\left.\int_{N \Phi_{m}}^{S} \sigma_{N L O}+\int_{N L O}\right]}
$$

Choice of subtraction terms:
Singularities mandated by gauge theory

Dipoles (CataniSeymour)
Global Antennae (Gehrmann, Gehrmann-de Ridder, Glover)
Sector Antennae
(Kosower)

Non-singular terms: up to you (added and subtracted, so vanish)

$$
\begin{gathered}
\frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
\frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right] \\
\text { SOFT }
\end{gathered}
$$

Structure of $\sigma($ NNLO $)$

Why Go Numerical?

Part of $Z \rightarrow 4$ jets

5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-gluon-gluon-antiquark at leading and subleading colour, A_{4}^{0} and \tilde{A}_{4}^{0} and quark-antiquark-quark-antiquark for non-identical quark flavours B_{4}^{0} as well as the identical-flavour-only contribution C_{4}^{0}. The quark-antiquark-quark-antiquark final state with identical quark flavours is thus described by the sum of antennae for non-identical flavour and identical-flavour-only. The antennae for the $q g g \bar{q}$ final state are:

$$
\begin{align*}
A_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & a_{4}^{0}(1,3,4,2)+a_{4}^{0}(2,4,3,1) \tag{5.27}\\
\tilde{A}_{4}^{0}\left(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}}\right)= & \tilde{a}_{4}^{0}(1,3,4,2)+\tilde{a}_{4}^{0}(2,4,3,1)+\tilde{a}_{4}^{0}(1,4,3,2)+\tilde{a}_{4}^{0}(2,3,4,1), \\
a_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{2 s_{13} s_{24} s_{34}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+s_{14}^{2}+s_{23}^{2}\right]\right. \\
& +\frac{1}{2 s_{13} s_{24} s_{134} s_{234}}\left[3 s_{12} s_{34}^{2}-4 s_{12}^{2} s_{34}+2 s_{12}^{3}-s_{34}^{3}\right] \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right] \\
& +\frac{3}{2 s_{13} s_{24}}\left[2 s_{12}+s_{14}+s_{23}\right]+\frac{1}{s_{13} s_{34}}\left[4 s_{12}+3 s_{23}+2 s_{24}\right] \\
& +\frac{1}{s_{13} s_{134}^{2}}\left[s_{12} s_{34}+s_{23} s_{34}+s_{24} s_{34}\right] \\
& +\frac{1}{s_{13} s_{134} s_{234}}\left[3 s_{12} s_{24}+6 s_{12} s_{34}-4 s_{12}^{2}-3 s_{24} s_{34}-s_{24}^{2}-3 s_{34}^{2}\right] \\
& +\frac{1}{s_{13} s_{134}}\left[-6 s_{12}-3 s_{23}-s_{24}+2 s_{34}\right] \\
& +\frac{1}{s_{24} s_{34} s_{134}}\left[2 s_{12} s_{14}+2 s_{12} s_{23}+2 s_{12}^{2}+2 s_{14} s_{23}+s_{14}^{2}+s_{23}^{2}\right] \\
& +\frac{1}{s_{24} s_{134}}\left[-4 s_{12}-s_{14}-s_{23}+s_{34}\right]+\frac{1}{s_{34}^{2}}\left[s_{12}+2 s_{13}-2 s_{14}-s_{34}\right] \\
& +\frac{1}{s_{34}^{2} s_{134}^{2}}\left[2 s_{12} s_{14}^{2}+2 s_{14}^{2} s_{23}+2 s_{14}^{2} s_{24}\right]-\frac{2 s_{12} s_{14} s_{24}}{s_{34}^{2} s_{134} s_{234}} \\
& +\frac{1}{s_{34}^{2} s_{134}}\left[-2 s_{12} s_{14}-4 s_{14} s_{24}+2 s_{14}^{2}\right] \\
& +\frac{1}{s_{34} s_{134} s_{234}}\left[-2 s_{12} s_{14}-4 s_{12}^{2}+2 s_{14} s_{24}-s_{14}^{2}-s_{24}^{2}\right] \\
& +\frac{1}{s_{34} s_{134}}\left[-8 s_{12}-2 s_{23}-2 s_{24}\right]+\frac{1}{s_{134}^{2}}\left[s_{12}+s_{23}+s_{24}\right] \\
& \left.+\frac{3}{2 s_{134} s_{234}}\left[2 s_{12}+s_{14}-s_{24}-s_{34}\right]+\frac{1}{2 s_{134}}+\mathcal{O}(\epsilon)\right\}
\end{align*}
$$

