QFT Beyond Fixed Order Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges

Soft Bremsstrahlung in Classical E\&M, and in QED. The dipole factor \& coherence.

2. Infrared Singularities and Infrared Safety

IR Poles \& Sudakov Logarithms. Probabilities > 1.
Summing over degenerate quantum states (KLN theorem). IRC Safety.

3. OCD as a Weakly Coupled Conformal Field Theory

The emission probability; Double-Logarithmic Approximation
The no-emission probability; Sudakov Factor; exponentiation; example: jet mass.
\rightarrow 4. Parton Showers
Differential evolution kernels; evolution scale; unitarity and detailed balance.
Sampling the Sudakov; perturbation theory as a Monte Carlo Markov Chain.

Recap: Large Logs in OCD

Fixed-Order perturbative OCD requires Large scales (a_{s} small enough to be perturbative \rightarrow high-scale processes)

Fixed-Order OCD also requires No hierarchies:
Bremsstrahlung propagators $\propto 1 / Q^{2}$ integrated over phase space $\propto d Q^{2}$ logarithms

$$
\alpha_{s}^{n} \ln ^{m}\left(Q_{\text {Hard }}^{2} / Q_{\text {Brems }}^{2}\right) \quad ; m \leq 2 n
$$

\rightarrow cannot truncate at any fixed order n if upper and lower integration limits are hierarchically different

For observables that involve scale hierarchies: need methods beyond fixed order

Example: SUSY + Jets at LHC

Naively, QCD radiation suppressed by $\alpha_{s} \approx 0.1$

\rightarrow Truncate at fixed order $=\mathrm{LO}, \mathrm{NLO}, \ldots$
But beware the jet-within-a-jet-within-a-jet ...

```
=>100 GeV can be "soft" at the LHC
```


Example: SUSY pair production at LHC_{14}, with $\mathrm{M}_{\text {susy }} \approx 600 \mathrm{GeV}$

LHC - spsla - m \sim 600 GeV

| FIXED ORDER pQCD | $\sigma_{\text {tot }}[\mathrm{pb}]$ | $\tilde{g} \tilde{g}$ | $\tilde{u}_{L} \tilde{g}$ | $\tilde{u}_{L} \tilde{u}_{L}^{*}$ | $\tilde{u}_{L} \tilde{u}_{L}$ | $T T$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{T, j}>100 \mathrm{GeV}$ | $\sigma_{0 j}$ | 4.83 | 5.65 | 0.286 | 0.502 | 1.30 |
| inclusive $\mathbf{X}+\mathbf{+ 1}$ "jet" | $\rightarrow \sigma_{1 j}$ | 2.89 | 2.74 | 0.136 | 0.145 | 0.73 |
| inclusive $\mathbf{x}+\mathbf{2}$ "jets" | $\rightarrow \sigma_{2 j}$ | 1.09 | 0.85 | 0.049 | 0.039 | 0.26 |

$p_{T, j} \nmid 50 \mathrm{GeV}$	$\sigma_{0 j}$	4.83	5.65	0.286	0.502	1.30
	$\sigma_{1 j}$	5.90	5.37	0.283	0.285	1.50
	$\sigma_{2 j}$	4.17	3.18	0.179	0.117	1.21
(Computed with SUSY-MadGraph)						

o for $X+$ jets much larger than naive factor- a_{s} estimate
o for 50 GeV jets \approx larger than total cross section
\rightarrow what is going on?
All the scales are high, $Q \gg 1 \mathrm{GeV}$, so perturbation theory should be OK

Harder Processes are accompanied by Harder Jets

Hard processes "kick off" showers of successively softer radiation

Fractal structure: if you look at $\mathrm{Q}_{\text {JET }} / \mathrm{Q}_{\text {HARD }} \ll 1$, you will resolve substructure.
So it's not like you can put a cut at X (e.g., 50 , or even 100) GeV and say:
"Ok, now fixed-order matrix elements will be OK"

Extra radiation:

Will generate corrections to your kinematics
Extra jets from bremsstrahlung can be important combinatorial background especially if you are looking for decay jets of similar p_{T} scales (often, $\Delta M \ll M$) Is an unavoidable aspect of the quantum description of quarks and gluons (no such thing as a "bare" quark or gluon; they depend on how you look at them)

This is what parton showers are for

Evolution Equations

What we need is a differential equation

Boundary condition: a few partons defined at a high scale (Q_{F})
Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff $\sim 1 \mathrm{GeV}$) \rightarrow It's an evolution equation in O_{F}

Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.

Decay constant
$\frac{\mathrm{d} P(t)}{\mathrm{d} t}=c_{N}$
Physical decay rate per unit time
$\frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{d} t}=c_{N} \Delta\left(t_{1}, t\right)$
(respects that each of the original nuclei can
only decay if not decayed already)

The Sudakov Factor

In nuclear decay, the Sudakov factor counts:

What fraction of nuclei remain undecayed after a time t :
Probability to remain undecayed in the time interval $\left[t_{1}, t_{2}\right]$

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} c_{N} \mathrm{~d} t\right)=\exp \left(-c_{N} \Delta t\right)
$$

The Sudakov factor for a parton system "counts":

The probability that the parton system doesn't evolve (branch) when we run the factorization scale ($\sim 1 /$ time) from a high to a low scale (i.e., that there is no state change)

$$
\underset{\text { per unit "time" }}{\substack{\text { Evolution probability }}} \frac{\mathrm{d} P_{\mathrm{res}}(t)}{\mathrm{d} t}=\frac{-\mathrm{d} \Delta}{\mathrm{~d} t}=c_{N} \Delta\left(t_{1}, t\right)
$$

1. Replace c_{N} by proper QCD / QED branching densities (e.g., our dipole factor)
2. Replace t by proper definition of "shower evolution scale" ~ resolution scale.
3. Cast as Markov Chain Monte Carlo: sample t steps stochastically + iterative state changes.

1. What are the Shower Evolution Kernels?

Most bremsstrahlung is driven by divergent propagators \rightarrow simple universal structure, independent of process details

Amplitudes factorise in singular limits:

Bremsstrahlung

Partons ab $\quad P(z)=$ DGLAP splitting kernels, with $z=$ energy fraction $=E_{a} /\left(E_{a}+E_{b}\right)$

$$
\overrightarrow{{ }^{\text {"collinear" }}}\left|\mathcal{M}_{F+1}(\ldots, a, b, \ldots)\right|^{2} \xrightarrow{a \| b} g_{s}^{2} \mathcal{C} \frac{P(z)}{2\left(p_{a} \cdot p_{b}\right)}\left|\mathcal{M}_{F}(\ldots, a+b, \ldots)\right|^{2}
$$

Coherence \rightarrow Parton j really emitted by (i, k) colour dipole: eikonal

Gluon j

$\xrightarrow{\text { Gluon }}$ "soft": $\left|\mathcal{M}_{F+1}(\ldots, i, j, k \ldots)\right|^{2} \xrightarrow{j_{g} \rightarrow 0} g_{s}^{2} \mathcal{C} \frac{\left(p_{i} \cdot p_{k}\right)}{\left(p_{i} \cdot p_{j}\right)\left(p_{j} \cdot p_{k}\right)}\left|\mathcal{M}_{F}(\ldots, i, k, \ldots)\right|^{2}$
Apply this many times for successively softer / more collinear emissions \rightarrow OCD fractal + scaling violation: $g_{s}{ }^{2} \rightarrow 4 \pi \alpha_{s}\left(\mathrm{Q}^{2}\right)$

(Types of Showers)

Factorisation of (squared) amplitudes in IR singular limits
(leading colour)

Full ME (modulo nonsingular terms)

$$
\frac{P_{q \rightarrow q g}\left(z_{i}\right)}{S_{q g}}+\frac{P_{q \rightarrow q g}\left(z_{k}\right)}{S_{g \bar{q}}}
$$

One term for each parton
Not a priori coherent.

+ Angular ordering restores azimuthally averaged eikonal

One term for each colour connection

Coherent by construction

Two terms for each colour connection

Coherent by construction

2. What is time?

We are working in momentum space

Resolution variable should be an energy scale $Q \sim 1 / t$

In the example with jet mass, we ran the diff eq in τ. This "resummed" the logarithms of τ.
For a parton shower, want a "universal" (observable-independent) measure
Exact choice is ambiguous. Dictates which specific "logs" our shower will resum.

No naked singularities: Q must vanish in all unresolved (infrared and collinear) limits.
Reasonable to resum "biggest" (double) logs: motivates $Q^{2} \sim \frac{1}{\text { dipole factor }}$
$\sim \frac{s_{i j} s_{j k}}{s_{i j k}} \equiv p_{\perp A}^{2}$
"ARIADNE" p_{T}
Used by VINCIA shower developed at Monash

3. Cast as iterative Markov-Chain algorithm

Standard Born-Level Matrix-Element calculation of $\mathrm{d} \sigma / d \mathcal{O}$ (for some generic observable ©):

$$
\text { Born }\left.\quad \frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\text {Born }}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right) \quad \mathrm{H}=\text { Hard process }
$$

But instead of evaluating O directly on the Born final state, first insert a "showering operator"

$$
\begin{gathered}
\left.\quad \begin{array}{l}
\text { Born } \\
+ \\
\text { shower }
\end{array} \frac{\mathrm{d} \sigma_{H}}{\mathrm{~d} \mathcal{O}}\right|_{\mathcal{S}}=\int \mathrm{d} \Phi_{H}\left|M_{H}^{(0)}\right|^{2} \mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right) \quad \text { s: sh\} : partons }
\end{gathered}
$$

