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Two Axioms for Infinite-Order Perturbative QCD
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๏1. At high energies, the coupling of QCD, , is small.  
•  QCD perturbation theory (e.g., with Feynman diagrams) is a good approximation. 
•Sensible to describe final states in terms of quarks and gluons.  

๏2. At high energies, QCD has no intrinsic scales.  
•QCD is (approximately) a conformal, or scale-invariant, quantum field theory: 

๏ Action integral for  invariant under scale transformations. 

๏ The strong coupling is (approximately) constant, independent of energy. 
๏ At (asymptotically) high energies, quark masses are negligible.

αs

⟹

ℒmassless
QCD = −

1
4

Ga
μνGaμν + iψ̄qD/ ψq
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This lecture is based on A. Larkoski, “An Unorthodox Introduction to QCD”,:arXiv:1709.06195 

Strictly speaking, (2) is of course not really true. 
There are (quark and hadron) mass scales in the theory, and the strong coupling runs. 

But the running is logarithmic (slow), and at energies above ~ 10 GeV only mt is really large 

➤  We will think of  and  as small corrections on a scale-invariant starting pointβQCD ≠ 0 mq ≠ 0



Scale-Invariance of Emission Probability
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๏Scale-invariant dynamics can only depend on dimensionless 
quantities (such as energy ratios, or angles) 

•
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phase space is two-dimensional. Each particle has a four-vector momentum which is required
to be on-shell and massless. Additionally, the sum of those four-vector momenta is the total
initial momentum. This leaves two degrees of freedom, or two phase space variables. We
will choose these phase space variables to be the energy of the gluon, Eg, and the invariant
mass of the final quark and gluon, m2. Then,

P (Eg,m
2) =

���������������

Eg

m2

���������������

2

. (2)

Note that m2 = 2pq · pg = 2EqEg(1 � cos ✓qg).
What can this probability be? Our assumption of scale-invariance helps us out. Scale

invariance means that the probability is unchanged if the energy or mass scales are multiplied
by a factor � > 0:

P (�Eg,�
2m2) d(�Eg) d(�

2m2) = P (Eg,m
2) dEg dm

2 . (3)

What could this function be? The simplest function that one can write down is

P (Eg,m
2) dEg dm

2 =
↵sCF

⇡

dEg

Eg

dm2

m2
. (4)

Before continuing, I should say a couple things about this expression. First, the overall factor
of ↵sCF/⇡ is the strength to which a gluon couples to a quark; CF is the color factor that
represents the amount of color that the quark carries (called the fundamental representation
Casimir). We’ll come back to this later. Note also that we could multiply this expression by
any function of E2

g/m
2 and still maintain scale-invariance. This will be important for detailed

studies, but there is a well-defined approximation in which we can ignore such terms. This
is called the “double-logarithmic approximation” or DLA.

With this DLA probability in hand, let’s change variables to dimensionless quantities,
as they are a bit nicer to work with. Let’s express the probability in terms of the gluon’s
energy fraction, z, and the angle ✓qg ⌘ ✓ between the quark and the gluon:

z =
Eg

Eq + Eg
, 1 � cos ✓ =

m2

2EqEg
. (5)

Then, the probability becomes

P (z, cos ✓) dz d cos ✓ =
↵sCF

⇡

dz

z

d cos ✓

1 � cos ✓
. (6)
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Scale invariance

P(Eg, m2)

In such a theory, what 
could be the allowed 
functional form of, say, 
the probability for a 
quark to emit a gluon?

= =  ?

Q: why  for this argument?λ2

 Constraint Equation:⟹

•must be invariant if we “scale” all energies and masses by a factor, :λ
Note: we scale also the PS element



Simple Guess
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๏What sort of functions fulfil                           ? 