$$
\begin{aligned}
\tilde{a}_{4}^{0}(1,3,4,2)= & \frac{1}{s_{1234}}\left\{\frac{1}{s_{13} s_{24} s_{134} s_{234}}\left[\frac{3}{2} s_{12} s_{34}^{2}-2 s_{12}^{2} s_{34}+s_{12}^{3}-\frac{1}{2} s_{34}^{3}\right]\right. \\
& +\frac{1}{s_{13} s_{24} s_{134}}\left[3 s_{12} s_{23}-3 s_{12} s_{34}+4 s_{12}^{2}-s_{23} s_{34}+s_{23}^{2}+s_{34}^{2}\right]
\end{aligned}
$$

This is one of the simplest processes ... computed at tree level.

$$
\begin{aligned}
& s_{13} s_{134} s_{234} \\
+ & \frac{1}{s_{13} s_{134}\left(s_{13}+s_{23}\right)}\left[s_{12} s_{24}+s_{12} s_{34}+2 s_{12}^{2}\right]
\end{aligned}
$$

Now compute and add the quantum corrections ...
$+\frac{14}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{14}+s_{24}\right)\left(s_{13}+s_{14}\right)}$
$+\frac{1}{s_{13}\left(s_{13}+s_{23}\right)\left(s_{13}+s_{14}\right)}\left[s_{12} s_{24}+2 s_{12}^{2}\right]$
Then maybe worry about simulating the detector too ...

+ Additional Subleading Terms ...

Riemann Sums

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

Higher Dimensions

$\rightarrow \mathrm{m}$ function evaluations per bin
... in 2 dimensions

n-particle phase space grows like $3 n-4$

$$
\text { e.g. } D_{3}=5 \quad D_{4}=8 \quad D_{5}=| |
$$

Numerical Precision

Convergence is slower in higher Dimensions!

\rightarrow More points for less precision

Uncertainty (after n evaluations)	N	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2	$1 / \mathrm{N}$
Simpson's Rule (3-point)	3	$1 / \mathrm{N}$
\ldots m-point (Gauss rule)	m	$1 / \mathrm{N}$

A Monte Carlo technique: is any technique making use of random numbers to solve a problem

Convergence:

Calculus: $\{A\}$ converges to B if an n exists for which

Monte Carlo: $\{A\}$ converges to B if n exists for which the probability for
is $>\mathrm{P}$, for any $\mathrm{P}[0<\mathrm{P}<1]$
"This risk, that convergence is only given with a certain probability, is inherent in Monte Carlo calculations and is the reason why this technique was named after the world's most famous gambling casino. Indeed, the name is doubly appropriate because the style of gambling in the Monte Carlo casino, not to be confused with the noisy and tasteless gambling houses of Las Vegas and Reno, is serious and sophisticated."
F. James, "Monte Carlo theory and practice", Rept. Prog. Phys. 43 (1980) 1145

Numerical Precision

MC convergence is Stochastic!