Unitarity: to first order (in perturbation theory), S should do nothing:

$$
\mathcal{S}\left(\{p\}_{H}, \mathcal{O}\right)=\delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{H}\right)\right)+\mathcal{O}\left(\alpha_{s}\right)
$$

The Shower Operator

Actually, we know the all-orders probability that nothing happens:

$$
\Delta\left(t_{1}, t_{2}\right)=\exp \left(-\int_{t_{1}}^{t_{2}} \mathrm{~d} t \frac{\mathrm{~d} \mathcal{P}}{\mathrm{~d} t}\right) \quad \underset{\text { (Exponentiation) }}{\text { Sudako Factor }}
$$

Build this in, with $\mathrm{d} \Delta / d t=$ probability that state does change:

$$
\begin{aligned}
& S\left(\{p\}_{X}, \mathcal{O}\right)=\Delta\left(t_{\text {start }}, t_{\text {had }}\right) \delta\left(\mathcal{O}-\mathcal{O}\left(\{p\}_{X}\right)\right) \\
& \text { "Nothing Happens" } \rightarrow \text { "Evaluate Observable" } \\
& -\int_{t_{\text {start }}}^{t_{\text {had }}} \mathrm{d} t \frac{\mathrm{~d} \Delta\left(t_{\text {start }}, t\right)}{\mathrm{d} t} S\left(\{p\}_{X+1}, \mathcal{O}\right) \\
& \text { "Something Happens" } \rightarrow \text { "Continue Shower" }
\end{aligned}
$$

A Shower Algorithm*

\rightarrow 1. For each evolver, generate a random number $R \in[0,1]$
Solve equation $R=\Delta\left(t_{1}, t\right)$ for t (with starting scale t_{1}) Can be done analytically for simple splitting kernels, else numerically and/or by trial + veto ("the veto algorithm")
\rightarrow stochastically sampled scale t for next (trial) branching
2. Generate another Random Number, $R_{z} \in[0,1]$

To find second (linearly independent) phase-space invariant

Solve equation $R_{z}=\frac{I_{z}(z, t)}{I_{z}\left(z_{\max }(t), t\right)}$ for z (at scale t), with $I_{z}(z, t)=\left.\int_{z_{\min }}^{z}(t) \frac{\mathrm{d}}{\mathrm{d} \Delta\left(t^{\prime}\right)} \mathrm{d} t\right|_{t^{\prime}=t}$
I_{z} is called the "primitive function"
3. Generate a third Random Number, $R_{\phi} \in[0,1]$ Solve $R_{\varphi}=\varphi /(2 \pi)$ for φ. Can now do 3D branching; construct tentative branched state.
Accept/Reject based on full kinematics. Update $t_{1}=t$. Update state (if accept). Repeat.

Application: Quark-Gluon Jet Discrimination

Can use our simple jet-mass calculation to ask a fundamental question: can we tell a quark-initiated jet apart from a gluon-initiated one?

Jet mass for quark-initiated jets: analytical result

$$
p(\tau)=\frac{d}{d \tau} \exp \left[-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{2} \log ^{2} \tau\right]=-\frac{\alpha_{s} C_{F}}{\pi} \frac{\log \tau}{\tau} \exp \left[-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{2} \log ^{2} \tau\right]
$$

DLA \rightarrow same result for gluon jets, but with octet colour charge Casimir $C_{A} \sim 2 C_{F}$

Extra Slides

On Probability Conservation a.k.a. Unitarity

Probability Conservation: P (something happens) +P (nothing happens) $=1$

In Showers: Imposed by Event evolution: "detailed balance"
When (X) branches to $(X+1)$: Gain one $(X+1)$. Lose one $(X) . \rightarrow A$ "gain-loss" differential equation.
Cast as iterative (Markov-Chain Monte-Carlo) evolution algorithm, based on universality and unitarity. With evolution kernel $\sim \frac{\left|M_{n+1}\right|^{2}}{\left|M_{n}\right|^{2}}$ (typically a soft/collinear approx thereof)

Typical choices
Evolve in some measure of resolution \sim hardness, $1 /$ time $\ldots \sim$ fractal scale $\quad p_{\perp}, Q^{2}, E \theta, \ldots$

Compare with NLO (e.g., in previous lecture)

Optional: Gluons on the Lund Plane > Origami Diagrams

Illustrations from Dreyer, Salam, Soyez, arXiv:1807.04758

Illustration

In QCD, gluons are themselves charged, so can radiate further gluons

- Each gluon "adds" new phase space
- Lund plane turns into an "origami diagram"
(Also note the
vertical axis now
goes the way)

$\ln 1 / \Delta$
(b)

$\ln 1 / \Delta$

Optional: Measurement of the Lund Plane for OCD Jets