•
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Scale invariance

•   and ∝ dE/E dm2/m2

       Dimensionless normalisation constant. 
Cannot fix this from scale invariance alone. For , it must be proportional to 

 , times some “Colour Charge” = CF  = 4/3 for an SU(3) triplet. The  is 
chosen to produce the known expressions in QCD (such as the dipole factor).

q → qg
g2

s = 4παs 1/π

× f(E2
g /m2)

Dimensionless function of  
with soft limit 

Eg/m
f(0) → 1
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•  Simplest guess we can write down is:⟹

N



The DLA Emission Probability

5

๏The “double-logarithmic approximation” (DLA) is obtained 
via the soft limit  

•Express  in terms of  with 

•

f → 1
dEg dm2

qg dzg d(cos θqg)
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•

  

•

zg =
Eg

Eg + Eq

m2
qg = EgEq(1 − cos θqg)
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3
dPγ =

e2

4π2

dk
k

d cos θk

(1 − cos θk)

Compare with the expression for the soft-
photon probability density we got using 

Feynman diagrams in the previous lecture: ( (



Most Singular Limit: Simultaneously Soft and Collinear
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๏Taking also the small-angle limit  
•    

•As discussed in the previous lecture, we should not interpret this as the 
probability to emit a single gluon (or photon), but rather as an 
expectation value for the average number density of emitted quanta. 

๏Noting that the derivatives are of the form , we rewrite:

θqg ≪ 1
1 − cos θqg ∼ θ2

qg/2

dx/x = d(log x)

Peter Skands UniversityMonash

Let’s even go one step further and work in the small angle limit, ✓ ⌧ 1. Then,

P (z, ✓2) dz d✓2 ! ↵sCF

⇡

dz

z

d✓2

✓2
. (7)

This expression tells us a huge amount of physics. Note that the probability diverges when
either z ! 0 or ✓ ! 0, in the soft and/or collinear limits. It seems weird for a probability
to diverge, but we just have to reinterpret it.

Consider, for example, the soft limit, z ! 0. If the energy of the gluon Eg ! 0, then
what distinguishes that final state from just the quark, with no gluon?

q

q

z ! 0

vs.

q

q

z ! 0

?

Is there a measurement we can do to distinguish these systems? The answer is no! They
become degenerate in the z ! 0 limit. Indeed, Feynman diagram perturbation theory is
degenerate perturbation theory, which is why the probability diverges in the z ! 0 limit.
There is no measurement we can do to distinguish a system with no gluons, one 0 energy
gluon, two 0 energy gluons, three 0 energy gluons, etc. Results and predictions in degenerate
perturbation theory are only finite when we sum up all degenerate states as guaranteed by
the Kinoshita-Lee-Nauenberg theorem [7, 8]. We will see how to do this in a second. As
z ! 0, we should not interpret P (z, ✓2) dz d✓2 as a probability, but rather as an expectation
value of the number of soft/low energy gluons emitted from the quark.

Similar arguments follow for the collinear limit, ✓2 ! 0, but I won’t discuss that in detail.
Let’s rewrite the probability in an enlightening way:

P (z, ✓2) dz d✓2 =
↵sCF

⇡

dz

z

d✓2

✓2
=

↵sCF

⇡
d

✓
log

1

z

◆
d

✓
log

1

✓2

◆
. (8)

That is, emissions of soft/collinear gluons are uniformly distributed in the (log 1/z, log 1/✓2)
plane! There’s a very nice way to visualize this, in what is called a “Lund diagram” [9]. This
is:

log
1

z

log
1

�2

soft

�
!

sof
t & col

line
ar

! collinear
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Uniform Distribution in Dimensionless (Log) Variables
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๏➤ A uniform distribution in ln(1/z) and ln(1/θ):
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Emissions uniformly 
distributed in the 

(dimensionless) “Lund plane”

Note: original Lund plane uses 
transverse momentum pT and rapidity 

  
  

ln(p⊥g/m0) ∼ ln(zθ)
y = − ln tan θ/2

Andersson, Gustafson, Lönnblad, Pettersson, Z. Phys C43(1989)625



Practical Example: The invariant mass of a Jet
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๏Let’s apply our notion of a scale-invariant uniform density of emitted gluons in 
the log-log Lund plane to compute something real: the invariant mass of a jet, to 

 perturbative order 
•This calculation will of course only be accurate within the context of the double-log ~ 
classical (aka eikonal) approximation (DLA); should capture at least the “most important” 
bremsstrahlung corrections.