$\frac{1}{\sqrt{n}}$ in any dimension

Uncertainty (after \boldsymbol{n} function evaluations)	n	Approx Conv. Rate (in 1D)	Approx Conv. Rate (in D dim)
Trapezoidal Rule (2-point)	2	$1 / \mathrm{N}$	$1 / \mathrm{N}$
Simpson's Rule (3-point)	3	$1 / \mathrm{N}$	$1 / \mathrm{N}$
\ldots m-point (Gauss rule)	m	$1 / \mathrm{N}$	$1 / \mathrm{N}$
Monte Carlo	1	$1 / \mathrm{N}$	$1 / \mathrm{N}$

+ many ways to optimize: stratification, adaptation, ...
+ gives "events" \rightarrow iterative solutions (but note: not the only reason)
+ interfaces to detector simulation \& propagation codes

MC Integration

You want: to know the area of this shape:

Now get a few friends, some balls, and throw random shots inside the circle (but be careful to make your shots truly random)

Count how many shots hit the shape inside and how many miss

+ I'll stop talking about it now. More in next Lecture

Random Numbers

I will not tell you how to write a Random-number generator (interesting topic \& history in its own right)

Instead, if you want to play with one, link to a randomnumber generator, from a library
E.g., ROOT includes one that you can use if you like.

PYTHIA also includes one

From the PYTHIA 8 HTML documentation, under "Random Numbers":

Random numbers R uniformly distributed in $0<R<1$ are obtained with Pythia8: :Rndm: :flat();

+ Other methods for exp, x*exp, 1D Gauss, 2D Gauss.

Jets

Jets as Projections

jet 1

NLO partons Jet Definition

Parton Shower Jet Definition jet $1 \quad$ jet 2

Hadron Level
Jet Definition

Projections to jets provides a universal view of event

There is no unique or "best" jet definition

YOU decide how to look at event

The construction of jets is inherently ambiguous

1. Which particles get grouped together?

JET ALGORITHM (+ parameters)
2. How will you combine their momenta?

RECOMBINATION SCHEME
(e.g., 'E' scheme: add 4-momenta)

Jet Definition

Ambiguity complicates life, but gives flexibility in one's view of events \rightarrow Jets non-trivial!

Types of Algorithms

1. Sequential Recombination

\rightarrow Take your 4-vectors. Combine the ones that have the lowest 'distance measure’

Different names for different distance measures
Durham $\mathrm{k}_{\mathrm{T}}: \quad \Delta R_{i j}^{2} \times \min \left(k_{T i}^{2}, k_{T j}^{2}\right)$
Cambridge/Aachen: $\Delta R_{i j}^{2}$
Anti-kT: $\quad \Delta R_{i j}^{2} / \max \left(k_{T i}^{2}, k_{T j}^{2}\right)$
ArClus (3 $\rightarrow 2$): $\quad p_{\perp}^{2}=s_{i j} s_{j k} / s_{i j k}$

$$
\begin{aligned}
k_{T i}^{2} & =E_{i}^{2}\left(1-\cos \theta_{i j}\right) \\
\Delta R_{i j}^{2} & =\left(\eta_{i}-\eta_{j}\right)^{2}+\Delta \phi_{i j}^{2}
\end{aligned}
$$

+ Prescription for how to combine 2 momenta into 1
(or 3 momenta into 2)
\rightarrow New set of (n-I) 4-vectors
Iterate until A or B (you choose which):
A : all distance measures larger than something
B: you reach a specified number of jets
Look at event at:
specific resolution specific $n_{j e t s}$

Why $k_{T}\left(\right.$ or p_{T} or $\left.\Delta R\right)$?

Attempt to (approximately) capture universal jet-within-jet-witin-jet... behavior

Approximate full matrix element

$$
\frac{\left|M_{X+1}^{(0)}\left(s_{i 1}, s_{1 k}, s\right)\right|^{2}}{\left|M_{X}^{(0)}(s)\right|^{2}}=4 \pi \alpha_{s} C_{F}\left(\frac{2 s_{i k}}{s_{i 1} s_{1 k}}+\ldots\right)
$$

"Eikonal"
(universal, always there)
by Leading-Log limit of QCD \rightarrow universal dominant terms

Rewritings in soft/collinear limits

Types of Algorithms

2. "Cone" type

Take your 4-vectors. Select a procedure for which "test cones" to draw

Different names for different procedures
Seeded : start from hardest 4-vectors (and possibly combinations thereof, e.g., CDF midpoint algorithm) = "seeds"

