# **QFT Beyond Fixed Order** Introduction to Bremsstrahlung and Jets

### **1. Radiation from Accelerated Charges**

Soft Bremsstrahlung in Classical E&M, and in QED. The dipole factor & coherence.

# **2. Infrared Singularities and Infrared Safety**

IR Poles & Sudakov Logarithms. **Probabilities > 1.** Summing over degenerate quantum states (KLN theorem). **IRC Safety.** 

### 3. QCD as a Weakly Coupled Conformal Field Theory

The **emission** probability; Double-Logarithmic Approximation The **no-emission** probability; Sudakov Factor; exponentiation; example: **jet mass**.

#### 4. Parton Showers

Differential evolution kernels; evolution scale; unitarity and detailed balance. Sampling the Sudakov; perturbation theory as a Monte Carlo Markov Chain.

Peter Skands

Monash University

**Quantum Field Theory II** Applications and Phenomenology



# Recap: Large Logs in QCD

# enough to be perturbative $\rightarrow$ high-scale processes)

Fixed-Order QCD also requires No hierarchies:

**Bremsstrahlung propagators**  $\propto 1/Q^2$ integrated over phase space  $\propto dQ^2$ logarithms

 $\alpha_s^n \ln^m \left( \frac{Q_{\text{Hard}}^2}{Q_{\text{Brems}}^2} \right) \quad ; \ m \le 2n$ 

 $\rightarrow$  cannot truncate at any fixed order *n* if upper and lower integration limits are hierarchically different

- Fixed-Order perturbative QCD requires Large scales (a<sub>s</sub> small



#### For observables that involve scale hierarchies: need methods beyond fixed order





## **Example:** SUSY + Jets at LHC

# Naively, QCD radiation suppressed by $\alpha_s \approx 0.1$ $\rightarrow$ Truncate at fixed order = LO, NLO, ... But beware the jet-within-a-jet-within-a-jet $\dots \implies 100 \text{ GeV}$ can be "soft" at the LHC

### Example: SUSY pair production at LHC<sub>14</sub>, with $M_{SUSY} \approx 600$ GeV

| LHC - sps1a - m~600 GeV                                                          |                                           | Plehn, Rainwater, PS PLB645(2007)217 |                         |                                                        |                                                        |                        |                                                                                                               |
|----------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------|
| FIXED ORDER pQCD                                                                 | $\sigma_{\rm tot}[{\rm pb}]$              | ${	ilde g}{	ilde g}$                 | $\tilde{u}_L \tilde{g}$ | $\tilde{u}_L \tilde{u}_L^*$                            | $\tilde{u}_L \tilde{u}_L$                              | TT                     |                                                                                                               |
| $p_{T,j} > 100 { m ~GeV}$<br>inclusive X + 1 "jet" —<br>inclusive X + 2 "jets" — | $\sigma_{0j}$ $\sigma_{1j}$ $\sigma_{2j}$ | 4.83<br>2.89<br>1.09                 | $5.65 \\ 2.74 \\ 0.85$  | $\begin{array}{c} 0.286 \\ 0.136 \\ 0.049 \end{array}$ | $\begin{array}{c} 0.502 \\ 0.145 \\ 0.039 \end{array}$ | $1.30 \\ 0.73 \\ 0.26$ | $\sigma$ for X + jets much larger than naive factor- $\alpha_s$ estimate                                      |
| $p_{T,j} > 50 \mathrm{GeV}$                                                      | $\sigma_{0j} \ \sigma_{1j} \ \sigma_{2j}$ | 4.83<br>5.90<br>4.17                 | 5.65<br>5.37<br>3.18    | 0.286<br>0.283<br>0.179                                | 0.502<br>0.285<br>0.117                                | 1.30<br>1.50<br>1.21   | <ul> <li>σ for 50 GeV jets ≈ larger than</li> <li>total cross section</li> <li>→ what is going on?</li> </ul> |

All the scales are high,  $Q \gg 1$  GeV, so perturbation theory should be OK



### Harder Processes are accompanied by Harder Jets

#### Hard processes "kick off" showers of successively softer radiation

Fractal structure: if you look at  $Q_{JET}/Q_{HARD} \ll 1$ , you will resolve substructure.