∞

Peter Skands UniversityMonash

Think of jets as 
projections that 

provide a universal 
view of events

(Note: details 
of different 
types of jet 
definitions & 

clustering 
algorithms (kT, 
anti-kT, C/A, 

cones, …) not 
covered here. 

See e.g., 
lectures & 

notes by G. 
Salam.)

Illustrations by G. Salam   

QCD lecture 4 (p. 19)

Jets Jets as projections

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K
p φ

Projection to jets provides “universal” view of event

LO partons NLO partons Parton Shower Hadron Level

Jet Definition Jet Definition Jet Definition Jet Definition

1st-order 
jet mass -order jet masses∞ Hadron-level 

jet masses

At LO, the “jet” 
mass is zero



Dimensionless jet-massy observable

9Peter Skands UniversityMonash

ln
 k

(c)
ln

 k
t

ln
 k

t

L
U

N
D

 D
I
A

G
R

A
M

P
R

I
M

A
R

Y
 L

U
N

D
 P

L
A

N
E

J
E

T
(b)

(a)

(b)

(a) (c)

tt

ln
 k

(c)

ln 1/ ∆

ln 1/ ∆ ln 1/ ∆

ln 1/ ∆

(b)

(c)

(b)

(b)(b)

(c)

Figure 1: Di↵erent representations for two jets. Top: the particles inside the jet. Middle:

the full Lund diagram. Bottom: the primary Lund plane. See text for further details.

of the corresponding particle. The black particle (a) is the primary particle, i.e. the one

that initiated the jet. Particles (b) and (c) are emissions inside the jet.

The middle representation gives the full Lund diagrams for each of the two jets. The

phase-space for emission from each particle is represented as a triangle in a ln� and ln kt
plane, where � and kt are respectively the angle and transverse momentum of an emission

with respect to its emitter. The triangles are colour-coded to match the colours of the

particles in the upper row. The black triangle represents the primary phase space, i.e.

emission from (a) (our classification of which particle emits which other ones is based

on the concept of angular ordering of emissions). Considering the left-hand jet, the blue

particle (b) in the jet is represented as a blue point at the appropriate (�, kt) coordinate

on the (black) triangle associated with its emitter (a). The blue particle has its own phase-

space region, the blue triangle, which is known as a secondary Lund triangle, or “leaf”

where the particle could have, but in this case didn’t, emit. Similarly for the red particle,

(c), which is also emitted from (a). In contrast, for the right-hand jet, (c) was emitted from

(b) and so its point appears on the (secondary) blue triangle associated with particle (b),

while its red phase-space triangle emerges as a tertiary triangle, or leaf, o↵ (b)’s triangle.

Finally, the bottom diagram shows the primary Lund plane, which contains just the
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 m2 = (pa + pb + pc)2

= 2EaEb(1 − cos θab) + 2EbEc(1 − cos θbc) + 2EaEc(1 − cos θac)

→ E2
a(zbθ2

b + zcθ2
c + 𝒪(z2))

τ =
m2

jet

E2
jet

→ ∑
i

ziθ2
i⟹ (a.k.a. “1-Thrust”)

Want to compute the probability to observe τ ≤ τcut

I.e.: what fraction of events will survive a cut requiring   ?m2
jet ≤ E2

jetτcut

Equivalently what fraction of events will fail a cut requiring  ?m2
jet ≥ E2

jetτcut
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Figure 1: Di↵erent representations for two jets. Top: the particles inside the jet. Middle:

the full Lund diagram. Bottom: the primary Lund plane. See text for further details.

of the corresponding particle. The black particle (a) is the primary particle, i.e. the one

that initiated the jet. Particles (b) and (c) are emissions inside the jet.