Unseeded : smoothly scan over entire event, trying everything
Sum momenta inside test cone \rightarrow new test cone direction
Iterate until stable (test cone direction = momentum sum direction)

Warning: seeded algorithms are INFRARED UNSAFE

Infrared Safety

Definition

An observable is infrared safe if it is insensitive to
SOFT radiation:
Adding any number of infinitely soft particles
(zero-energy) should not change the value of the observable

COLLINEAR radiation:

Splitting an existing particle up into two comoving particles (conserving the total momentum and energy) should not change the value of the observable

Safe vs Unsafe Jets

May look pretty similar in experimental environment ... But it's not nice to your theory friends ...

Unsafe: badly divergent in pQCD \rightarrow large IR corrections:
IR Sensitive Corrections $\propto \alpha_{s}^{n} \log ^{m}\left(\frac{Q_{\mathrm{UV}}^{2}}{Q_{\mathrm{IR}}^{2}}\right) \quad, \quad m \leq 2 n$
Even if we have a hadronization model with which to compute these corrections, the dependence on it \rightarrow larger uncertainty

Safe \rightarrow IR corrections power suppressed:

$$
\text { IR Safe Corrections } \propto \frac{Q_{\mathrm{IR}}^{2}}{Q_{\mathrm{UV}}^{2}} \quad \begin{aligned}
& \text { Can still be computed (MC) but } \\
& \text { can also be neglected (pure pQCD) }
\end{aligned}
$$

Let's look at a specific example ...

collinear unsafe \Longrightarrow perturbative calculations give

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Longrightarrow perturbative calculations give ∞

Consequences of Collinear Unsafety

Collinear Safe

\qquad
jet 1
$\alpha_{s}^{n} \times(-\infty)$

$\alpha_{s}^{n} \times(+\infty)$

Infinities cancel

Collinear Unsafe

\qquad jet $1 \underbrace{}_{\text {jet } 2}$
$\alpha_{s}^{n} \times(-\infty)$
$\alpha_{s}^{n} \times(+\infty)$

Infinities do not cancel
Invalidates perturbation theory

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Stereo Vision

Use IR Safe algorithms

http://www.fastjet.fr/

To study short-distance physics
These days, \approx as fast as IR unsafe algos and widely implemented (e.g., FASTJET), including
"Cone-like": SiSCone, Anti-kT, ...
"Recombination-like": k $_{\mathrm{T}, \text { Cambridge/Aachen,Anti-kT... }}$

Then use IR Sensitive observables E.g., number of tracks, identified particles, ...
 To explicitly check hadronization and models of IR physics

More about IR in lecture on soft QCD ...

Introduction to QCD

1. Fundamentals of QCD
2. PDFs, Fixed-Order QCD, and Jet Algorithms
3. Parton Showers and Event Generators
4. QCD in the Infrared

Slides posted at: www.cern.ch/skands/slides

Lecture Notes:

P. Skands, arXiv:1207.2389

Supplementary Slides

Uncalculated Orders

Naively $\mathbf{O}\left(\boldsymbol{\alpha}_{\mathbf{s}}\right)$ - True in $\mathrm{e}^{+} \mathrm{e}^{-}$!

$$
\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\left(\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right)}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Generally larger in hadron collisions
Typical "K" factor in $\mathrm{pp}\left(=\sigma_{\mathrm{NLO}} / \sigma_{\mathrm{LO}}\right) \approx 1.5 \pm 0.5$
Why is this? Many pseudoscientific explanations
Explosion of \# of diagrams (n ${ }_{\text {Diagrams }} \approx \mathrm{n}!$)
New initial states contributing at higher orders (E.g., gq $\rightarrow \mathrm{Zq}$)
Inclusion of low-x (non-DGLAP) enhancements
Bad (high) scale choices at Lower Orders, ...

