QFT Beyond Fixed Order Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges

Soft Bremsstrahlung in Classical E\&M, and in QED. The dipole factor \& coherence.
2. Infrared Singularities and Infrared Safety

IR Poles \& Sudakov Logarithms. Probabilities > 1.
Summing over degenerate quantum states (KLN theorem). IRC Safety.

3. OCD as a Weakly Coupled Conformal Field Theory

The emission probability; Double-Logarithmic Approximation
The no-emission probability; Sudakov Factor; exponentiation; example: jet mass.

4. Parton Showers

DLA as differential evolution kernels; unitarity and detailed balance.
Sampling the Sudakov; perturbation theory as a Markov Chain; Monte Carlo.

Two Axioms for Infinite-Order Perturbative OCD

This lecture is based on A. Larkoski, "An Unorthodox Introduction to OCD",:arXiv:1709.06195

1. At high energies, the coupling of $\mathrm{QCD}, \alpha_{s^{\prime}}$ is small.
\Longrightarrow OCD perturbation theory (e.g., with Feynman diagrams) is a good approximation.
Sensible to describe final states in terms of quarks and gluons.
2. At high energies, $Q C D$ has no intrinsic scales.

OCD is (approximately) a conformal, or scale-invariant, quantum field theory:
Action integral for $\mathscr{L}_{\mathrm{QCD}}^{\text {massless }}=-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}+i \bar{\psi}_{q} \mathbb{D} \psi_{q}$ invariant under scale transformations.
The strong coupling is (approximately) constant, independent of energy.
At (asymptotically) high energies, quark masses are negligible.

Strictly speaking, (2) is of course not really true.

There are (quark and hadron) mass scales in the theory, and the strong coupling runs. But the running is logarithmic (slow), and at energies above $\sim 10 \mathrm{GeV}$ only m_{t} is really large We will think of $\beta_{\mathrm{QCD}} \neq 0$ and $m_{q} \neq 0$ as small corrections on a scale-invariant starting point

Scale-Invariance of Emission Probability

Scale-invariant dynamics can only depend on dimensionless quantities (such as energy ratios, or angles)

In such a theory, what could be the allowed functional form of, say, the probability for a quark to emit a gluon?

must be invariant if we "scale" all energies and masses by a factor, λ :
\Longrightarrow Constraint Equation:

Simple Guess

What sort of functions fulfil

$$
P\left(\lambda E_{g}, \lambda^{2} m^{2}\right) d\left(\lambda E_{g}\right) d\left(\lambda^{2} m^{2}\right)=P\left(E_{g}, m^{2}\right) d E_{g} d m^{2}
$$

Dimensionless function of E_{g} / m with soft limit $f(0) \rightarrow 1$
\Longrightarrow Simplest guess we can write down is:

$$
P\left(E_{g}, m^{2}\right) d E_{g} d m^{2}=\quad N \frac{d E_{g}}{E_{g}} \frac{d m^{2}}{m^{2}} \times f\left(E_{g}^{2} / m^{2}\right)
$$

Dimensionless normalisation constant.

Cannot fix this from scale invariance alone. For $q \rightarrow q g$, it must be proportional to $g_{s}^{2}=4 \pi \alpha_{s}$, times some "Colour Charge" $=C_{F}=4 / 3$ for an $\operatorname{SU}(3)$ triplet. The $1 / \pi$ is chosen to produce the known expressions in QCD (such as the dipole factor).

The DLA Emission Probability

The "double-logarithmic approximation" (DLA) is obtained via the soft limit $f \rightarrow 1$
Express $\mathrm{d} E_{g} \mathrm{~d} m_{q g}^{2}$ in terms of $\mathrm{d} z_{g} \mathrm{~d}\left(\cos \theta_{q g}\right)$ with $z_{g}=\frac{E_{g}}{E_{g}+E_{q}}$

$$
m_{q g}^{2}=E_{g} E_{q}\left(1-\cos \theta_{q g}\right)
$$

$$
\Rightarrow P(z, \cos \theta) d z d \cos \theta=\frac{\alpha_{s} C_{F}}{\pi} \frac{d z}{z} \frac{d \cos \theta}{1-\cos \theta}
$$

Compare with the expression for the softphoton probability density we got using Feynman diagrams in the previous lecture:

$$
\mathrm{d} P_{\gamma}=\frac{e^{2}}{4 \pi^{2}} \frac{\mathrm{~d} k}{k} \frac{\mathrm{~d} \cos \theta_{k}}{\left(1-\cos \theta_{k}\right)}
$$

Most Singular Limit: Simultaneously Soft and Collinear

Taking also the small-angle limit $\theta_{q g} \ll 1$

$$
\begin{aligned}
& 1-\cos \theta_{q g} \sim \theta_{q g}^{2} / 2 \downarrow \\
& P\left(z, \theta^{2}\right) d z d \theta^{2} \rightarrow \frac{\alpha_{s} C_{F}}{\pi} \frac{d z}{z} \frac{d \theta^{2}}{\theta^{2}}
\end{aligned}
$$

As discussed in the previous lecture, we should not interpret this as the probability to emit a single gluon (or photon), but rather as an expectation value for the average number density of emitted quanta.

Noting that the derivatives are of the form $\mathrm{d} x / x=\mathrm{d}(\log x)$, we rewrite:

$$
P\left(z, \theta^{2}\right) d z d \theta^{2}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d z}{z} \frac{d \theta^{2}}{\theta^{2}}=\frac{\alpha_{s} C_{F}}{\pi} d\left(\log \frac{1}{z}\right) d\left(\log \frac{1}{\theta^{2}}\right)
$$

Uniform Distribution in Dimensionless (Log) Variables

$>$ A uniform distribution in $\ln (1 / z)$ and $\ln (1 / \theta)$:

$$
P\left(z, \theta^{2}\right) d z d \theta^{2}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d z}{z} \frac{d \theta^{2}}{\theta^{2}}=\frac{\alpha_{s} C_{F}}{\pi} d\left(\log \frac{1}{z}\right) d\left(\log \frac{1}{\theta^{2}}\right)
$$

> Emissions uniformly distributed in the (dimensionless) "Lund plane"

Andersson, Gustafson, Lönnblad, Pettersson, Z. Phys C43(1989)625
\rightarrow collinear

Note: original Lund plane uses transverse momentum D_{T} and rapidity

$$
\begin{gathered}
\ln \left(p_{\perp g} / m_{0}\right) \sim \ln (z \theta) \\
y=-\ln \tan \theta / 2
\end{gathered}
$$

Practical Example: The invariant mass of a Jet

Let's apply our notion of a scale-invariant uniform density of emitted gluons in the log-log Lund plane to compute something real: the invariant mass of a jet, to ∞ perturbative order
This calculation will of course only be accurate within the context of the double-log ~ classical (aka eikonal) approximation (DLA); should capture at least the "most important" bremsstrahlung corrections.
view of events

Illustrations by G. Salam

LO partons
Jet Definition
jet 1

(Note: details of different types of jet definitions \& clustering algorithms (k_{T}, anti- $\mathrm{k}_{\mathrm{T}}, \mathrm{C} / \mathrm{A}$, cones, ...) not covered here.

See e.g.,
lectures \&
notes by G.
Salam.)

Dimensionless jet-massy observable

気

$$
\begin{aligned}
m^{2} & =\left(p_{a}+p_{b}+p_{c}\right)^{2} \\
& =2 E_{a} E_{b}\left(1-\cos \theta_{a b}\right)+2 E_{b} E_{c}\left(1-\cos \theta_{b c}\right)+2 E_{a} E_{c}\left(1-\cos \theta_{a c}\right) \\
& \rightarrow E_{a}^{2}\left(z_{b} \theta_{b}^{2}+z_{c} \theta_{c}^{2}+\mathcal{O}\left(z^{2}\right)\right) \\
& \Longrightarrow \quad \tau=\frac{m_{\text {jet }}^{2}}{E_{\text {jet }}^{2}} \rightarrow \sum_{i} z_{i} \theta_{i}^{2} \quad \text { (a.k.a. "1-Thrust") } \\
& \text { The sum runs over all emitted gluons in the plane }
\end{aligned}
$$

Want to compute the probability to observe $\tau \leq \tau_{\text {cut }}$
I.e.: what fraction of events will survive a cut requiring $m_{\mathrm{jet}}^{2} \leq E_{\mathrm{jet}}^{2} \tau_{\mathrm{cut}}$?

Equivalently what fraction of events will fail a cut requiring $m_{\text {jet }}^{2} \geq E_{\text {jet }}^{2} \tau_{\mathrm{cut}}$?

Dominant Emission + Corrections

τ is a sum of positive terms

For $\tau \leq \tau_{\text {cut }}$: no single term is allowed to be greater than $\tau_{\text {cut }}$

One emission dominates:

Uniform log-log density \Longrightarrow emissions exponentially far apart in (z, θ^{2}) \Longrightarrow unlikely for event with
 $\max \left(\tau_{i}\right)<\tau_{\text {cut }}$ to get across the line
\Longrightarrow Just compute probability for no emission in forbidden region
Caution: an event with two (or more) emissions in forbidden region can only be rejected once \Longrightarrow Not just a simple integral of uniform density over that region.

The No-Emission Probability

To compute P (no emission), Larkoski splits up phase space in small subregions and multiplies together probabilities for no emission in any one of them (see backup slides)

Simpler to use our interpretation of integrated emission probability as average number of emissions (cf last lecture):
If the emissions are equivalent and independent (fine in our soft limit), we can interpret the average number of emissions in forbidden region:

$$
\langle n\rangle\left(\tau_{\mathrm{cut}}\right)=\frac{\alpha_{S} C_{F}}{2 \pi} \log ^{2} \tau_{\mathrm{cut}}
$$

Average number of emissions with $\tau>\tau_{\text {cut }}$
$=$ density times area of region with $\tau>\tau_{\text {cut }}$
as the mean of a Poisson distribution:

$$
P(n)=\frac{\langle n\rangle^{n} \exp (-\langle n\rangle)}{n!}
$$

Probability to have n emissions with $\tau>\tau_{\text {cut }}$

Hence the probability for no emissions in the requested region is $P(0)$:

(This is the same expression as Larkoski gets.)

The (all-orders) Emission Probability

To find the probability distribution to observe a given value of τ (i.e., the jet mass distribution), differentiate the no-branching probability wrt τ :

$$
p(\tau)=\frac{d}{d \tau} \exp \left[-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{2} \log ^{2} \tau\right]=-\frac{\alpha_{s} C_{F}}{\pi} \frac{\log \tau}{\tau} \exp \left[-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{2} \log ^{2} \tau\right] .
$$

Simple Interpretation: the differential rate of change of the no-emission probability is equal to (minus) the rate of emissions.

There is a close analogy with the simple process of nuclear decay.
There the naive decay rate per unit time is given by the decay constant. But a nucleus can only decay at a given time t if it has not already decayed. The actual decay rate per nucleus in a sample is therefore c * $\exp (-\mathrm{c} \Delta t)$. Exercise: identify what plays the role of $\mathrm{c}, \mathrm{t}, \mathrm{dt}$, and Δt, in our case.

The Resummed Jet Mass Distribution

NB: the jet mass distribution is of course just one example. Sudakov suppression (and the Sudakov peak) is characteristic for any distribution which is IR divergent at fixed order.

Extra Slides

The No-Emission Probability: Larkoski's Way

Break up the forbidden area in tiny (differential) subregions:

To find the probability distribution to observe a given value of τ (i.e., the jet mass distribution), differentiate the cumulative distribution wrt τ :

$$
p(\tau)=\frac{d}{d \tau} \exp \left[-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{2} \log ^{2} \tau\right]=-\frac{\alpha_{s} C_{F}}{\pi} \frac{\log \tau}{\tau} \exp \left[-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{2} \log ^{2} \tau\right] .
$$