The middle representation gives the full Lund diagrams for each of the two jets. The

phase-space for emission from each particle is represented as a triangle in a ln� and ln kt
plane, where � and kt are respectively the angle and transverse momentum of an emission

with respect to its emitter. The triangles are colour-coded to match the colours of the

particles in the upper row. The black triangle represents the primary phase space, i.e.

emission from (a) (our classification of which particle emits which other ones is based

on the concept of angular ordering of emissions). Considering the left-hand jet, the blue

particle (b) in the jet is represented as a blue point at the appropriate (�, kt) coordinate

on the (black) triangle associated with its emitter (a). The blue particle has its own phase-

space region, the blue triangle, which is known as a secondary Lund triangle, or “leaf”

where the particle could have, but in this case didn’t, emit. Similarly for the red particle,

(c), which is also emitted from (a). In contrast, for the right-hand jet, (c) was emitted from

(b) and so its point appears on the (secondary) blue triangle associated with particle (b),

while its red phase-space triangle emerges as a tertiary triangle, or leaf, o↵ (b)’s triangle.

Finally, the bottom diagram shows the primary Lund plane, which contains just the
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The sum runs over all emitted gluons in the plane



Dominant Emission + Corrections
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๏  is a sum of positive terms 
•For : no single term is 
allowed to be greater than    

๏One emission dominates:  
•Uniform log-log density  
emissions exponentially far apart in 

  unlikely for event with  
 to get across the line 

• 

τ
τ ≤ τcut

τcut

⟹

(z, θ2) ⟹
max(τi) < τcut

Peter Skands UniversityMonash

there will be one that dominates the value of ⌧ : ⌧ = z✓2. Note that a fixed value of ⌧ on
this plane corresponds to a line:

log ⌧ = log z + log ✓2 . (11)

This line then corresponds to

log
1

z

log
1

�2

Forbidden

log
1

�

log
1

�

All emissions above the line are tiny corrections, there is one emission on the line, and no
emissions below the line. If there were emissions below the line, then the measured value
of ⌧ would have increased. So, for calculating the cumulative probability, we must calculate
the probability that there were no emissions below the line.

This probability is easy to calculate. We can imagine breaking up the forbidden triangle
into many regions:

The probability for emission into any one region is proportional to the area of the region:

P (emit in region i) =
↵sCF

⇡
· (Area of region i) . (12)

Therefore, the probability of no emissions is 1 minus this:

P (no emit in region i) = 1 � ↵sCF

⇡
· (Area of region i) . (13)

6

Small invariant 
masses

Jet mass 
too large

log 1/τcut

log 1/τcut

๏  Just compute probability for no emission in forbidden region 
•Caution: an event with two (or more) emissions in forbidden region can only be 
rejected once  Not just a simple integral of uniform density over that region. 

๏

⟹

⟹



The No-Emission Probability
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๏To compute P(no emission), Larkoski splits up phase space in small subregions and 
multiplies together probabilities for no emission in any one of them (see backup slides) 

๏Simpler to use our interpretation of integrated emission probability as average 
number of emissions (cf last lecture): 

•If the emissions are equivalent and independent (fine in our soft limit), we can interpret the average 
number of emissions in forbidden region: 

•as the mean of a Poisson distribution: 

๏Hence the probability for no emissions in the requested region is :P(0)

Peter Skands UniversityMonash

P(n) =
⟨n⟩n exp (−⟨n⟩)

n!

⟨n⟩(τcut) =
αsCF

2π
log2 τcut

Average number of emissions with  
= density times area of region with 

τ > τcut
τ > τcut

Probability to have n emissions with τ > τcut

Called the Sudakov 
“Form” FactorP(0) = exp (−

αsCF

2π
log2 τcut)Probability for no 

emissions with  

(in Poissonian limit)

τ > τcut

•(This is the same expression as Larkoski gets.)



The (all-orders) Emission Probability
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To find the probability distribution to observe a given value of  (i.e., the jet 
mass distribution), differentiate the no-branching probability wrt : 

Simple Interpretation: the differential rate of change of the no-emission 
probability is equal to (minus) the rate of emissions. 

τ
τ

Peter Skands UniversityMonash

If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
2 log

2 ⌧

N
, (14)

because the area of the triangle is 1
2 log

2 ⌧ . Then, to forbid any emission in all regions, we
multiply these probabilities together:

P (no emissions) =

 
1 �

↵s
⇡

CF
2 log2 ⌧

N

!N

. (15)

Taking the limit as N ! 1, this transmogrifies into an exponential:

P (no emissions) = exp


�↵s

⇡

CF

2
log2 ⌧

�
. (16)

This is just equal to the cumulative probability

P (x < ⌧) = exp


�↵s

⇡

CF

2
log2 ⌧

�
. (17)

Note that this is exponentially suppressed as ⌧ ! 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just di↵erentiate:

p(⌧) =
d

d⌧
exp


�↵s

⇡

CF

2
log2 ⌧

�
= �↵sCF

⇡

log ⌧

⌧
exp


�↵s

⇡

CF

2
log2 ⌧

�
. (18)

We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for ⌧ ! 0.

Before concluding this lecture, I want to connect this to a fundamental problem in jet
physics: discrimination of quark-initiated jets from gluon-initiated jets. We can perform the
same exercise for gluon jets, and we find the cumulative distribution:

Pg(x < ⌧) = exp


�↵s

⇡

CA

2
log2 ⌧

�
. (19)

The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of ⌧ for the quark
and gluon jets look like:

qu
ar

k

gluon

�

p(�)

7

There is a close analogy with the simple process of nuclear decay.  
There the naive decay rate per unit time is given by the decay constant.  
But a nucleus can only decay at a given time t if it has not already decayed.  

The actual decay rate per nucleus in a sample is therefore c * exp( - c  ). 

Exercise: identify what plays the role of c, t, dt, and , in our case.

Δt
Δt )(



The Resummed Jet Mass Distribution
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τ

dP
/d

τ
Leading Order Spectrum  

(no Sudakov factor)

Resummed spectrum 
(with Sudakov factor)

Note, here using 
 for illustrationαs = 1

If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
2 log

2 ⌧

N
, (14)

because the area of the triangle is 1
2 log

2 ⌧ . Then, to forbid any emission in all regions, we
multiply these probabilities together:

P (no emissions) =

 
1 �

↵s
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CF
2 log2 ⌧

N

!N

. (15)

Taking the limit as N ! 1, this transmogrifies into an exponential:

P (no emissions) = exp


�↵s

⇡

CF

2
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. (16)

This is just equal to the cumulative probability

P (x < ⌧) = exp


�↵s

⇡

CF

2
log2 ⌧

�
. (17)

Note that this is exponentially suppressed as ⌧ ! 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just di↵erentiate:

p(⌧) =
d

d⌧
exp


�↵s

⇡

CF

2
log2 ⌧

�
= �↵sCF

⇡

log ⌧

⌧
exp


�↵s

⇡

CF

2
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�
. (18)

We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for ⌧ ! 0.

Before concluding this lecture, I want to connect this to a fundamental problem in jet
physics: discrimination of quark-initiated jets from gluon-initiated jets. We can perform the
same exercise for gluon jets, and we find the cumulative distribution:

Pg(x < ⌧) = exp


�↵s

⇡

CA

2
log2 ⌧

�
. (19)

The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of ⌧ for the quark
and gluon jets look like:
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If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
2 log

2 ⌧

N
, (14)

because the area of the triangle is 1
2 log

2 ⌧ . Then, to forbid any emission in all regions, we
multiply these probabilities together:

P (no emissions) =
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. (15)

Taking the limit as N ! 1, this transmogrifies into an exponential:

P (no emissions) = exp
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. (16)

This is just equal to the cumulative probability

P (x < ⌧) = exp


�↵s

⇡

CF

2
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. (17)

Note that this is exponentially suppressed as ⌧ ! 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just di↵erentiate:

p(⌧) =
d

d⌧
exp


�↵s

⇡

CF

2
log2 ⌧
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= �↵sCF

⇡

log ⌧
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exp
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We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for ⌧ ! 0.

Before concluding this lecture, I want to connect this to a fundamental problem in jet
physics: discrimination of quark-initiated jets from gluon-initiated jets. We can perform the
same exercise for gluon jets, and we find the cumulative distribution:

Pg(x < ⌧) = exp


�↵s

⇡

CA

2
log2 ⌧

�
. (19)

The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of ⌧ for the quark
and gluon jets look like:
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Diverges

Finite

The 
“Sudakov 

Peak”

The Sudakov Factor 
Exponentiation of (no-)emission probability resums perturbative corrections 
to all orders with accuracy dictated by the approximations we made. 

In real world, used as skeleton onto which further corrections can be imposed 
(mass corrections, running coupling, recoil effects, terms beyond DLA, …)

NB: the jet mass distribution is of course just one example. Sudakov suppression (and the 
Sudakov peak) is characteristic for any distribution which is IR divergent at fixed order.
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The No-Emission Probability: Larkoski’s Way
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๏Break up the forbidden area in tiny (differential) subregions:

Peter Skands UniversityMonash

there will be one that dominates the value of ⌧ : ⌧ = z✓2. Note that a fixed value of ⌧ on
this plane corresponds to a line:

log ⌧ = log z + log ✓2 . (11)

This line then corresponds to

log
1

z

log
1

�2

Forbidden

log
1

�

log
1

�

All emissions above the line are tiny corrections, there is one emission on the line, and no
emissions below the line. If there were emissions below the line, then the measured value
of ⌧ would have increased. So, for calculating the cumulative probability, we must calculate
the probability that there were no emissions below the line.

This probability is easy to calculate. We can imagine breaking up the forbidden triangle
into many regions:

The probability for emission into any one region is proportional to the area of the region:

P (emit in region i) =
↵sCF

⇡
· (Area of region i) . (12)

Therefore, the probability of no emissions is 1 minus this:

P (no emit in region i) = 1 � ↵sCF

⇡
· (Area of region i) . (13)

6

In any one subregion, i, the probability for no emission is 

there will be one that dominates the value of ⌧ : ⌧ = z✓2. Note that a fixed value of ⌧ on
this plane corresponds to a line:

log ⌧ = log z + log ✓2 . (11)

This line then corresponds to

log
1
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log
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�2

Forbidden

log
1

�

log
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�

All emissions above the line are tiny corrections, there is one emission on the line, and no
emissions below the line. If there were emissions below the line, then the measured value
of ⌧ would have increased. So, for calculating the cumulative probability, we must calculate
the probability that there were no emissions below the line.

This probability is easy to calculate. We can imagine breaking up the forbidden triangle
into many regions:

The probability for emission into any one region is proportional to the area of the region:

P (emit in region i) =
↵sCF

⇡
· (Area of region i) . (12)

Therefore, the probability of no emissions is 1 minus this:

P (no emit in region i) = 1 � ↵sCF

⇡
· (Area of region i) . (13)
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If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
2 log

2 ⌧

N
, (14)

because the area of the triangle is 1
2 log

2 ⌧ . Then, to forbid any emission in all regions, we
multiply these probabilities together:

P (no emissions) =

 
1 �

↵s
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CF
2 log2 ⌧

N

!N

. (15)

Taking the limit as N ! 1, this transmogrifies into an exponential:

P (no emissions) = exp


�↵s

⇡

CF

2
log2 ⌧

�
. (16)

This is just equal to the cumulative probability

P (x < ⌧) = exp


�↵s

⇡

CF

2
log2 ⌧

�
. (17)

Note that this is exponentially suppressed as ⌧ ! 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just di↵erentiate:

p(⌧) =
d

d⌧
exp


�↵s

⇡

CF

2
log2 ⌧
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= �↵sCF

⇡

log ⌧
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exp
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We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for ⌧ ! 0.

Before concluding this lecture, I want to connect this to a fundamental problem in jet
physics: discrimination of quark-initiated jets from gluon-initiated jets. We can perform the
same exercise for gluon jets, and we find the cumulative distribution:

Pg(x < ⌧) = exp


�↵s

⇡

CA

2
log2 ⌧

�
. (19)

The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of ⌧ for the quark
and gluon jets look like:
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Total area = 
1
2

log2 τ

log 1/τ

lo
g

1/
τ

⟹

No emission in any of these regions:

If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
2 log

2 ⌧

N
, (14)

because the area of the triangle is 1
2 log

2 ⌧ . Then, to forbid any emission in all regions, we
multiply these probabilities together:

P (no emissions) =

 
1 �

↵s
⇡

CF
2 log2 ⌧

N

!N

. (15)

Taking the limit as N ! 1, this transmogrifies into an exponential:
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This is just equal to the cumulative probability
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Note that this is exponentially suppressed as ⌧ ! 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just di↵erentiate:
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We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for ⌧ ! 0.

Before concluding this lecture, I want to connect this to a fundamental problem in jet
physics: discrimination of quark-initiated jets from gluon-initiated jets. We can perform the
same exercise for gluon jets, and we find the cumulative distribution:

Pg(x < ⌧) = exp
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The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of ⌧ for the quark
and gluon jets look like:
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If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
2 log
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N
, (14)

because the area of the triangle is 1
2 log

2 ⌧ . Then, to forbid any emission in all regions, we
multiply these probabilities together:
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Taking the limit as N ! 1, this transmogrifies into an exponential:
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This is just equal to the cumulative probability

P (x < ⌧) = exp
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Note that this is exponentially suppressed as ⌧ ! 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just di↵erentiate:
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We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for ⌧ ! 0.

Before concluding this lecture, I want to connect this to a fundamental problem in jet
physics: discrimination of quark-initiated jets from gluon-initiated jets. We can perform the
same exercise for gluon jets, and we find the cumulative distribution:

Pg(x < ⌧) = exp
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The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of ⌧ for the quark
and gluon jets look like:
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If we break up the forbidden triangle into N equal-area regions then the area of any one
region is

Area of region i =
1
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because the area of the triangle is 1
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2 ⌧ . Then, to forbid any emission in all regions, we
multiply these probabilities together:
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Taking the limit as N ! 1, this transmogrifies into an exponential:
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This is just equal to the cumulative probability
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Note that this is exponentially suppressed as ⌧ ! 0. This object is called the Sudakov form
factor [15].

To find the probability distribution, we just di↵erentiate:

p(⌧) =
d

d⌧
exp


�↵s

⇡

CF

2
log2 ⌧

�
= �↵sCF

⇡

log ⌧

⌧
exp


�↵s

⇡

CF

2
log2 ⌧

�
. (18)

We’ve tamed all the infinities! The Sudakov form factor is an explicit sum over all degenerate
states with soft/collinear gluon emission. The probability distribution is finite, and in fact
0 for ⌧ ! 0.

Before concluding this lecture, I want to connect this to a fundamental problem in jet
physics: discrimination of quark-initiated jets from gluon-initiated jets. We can perform the
same exercise for gluon jets, and we find the cumulative distribution:

Pg(x < ⌧) = exp
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The only change is replacing CF by CA, which is the color Casimir for the adjoint represen-
tation (the color carried by the gluon). Schematically, the distributions of ⌧ for the quark
and gluon jets look like:
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To find the probability distribution to observe a given value of  (i.e., the jet 
mass distribution), differentiate the cumulative distribution wrt :

τ
τ

The Sudakov “Form” Factor