Changing the scale(s)

Why scale variation ~ uncertainty?

Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

$$
\begin{aligned}
\alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)} \\
b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi}
\end{aligned}
$$

$\rightarrow \quad\left(\alpha_{s}\left(Q^{\prime 2}\right)-\alpha_{s}\left(Q^{2}\right)\right)|M|^{2}=\alpha_{s}^{2}\left(Q^{2}\right)|M|^{2}+\ldots$
\rightarrow Generates terms of higher order, but proportional to what you already have $\left(|\mathrm{M}|^{2}\right) \rightarrow$ a first naive ${ }^{*}$ way to estimate uncertainty
*warning: some theorists believe it is the only way ... but be agnostic! There are other things than scale dependence ...

(Factorization: Caveats)

1. The proof only includes the first term in an operator product expansion in "twist" = mass dimension - spin
\rightarrow Strictly speaking, only valid for $\mathrm{Q}^{2} \rightarrow \infty$. Neglects corrections of order

$$
\text { Higher Twist : } \frac{\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{m<2 n}}{Q^{2 n}} \quad \text { (} \mathrm{n}=2 \text { for DIS) }
$$

2. The proof only applies to inclusive cross sections In $\mathrm{e}^{+} \mathrm{e}^{-}$, in DIS, and in Drell-Yan. For everything else: factorization ansatz
3. Scheme dependence In practice limited to MSbar + variations of Q_{F}
4. Interpretation of PDFs as parton number densities Is only valid at Leading Order

Peaked Functions

> Precision on integral dominated by the points with $\mathrm{f} \approx \mathrm{f}_{\max }$ (i.e., peak regions)
> \rightarrow slow convergence if high, narrow peaks

Stratified Sampling

\rightarrow Make it twice as likely to throw points in the peak

Choose:

$[0,1]$	\rightarrow Region A
For:	$[1,2]$

\rightarrow faster convergence for same number of function evaluations

Adaptive Sampling

\rightarrow Can even design algorithms to do this automatically as they run
(not covered here)
\rightarrow Adaptive sampling

Importance Sampling

Functions: Breit-Wigner

\rightarrow or throw points according to some smooth peaked function for which you have, or can construct, a random number generator (here: Gauss)

E.g., VEGAS

 algorithm, by G.Lepage

Why does this work?

1) You are inputting knowledge: obviously need
to know where the peaks are to begin with ... (say
you know, e.g., the location and width of a resonance)
2) Stratified sampling increases efficiency by combining fixed-grid methods with the MC method, with further gains from adaptation
3) Importance sampling:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} \frac{f(x)}{g(x)} \mathrm{d} G(x)
$$

Effectively does flat MC with changed integration variables Fast convergence if

$$
f(x) / g(x) \approx 1
$$

How we do Monte Carlo

Take your system

Set of radioactive nuclei
Set of hard scattering processes
Set of resonances that are going to decay
Set of particles coming into your detector

Set of cosmic photons traveling across the galaxy
Set of molecules

How we do Monte Carlo

Take your system

Generate a "trial" (event/decay/interaction/...) Not easy to generate random numbers distributed according to exactly the right distribution? May have complicated dynamics, interactions ...
\rightarrow use a simpler "trial" distribution

Flat with some stratification

Or importance sample with simple overestimating function (for which you can generate random \#s)

How we do Monte Carlo

Take your system
Generate a "trial" (event/decay/interaction/...)
Accept trial with probability $f(x) / g(x)$
$f(x)$ contains all the complicated dynamics
$g(x)$ is the simple trial function
If accept: replace with new system state
If reject: keep previous system state
no dependence on g in final result - only affects convergence rate

And keep going: generate next trial ...

How we do Monte Carlo

Take your system

Generate a "trial" (event/decay/in
Accept trial with probability $f(x) / g($ $f(x)$ contains all the complicated $g(x)$ is the simple trial function
If accept: replace with new system
If reject: keep previous system stat
no dependence on g i result - only affec convergence rate

And keep going:

