Introduction to QCD

There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy
W. Shakespeare, Hamlet.
$\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}$ +?

LHC: still no explicit signs of new physics
\rightarrow we're still looking for deviations from SM

Disclaimer

Focus on QCD for collider physics

Quantum Chromodynamics
The Ultraviolet (hard processes and jets)
The Infrared (hadronization and underlying event)
Monte Carlo Event Generators (shower Markov chains)

Still, some topics not touched, or only briefly
Physics of hadrons (Lattice QCD, Heavy flavor physics, diffraction, ...)
Heavy ion physics
New Physics

+ Many specialized topics (DIS, prompt γ, polarized beams, low-x, ...)

Introduction to QCD

1. Fundamentals of QCD
2. PDFs, Fixed-Order QCD, and Jet Algorithms
3. Parton Showers and Event Generators
4. QCD in the Infrared

Slides posted at: www.cern.ch/skands/slides

Lecture Notes (updated for this school):
P. Skands, arXiv:1207.2389

Before QCD

1951: the first hint of colour?

Discovery of the

Δ^{++}baryon

Meson-Nucleon Scattering and Nucleon Isobars*

Keith A. Brueckner
Department of Physics, Indiana Universily, Bloomington, Indiana (Received December 17, 1951)
K. A. Brueckner

Phys.Rev.86(1952)106
satisfactory agreement with experiment is obtained. It is concluded that the apparently anomalous features of the scattering can be interpreted to be an indication of a resonant meson-nucleon interaction corresponding to a nucleon isobar with spin $\frac{3}{2}$, isotopic spin $\frac{3}{2}$, and with an excitation of 277 Mev .

Isospin: Wigner, Heisenberg Strangeness ('53): Gell-Mann, Nishijima
~ 1960: Eightfold Way ('61): Gell-Mann, Ne'eman Quarks ('63): Gell-Mann, Zweig, (Sakata)

$$
\left|\Delta^{++}\right\rangle=\left|u_{\uparrow} u_{\uparrow} u_{\uparrow}\right\rangle ?!?!?
$$

Fermion (spin-3/2).
Symmetric in space, spin \& flavour Antisymmetric in what?

1965: Additional SU(3) Han, Nambu, Greenberg

The Width of the π^{0}

Δ^{++}, Δ^{-}, and s^{-}
Strictly speaking, we only know $\mathrm{N} \geq 3$
$\pi \rightarrow \gamma \gamma$ decays
Get pion decay constant f_{π} from

$$
\pi^{-} \rightarrow \mu^{-} \nu_{\mu}
$$

$\Rightarrow \Gamma\left(\pi^{0} \rightarrow \gamma^{0} \gamma^{0}\right)_{\mathrm{th}}=\frac{N_{C}^{2}}{9} \frac{\alpha_{\mathrm{em}}^{2}}{\pi^{2}} \frac{1}{64 \pi} \frac{m_{\pi}^{3}}{f_{\pi}^{2}}=7.6\left(\frac{N_{C}}{3}\right)^{2} \mathrm{eV}$

"R"

$$
\begin{aligned}
& R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& \quad=n_{u}\left(\frac{2}{3}\right)^{2}+n_{d}\left(-\frac{1}{3}\right)^{2}
\end{aligned}
$$

Question: why does $\pi^{0} \rightarrow \gamma^{0} \gamma^{0}$ go with Nc^{2}

$$
=\left\{\begin{aligned}
2\left(N_{C} / 3\right) & q=u, d, s \\
3.67\left(N_{C} / 3\right) & q=u, d, s, c, b
\end{aligned}\right.
$$ and R only with Nc_{c} ?