So it's **not** like you can put a cut at X (e.g., 50, or even 100) GeV and say: "Ok, now fixed-order matrix elements will be OK"

#### **Extra radiation:**

Will generate corrections to your kinematics

Extra jets from bremsstrahlung can be important combinatorial background especially if you are looking for decay jets of similar p<sub>T</sub> scales (often,  $\Delta M \ll M$ )

Is an unavoidable aspect of the quantum description of quarks and gluons (no such thing as a "bare" quark or gluon; they depend on how you look at them)

This is what parton showers are for





#### What we need is a differential equation

Boundary condition: a few partons defined at a high scale ( $Q_F$ )

Then evolves (or "runs") that parton system down to a low scale (the hadronization cutoff ~ 1 GeV)  $\rightarrow$  It's an evolution equation in  $Q_F$ 

#### Close analogue: nuclear decay

Evolve an unstable nucleus. Check if it decays + follow chains of decays.







#### In nuclear decay, the Sudakov factor counts:

What fraction of nuclei remain undecayed after a time *t*:

Probability to remain undecayed in the time interval  $[t_1, t_2]$ 

#### The Sudakov factor for a parton system "counts":

The probability that the parton system doesn't evolve (branch) when we run the factorization scale (~1/time) from a high to a low scale (i.e., that there is no state change)

> **Evolution probability** per unit "time"

 $\mathrm{d}P_{\mathrm{res}}$ dt

 $\Delta(t_1,$ 

- 1. Replace  $c_N$  by proper QCD / QED branching densities (e.g., our dipole factor)
- 2. Replace t by proper definition of "shower evolution scale" ~ resolution scale.

$$t_2) = \exp\left(-\int_{t_1}^{t_2} c_N \,\mathrm{d}t\right) = \exp\left(-c_N \,\Delta t\right)$$

$$\frac{d}{dt} = \frac{-d\Delta}{dt} = c_N \Delta(t_1, t)$$

3. Cast as Markov Chain Monte Carlo: sample t steps stochastically + iterative state changes.



### 1. What are the Shower Evolution Kernels?

Most bremsstrahlung is driven by **divergent propagators** → simple universal structure, independent of process details

#### Amplitudes factorise in singular limits:

Partons ab  $\stackrel{\bullet}{\operatorname{"collinear"}} |\mathcal{M}_{F+1}(\ldots,a,b,\ldots)|^2 \stackrel{a||b}{\to} g_s^2 \mathcal{C} \frac{P(z)}{2(p_a \cdot p_b)} |\mathcal{M}_F(\ldots,a+b,\ldots)|^2$ 

Gluon j

Apply this many times for successively softer / more collinear emissions -> OCD fractal + scaling violation:  $g_s^2 \rightarrow 4\pi \alpha_s(Q^2)$ 







# (Types of Showers)



### 2. What is time?

#### We are working in momentum space

Resolution variable should be an energy scale  $Q \sim 1/t$ 





In the example with jet mass, we ran the diff eq in  $\tau$ . This "resummed" the logarithms of  $\tau$ .

#### For a parton shower, want a "universal" (observable-independent) measure

Exact choice is ambiguous. Dictates which specific "logs" our shower will resum. Geometric mean of propagator virtualities No naked singularities: Q must vanish in all unresolved (infrared and collinear) limits. Reasonable to resum "biggest" (double) logs: motivates  $Q^2 \sim \frac{1}{\text{dipole factor}} \sim \frac{s_{ij}s_{jk}}{s_{ijk}} \equiv p_{\perp}^2$ "ARIADNE" pT Used by VINCIA shower developed at Monash (Note: other choices also possible, eg "angular ordering", other p<sub>T</sub> definitions, ...)







Standard Born-Level Matrix-Element calculation of  $d\sigma/d\Theta$  (for some generic observable  $\mathcal{O}$ ):

**Born** 
$$\left. \frac{\mathrm{d}\sigma_H}{\mathrm{d}\mathcal{O}} \right|_{\mathbf{Born}} = \int \mathrm{d}\Phi_H$$

But instead of evaluating O directly on the Born final state, first insert a "showering operator"

Born  $\frac{\mathrm{d}\sigma_H}{\mathrm{d}\mathcal{O}}\Big|_{\mathcal{S}} = \int \mathrm{d}\Phi_H |M_H^{(0)}|^2 \mathcal{S}(\{p\}_H, \mathcal{O})$ + shower  $\frac{\mathrm{d}\sigma_H}{\mathrm{d}\mathcal{O}}\Big|_{\mathcal{S}}$ {p}: partons S : showering operator

Unitarity: to first order (in perturbation theory), S should do nothing:  $\mathcal{S}(\{p\}_H, \mathcal{O}) = \delta\left(\mathcal{O} - \mathcal{O}(\{p\}_H)\right) + \mathcal{O}(\alpha_s)$ 

# 3. Cast as iterative Markov-Chain algorithm

H = Hard process  $|M_H^{(0)}|^2 \,\delta(\mathcal{O} - \mathcal{O}(\{p\}_H))$ {p}: partons



### Actually, we know the all-orders probability that nothing happens:

$$\Delta(t_1, t_2) = \exp\left(-\int_{t_1}^{t_2} \mathrm{d}t \; \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}t}\right)$$

#### Build this in, with $d\Delta/dt$ = probability that state does change:

$$S(\{p\}_X, \mathcal{O}) = \Delta(t_{\text{start}}, u)$$

$$-\int_{t_{\text{start}}}^{t_{\text{had}}} \mathrm{d}t \frac{\mathrm{d}\Delta(t_{\text{start}},t)}{\mathrm{d}t} S(\{p\}_{X+1},\mathcal{O})$$

Sudakov Factor (Exponentiation)

(Markov Chain)

 $t_{\text{had}} \delta(\mathcal{O} - \mathcal{O}(\{p\}_X))$ 

"Nothing Happens"  $\rightarrow$  "Evaluate Observable"

"Something Happens" → "Continue Shower"



# A Shower Algorithm\*

\*No time to explain Monte Carlo integration / sampling methods so must be taken on faith here

#### **1.** For each evolver, generate a random number $R \in [0,1]$

Solve equation  $R = \Delta(t_1, t)$  for t (with starting scale  $t_1$ ) Can be done analytically for simple splitting kernels, else numerically and/or by trial + veto ("the veto algorithm")

 $\rightarrow$  stochastically sampled scale t for next (trial) branching

#### **2.** Generate another Random Number, $R_z \in [0,1]$

To find second (linearly independent) phase-space invariant

Solve equation 
$$R_z = \frac{I_z(z,t)}{I_z(z_{\max}(t),t)}$$
 for z (at scale t), with  $I_z(z,t) = \int_{z_{\min}(t)}^{z} dz' \frac{d\Delta(t')}{dt}\Big|_{t'=I_z}$  is called the "primitive function"

# **3.** Generate a third Random Number, $R_{\phi} \in [0,1]$ Solve $R_{\phi} = \varphi/(2\pi)$ for $\varphi$ . Can now do 3D branching; construct tentative branched state.



Accept/Reject based on full kinematics. Update  $t_1 = t$ . Update state (if accept). Repeat.





# Application: Quark-Gluon Jet Discrimination

#### Can use our simple jet-mass calculation to ask a fundamental question: can we tell a quark-initiated jet apart from a gluon-initiated one?

Jet mass for quark-initiated jets: analytical result



p( au)



DLA  $\rightarrow$  same result for gluon jets, but with octet colour charge Casimir C<sub>A</sub> ~ 2C<sub>F</sub>



13

### Extra Slides

### On Probability Conservation a.k.a. Unitarity

#### **Probability Conservation:** P(something happens) + P(nothing happens) = 1

#### In Showers: Imposed by Event evolution: "detailed balance" When (X) branches to (X+1): Gain one (X+1). Lose one (X). $\rightarrow$ A "gain-loss" differential equation. Cast as iterative (Markov-Chain Monte-Carlo) evolution algorithm, based on universality and unitarity. With evolution kernel ~ $\frac{|M_{n+1}|^2}{|M_n|^2}$ (typically a soft/collinear approx thereof) Typical choices $p_1, Q^2, E\theta, \dots$ Evolve in some measure of **resolution** ~ hardness, 1/time ... ~ **fractal scale**



$$\begin{aligned} ty) &= 1 \\ \text{"something happens"} \\ \text{-finites must cancel"} \\ -\int \text{Tree} + F_{F \text{ for "finite"}} \\ \end{aligned} \\ \begin{aligned} & \text{ding-Logarithmic"} (\text{LL}) \text{ Approximation} \\ \end{aligned} \\ \begin{aligned} & \mathcal{M}_{+1}^{(0)} \end{aligned} \\ \end{aligned}$$



15

## Optional: Gluons on the Lund Plane > Origami Diagrams

#### Illustration

In QCD, gluons are themselves charged, so can radiate further gluons

► Each gluon "adds" new phase space

Lund plane turns into an "origami diagram"

(Also note the vertical axis now goes the way)



#### Illustrations from Dreyer, Salam, Soyez, arXiv:1807.04758



# Optional: Measurement of the Lund Plane for QCD Jets







17