$" R "$

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=n_{u}\left(\frac{2}{3}\right)^{2}+n_{d}\left(-\frac{1}{3}\right)^{2}
$$

$\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}$

Quark fields

$$
\psi_{q}^{j}=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3}
\end{array}\right)
$$

Covariant Derivative

$$
\begin{aligned}
D_{\mu i j} & =\delta_{i j} \partial_{\mu}-i g_{s} T_{i j}^{a} A_{\mu}^{a} \\
& \Rightarrow \text { Feynman rules }
\end{aligned}
$$

Gell-Mann Matrices $\left(T^{a}=1 / 2 \lambda^{a}\right)$

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda^{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 \\
0 & 0 & \frac{-2}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

Interactions in Colour Space

Quark-Gluon interactions

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "colour paths" we could take
All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "colour paths" we could take
All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "colour paths" we could take
All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "colour paths" we could take
All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Interactions in Colour Space

Colour Factors

We already saw pion decay and the " R " ratio depended on how many "colour paths" we could take
All QCD processes have a "colour factor". It counts the enhancement from the sum over colours.

Quick Guide to Colour Algebra

Colour factors squared produce traces

Trace
Relation
$\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}$

Example Diagram

Quick Guide to Colour Algebra

Colour factors squared produce traces

Trace
Relation
$\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}$
$\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}$

Example Diagram

Quick Guide to Colour Algebra

Colour factors squared produce traces

Trace
Relation

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2}
$$

Example Diagram

$$
\sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3}
$$

$$
a>6^{6{ }^{6 \gamma 2} 2}>c
$$

$$
\sum_{C, D} f^{A C D} f^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
$$

คrر<

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \quad(\text { Fierz })
$$

The Gluon

Gluon-Gluon Interactions

$$
\mathcal{L}=\bar{\psi}_{q}^{i}\left(i \gamma^{\mu}\right)\left(D_{\mu}\right)_{i j} \psi_{q}^{j}-m_{q} \bar{\psi}_{q}^{i} \psi_{q i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Gluon field strength tensor:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g_{\delta} f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Structure constants of $\mathrm{SU}(3)$:

$$
-i g_{s}^{2} f^{X A C}{ }_{f} X B D\left[g^{\mu \nu} g^{\rho \sigma}-\right.
$$

$$
\begin{gathered}
f_{123}=1 \\
f_{147}=f_{246}=f_{257}=f_{345}=\frac{1}{2} \\
f_{156}=f_{367}=-\frac{1}{2} \\
f_{458}=f_{678}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Antisymmetric in all indices
All other $f_{i j k}=0$

$-g_{s} f^{A B C}\left[(p-q)^{\rho} g^{\mu \nu}\right.$

$$
\left.+(r-p)^{\nu} g^{\rho \mu}\right]
$$

$$
\left.g^{\mu \sigma} g^{\nu \gamma}\right]+(C, \gamma) \leftrightarrow
$$

$$
(D, \rho)+(B, \nu) \leftrightarrow(C, \gamma)
$$

The Strong Coupling

Bjorken scaling
To first approximation, QCD is
SCALE INVARIANT
(a.k.a. conformal)

A jet inside a jet inside a jet inside a jet ...

If the strong coupling didn't "run", this would be absolutely true (e.g., N=4 Supersymmetric Yang-Mills)

As it is, α_{s} only runs slowly (logarithmically) \rightarrow can still gain insight from fractal analogy

Note: I use the terms "conformal" and "scale invariant" interchangeably
Strictly speaking, conformal (angle-preserving) symmetry is more restrictive than just scale invariance
But examples of scale-invariant field theories that are not conformal are rare (eg 6D noncritical self-dual string theory)

(some) Physics

Charges Stopped or kicked

Radiation

The harder they stop, the harder the fluctations that continue to become radiation

Jets \approx Fractals

- Most bremsstrahlung is driven by divergent propagators \rightarrow simple structure
- Amplitudes factorize in singular limits (\rightarrow universal "conformal" or "fractal" structure)

Partons $\mathrm{ab} \rightarrow \quad \mathrm{P}(\mathrm{z})=$ DGLAP splitting kernels, with $\mathrm{z}=$ energy fraction $=\mathrm{E}_{\mathrm{a}} /\left(\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}\right)$
"collinear":

$$
\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

Gluon $\mathrm{j} \rightarrow$ "soft": Coherence \rightarrow Parton j really emitted by (i, k) "colour antenna"

$$
\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}
$$

Factorization: Separation of Scales

Factorization of Production and Decay:

Valid up to corrections $\Gamma / \mathrm{m} \rightarrow$ breaks down for large Γ
More subtle when colour/charge flows through the diagram

Factorization of Long and Short Distances

Scale of fluctuations inside a hadron
~ $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$
Scale of hard process $>\Lambda_{\mathrm{QCD}}$
\rightarrow proton looks "frozen"
Instantaneous snapshot of long-wavelength structure, independent of nature of hard process

Factorization 2: PDFs

Hadrons are composite, with time-dependent structure:

Partons within clouds of further partons, constantly emitted and absorbed

For hadron to remain intact, virtualities $\mathrm{k}^{2}<\mathrm{Mh}^{2}$ High-virtuality fluctuations suppresed by powers of

$$
\frac{\alpha_{s} M_{h}^{2}}{k^{2}}
$$

M_{h} : mass of hadron k^{2} : virtuality of fluctuation
\rightarrow Lifetime of fluctuations $\sim 1 / M_{h}$
Hard incoming probe interacts over much shorter time scale $\sim 1 / Q$
On that timescale, partons \sim frozen
Hard scattering knows nothing of the target hadron apart from the fact that it contained the struck parton

Factorization Theorem

In DIS, there is a formal proof of factorization

(Collins, Soper, 1987)
Deep Inelastic Scattering (DIS)

Surprise Question:

What's the color factor for DIS?

Note: Beyond LO, f can be more than one parton
\rightarrow We really can write the cross section in factorized form :

$$
\sigma^{\ell h}=\sum_{i} \sum_{f} \int d x_{i} \int d \Phi_{f} f_{i / h}\left(x_{i}, Q_{F}^{2}\right) \frac{d \hat{\sigma}^{\ell i \rightarrow f}\left(x_{i}, \Phi_{f}, Q_{F}^{2}\right)}{d x_{i} d \Phi_{f}}
$$

$$
\begin{array}{cccc}
\text { Sum over } & \Phi_{f} & f_{i / h} & \text { Differential partonic }
\end{array}
$$

Initial (i) and final (f) parton flavors

$$
=\text { Final-state } \quad=\text { PDFs }
$$

phase space Assumption:

$$
\mathrm{Q}^{2}=\mathrm{Q}_{\mathrm{F}}{ }^{2}
$$

Hard-scattering Matrix Element(s)

A propos Factorization

Why do we need PDFs, parton showers / jets, etc.? Why are Fixed-Order QCD matrix elements not enough?
F.O. QCD requires Large scales : to guarantee that α_{s} is small enough to be perturbative (not too bad, since we anyway often want to consider large-scale processes [insert your fav one here])
F.O. QCD requires No hierarchies : conformal structure implies that soft/collinear hierarchies are associated with on-shell singularities that ruin fixed-order expansion.

But!!! we collide - and observe - low-scale hadrons, with nonperturbative structure, that participate in hard processes, whose scales are hierarchically greater than mad $\sim 1 \mathrm{GeV}$.
\rightarrow A Priori, no perturbatively calculable observables in QCD

Conformal QCD in Action

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$

Truncate at fixed order $=$ LO, NLO, \ldots But beware the jet-within-a-jet-within-a-jet ...
\rightarrow More on this in lectures on Jets and Showers

Example:

100 GeV can be "soft" at the LHC

SUSY pair production at 14 TeV , with $M_{\text {susy }} \approx 600 \mathrm{GeV}$

LHC - spsla-m~600 GeV
Plehn, Rainwater, PS PLB645(2007)217

FIXED ORDER pQCD	$\sigma_{\text {tot }}[\mathrm{pb}]$	$\tilde{g} \tilde{g}$	$\tilde{u}_{L} \tilde{g}$	$\tilde{u}_{L} \tilde{u}_{L}^{*}$	$\tilde{u}_{L} \tilde{u}_{L}$	$T T$
$p_{T, j}>100 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
inclusive $\mathbf{x}+\mathbf{1}$ "jet"	$\longrightarrow \sigma_{1 j}$	2.89	2.74	0.136	0.145	0.73
inclusive $\mathbf{x}+\mathbf{2}$ "jets"	$\rightarrow \sigma_{2 j}$	1.09	0.85	0.049	0.039	0.26

$p_{T, j} \ngtr 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21

σ for $X+$ jets much larger than naive estimate
$\sigma_{50} \sim \sigma_{\text {tot }}$ tells us that there will "always" be a ~ 50-GeV jet "inside" a 600-GeV process
(Computed with SUSY-MadGraph)

Factorization says we can still calculate!

Why is Fixed Order QCD not enough?

: It requires all resolved scales >> ^QCD AND no large hierarchies
PDFs: connect incoming hadrons with the high-scale process
Fragmentation Functions: connect high-scale process with final-state hadrons (each is a non-perturbative function modulated by initial- and final-state radiation)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} X}=\sum_{a, b} \sum_{f} \int_{\hat{X}_{f}} f_{a}\left(x_{a}, Q_{i}^{2}\right) f_{b}\left(x_{b}, Q_{i}^{2}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow f}\left(x_{a}, x_{b}, f, Q_{i}^{2}, Q_{f}^{2}\right)}{\mathrm{d} \hat{X}_{f}} D\left(\hat{X}_{f} \rightarrow X, Q_{i}^{2}, Q_{f}^{2}\right)
$$

PDFs: needed to compute inclusive cross sections

FFs: needed to compute (semi-)exclusive cross sections

Resummed pQCD: All resolved scales \gg @QCD $^{\text {AND } X}$ Infrared Safe

[^0]
Scaling Violation

Real QCD isn't conformal

The coupling runs logarithmically with the energy scale

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{s}\right) \quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(b_{0}+b_{1} \alpha_{s}+b_{2} \alpha_{s}^{2}+\ldots\right) \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi} \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}} \\
& \text { I-Loop } \beta \text { function coefficient } \quad \text { 2-Loop } \beta \text { function coefficient }
\end{aligned}
$$

in the ultraviolet

Confinement (IR slavery?) in the infrared

Asymptotic Freedom

"What this year's Laureates discovered was something that, at first sight, seemed completely contradictory. The interpretation of their mathematical result was that the closer the quarks are to each other, the weaker is the 'colour charge'. When the quarks are really close to
${ }^{*}$ each other, the forfore is so weak that they behave almost as free particles. This phenomenon is called 'asymptotic freedom'. The converse is true when the quarks move apart:
*2 the forate distance increases."

Nobelprize.org
The Official Web Site of the Nobel Prize

The Nobel Prize in Physics 2004
David J. Gross, H. David Politzer, Frank Wilczek

David J. Gross

H. David Politzer

Frank Wilczek

Photos: Copyright © The Nobel Foundation

```
** The force still goes to m as r }->
(Coulomb potential), just less slowly
*2 The potential grows linearly as \(r \rightarrow \infty\), so the force actually becomes constant (even this is only true in "quenched" QCD. In real QCD, the force eventually vanishes for \(r \gg \mid f m\) )
```


Asymptotic Freedom

QED:

Vacuum polarization
\rightarrow Charge screening

QCD:
Quark Loops
\rightarrow Also charge screening

But only dominant if > 16 flavors!

Asymptotic Freedom

QED:
Vacuum polarization
\rightarrow Charge screening

QCD:

$$
b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}
$$

Gluon Loops

Dominate if ≤ 16 flavors

Spin-I \rightarrow Opposite Sign

UV and IR

At low scales

Coupling $\alpha_{s}(\mathrm{Q})$ actually runs rather fast with Q

Perturbative solution diverges at a scale Λ_{QCD} somewhere below

$$
\approx 1 \mathrm{GeV}
$$

So, to specify the strength of the strong force, we usually give the value of α_{s} at a unique reference scale that everyone agrees on: Mz_{z}

The Fundamental Parameter(s)

QCD has one fundamental parameter

$$
\alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+O\left(\alpha_{s}^{2}\right)}
$$

... and its sibling

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}} \stackrel{\text { depenens on } n \text { n.sscheme, and \# of foops) }}{0^{2}} \Lambda \sim 200 \mathrm{MeV}
$$

... And all its cousins

$\Lambda^{(3)} \Lambda^{(4)} \Lambda^{(5)} \Lambda_{\text {CMW }} \Lambda_{\text {FSR }} \Lambda_{\text {ISR }} \Lambda_{\text {MPI }}, \ldots$

$\ldots+\mathrm{n}_{\mathrm{f}}$ and quark masses

Beyond α_{s}

QCD is more than just a perturbative expansion in α_{s}
The relation between α_{s}, Feynman diagrams, and the full QCD dynamics is under active investigation. Emergent phenomena:

Jets (the QCD fractal) \leftrightarrow amplitude structures \leftrightarrow fundamental quantum field theory. Precision jet (structure) studies.

Strings (strong gluon fields) \leftrightarrow quantum-classical correspondence. String physics. Dynamics of hadronization phase transition.

Hadrons \leftrightarrow Spectroscopy (incl excited and exotic states), lattice QCD, (rare) decays, mixing, light nuclei. Hadron beams \rightarrow MPI, diffraction, ...

Other parameters

The emergent is unlike its components insofar as
it cannot be reduced to their sum or their difference."
G. Lewes (1875)

Emergent phenomena

Cannot guess non-perturbative phenomena from perturbative QCD \rightarrow "Emerge" due to confinement

Hadron masses,
Decay constants,
Fragmentation functions
Parton distribution functions,.
Difficult/Impossible to compute given only knowledge of perturbative QCD

The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

The Way of the Chicken

- Who needs QCD? I'll use leptons
- Sum inclusively over all QCD
- Leptons almost IR safe by definition
- WIMP-type DM, Z', EWSB \rightarrow may get some leptons

- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
- At least need well-understood PDFs
- High precision $=$ higher orders \rightarrow enter QCD (and more QED)
- Isolation \rightarrow indirect sensitivity to QCD
- Fakes \rightarrow indirect sensitivity to QCD
- Not everything gives leptons
- Need to be a lucky chicken ...

\rightarrow Next Lectures

- The unlucky chicken
- Put all its eggs in one basket and didn't solve QCD

Questions

1. Why is the color factor for $\pi^{0} \rightarrow \gamma \gamma$ proportional to $N_{c}{ }^{2}$ while the one for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ quarks is proportional to N_{C} ?
(Note: treat the π^{0} as a fundamental pseudoscalar)
2. What is the colour factor for QCD Rutherford scattering, $q q \rightarrow q q$ via t-channel gluon exchange?

Crossings

$$
e^{+} e^{-} \rightarrow \gamma^{*} / Z \rightarrow q \bar{q}
$$

(Hadronic Z Decay)

Time

Color Factor:
$\operatorname{Tr}\left[\delta_{i j}\right]=N_{C}$

$$
q \bar{q} \rightarrow \gamma^{*} / Z \rightarrow \ell^{+} \ell^{-}
$$

(Drell \& Yan, 1970)

Color Factor:

$$
\frac{1}{N_{C}^{2}} \operatorname{Tr}\left[\delta_{i j}\right]=\frac{1}{N_{C}}
$$

Color Factor:
$\frac{1}{N_{C}} \operatorname{Tr}\left[\delta_{i j}\right]=1$

Uncalculated Orders

Naively $\mathbf{O}\left(\boldsymbol{\alpha}_{\mathbf{s}}\right)$ - True in $\mathrm{e}^{+} \mathrm{e}^{-}$!

$$
\sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\left(\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right)}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Generally larger in hadron collisions

Typical "K" factor in $\mathrm{pp}\left(=\sigma_{\mathrm{NLO}} / \sigma_{\mathrm{LO}}\right) \approx 1.5 \pm 0.5$
Why is this? Many pseudoscientific explanations
Explosion of \# of diagrams ($\mathrm{nDiagrams} \approx \mathrm{n}$!)
New initial states contributing at higher orders ($\mathrm{E} . \mathrm{g}$., $\mathrm{gq} \rightarrow \mathrm{Zq}$)
Inclusion of low-x (non-DGLAP) enhancements
Bad (high) scale choices at Lower Orders, ...

Changing the scale(s)

Why scale variation ~ uncertainty?

Scale dependence of calculated orders must be canceled by contribution from uncalculated ones (+ non-pert)

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right)=\alpha_{s}\left(m_{Z}^{2}\right) \frac{1}{1+b_{0} \alpha_{s}\left(m_{Z}\right) \ln \frac{Q^{2}}{m_{Z}^{2}}+\mathcal{O}\left(\alpha_{s}^{2}\right)} \\
& \rightarrow \quad b_{0}=\frac{11 N_{C}-2 n_{f}}{12 \pi} \\
& \left.\rightarrow \alpha_{s}\left(Q^{2}\right)-\alpha_{s}\left(Q^{2}\right)\right)|M|^{2}=\alpha_{s}^{2}\left(Q^{2}\right)|M|^{2}+\ldots
\end{aligned}
$$

\rightarrow Generates terms of higher order, but proportional to what you already have $\left(|\mathrm{M}|^{2}\right) \rightarrow$ a first naive* way to estimate uncertainty
*warning: some theorists believe it is the only way ... but be agnostic! There are other things than scale dependence ...

Dangers

$$
\begin{aligned}
& P_{\perp 1}=50 \mathrm{GeV} \\
& P_{\perp 2}=50 \mathrm{GeV} \\
& P_{\perp 3}=50 \mathrm{GeV}
\end{aligned}
$$

Complicated final skates

Intrinsically Multi-Scale problems
with Many powers of α_{s}
E.g., $\omega+3$ jets in pp

$$
\alpha_{s}^{3}\left(m_{W}^{2}\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\left\langle p_{\perp}^{2}\right\rangle\right)<\alpha_{s}^{3}\left(m_{W}^{2}+\sum_{i} p_{\perp i}^{2}\right)
$$

Global Scaling: jets don't care about m_{w}

$$
{ }^{3} \alpha_{s}^{3}\left(\min \left[p_{\perp}^{2}\right]\right)<\alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle\right)^{4}<\alpha_{s}^{3}\left(\max \left[p_{\perp}^{2}\right]\right)
$$

MC parton showers: "Local scaling"

$$
\alpha_{s}\left(p_{\perp 1}\right) \alpha_{s}\left(p_{\perp 2}\right) \alpha_{s}\left(p_{\perp 3}\right) \sim \alpha_{s}^{3}\left(\left\langle p_{\perp}^{2}\right\rangle_{\text {geom }}\right)
$$

Dangers

$$
\begin{aligned}
& P_{\perp 1}=500 \mathrm{GeV} \\
& P_{\perp 2}=100 \mathrm{GeV} \\
& P_{\perp 3}=30 \mathrm{GeV}
\end{aligned}
$$

Complicated final states Intrinsically Multi-Scale problems with Many powers of α_{s}

If you have multiple QCD scales

\rightarrow variation of μ_{R} by factor 2 in each direction not good enough! (nor is $\times 3$, nor $\times 4$)

Need to vary also functional dependence on each scale!

(Factorization: Caveats)

1. The proof only includes the first term in an operator product expansion in "twist" = mass dimension - spin
\rightarrow Strictly speaking, only valid for $\mathrm{Q}^{2} \rightarrow \infty$. Neglects corrections of order

$$
\text { Higher Twist : } \frac{\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{m<2 n}}{Q^{2 n}} \quad \text { (} \mathrm{n}=2 \text { for DIS) }
$$

2. The proof only applies to inclusive cross sections In $\mathrm{e}^{+} \mathrm{e}^{-}$, in DIS, and in Drell-Yan. For everything else: factorization ansatz
3. Scheme dependence In practice limited to MSbar + variations of Q_{F}
4. Interpretation of PDFs as parton number densities Is only valid at Leading Order

[^0]: ${ }^{*}$) $\mathrm{pQCD}=$ perturbative QCD

