QFT Beyond Fixed Order Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges

Soft Bremsstrahlung in Classical E\&M, and in QED. The dipole factor \& coherence.

2. Infrared Singularities and Infrared Safety

IR Poles \& Sudakov Logarithms. Probabilities > 1.
Summing over degenerate quantum states (KLN theorem). IRC Safety.

3. OCD as a Weakly Coupled Conformal Field Theory

The emission probability; Double-Logarithmic Approximation
The no-emission probability; Sudakov Factor; exponentiation; example: jet mass.

4. Parton Showers

DLA as differential evolution kernels; unitarity and detailed balance.
Sampling the Sudakov; perturbation theory as a Markov Chain; Monte Carlo.

The total probability to emit a photon?

Having done the φ integral, the total probability is now given by:

$$
P_{\gamma}=\frac{e^{2}}{4 \pi^{2}} \int_{0}^{k_{\max }} \frac{\mathrm{d} k}{k} \int_{\cos \theta_{p p^{\prime}}}^{1} \frac{\mathrm{~d} \cos \theta_{k}}{\left(1-\cos \theta_{k}\right)} \rightarrow \infty
$$

We can artificially regulate this by introducing a $k_{\min }$ (formally equivalent to a photon mass) and a $\theta_{\min }$ (\sim equivalent to a mass for the radiating particle)

$$
\rightarrow \frac{e^{2}}{4 \pi^{2}} \ln \left(\frac{k_{\max }}{k_{\min }}\right) \ln \left(\frac{1-\cos \theta_{\mathrm{pp}^{\prime}}}{1-\cos \theta_{\min }}\right) \quad \begin{aligned}
& \text { The "Sudakov" } \\
& \text { double logarithm" }
\end{aligned}
$$

Logarithmically divergent.
These are the (leading) infrared divergences of QED (also exist in QCD)

Interpretation as a probability has a problem

For sufficiently small $k_{\min }$ and/or $\theta_{\text {min }}$, this probability becomes >1

Interpreting Probabilities > 1

The Born-level $\sigma_{p p^{\prime}} \propto$ event rate for $p \rightarrow p$ ' scattering

The radiative cross section $\sigma_{p p^{\prime}+\gamma} \propto$ photon rate in $p \rightarrow p^{\prime}$ scattering
What would an experimentalist conclude if their photon detector was triggering at a higher rate than their p^{\prime} detector?
Simply that each p ' was accompanied by more than one photon on average!

$$
\frac{\sigma_{p p^{\prime}+\gamma}}{\sigma_{p p^{\prime}}}=\left\langle n_{\gamma}\right\rangle_{p p^{\prime}}
$$

The regulator variables $k_{\text {min }}, \theta_{\text {min }}$ then represent an (arbitrary) definition of the smallest photon energies and angles we can resolve in a given context.
$>$ Expect $\sigma_{p p^{\prime}+\gamma}\left(k_{\text {min }}, \theta_{\text {min }}\right) / \sigma_{p p^{\prime}} \sim$ number of "resolved" photons

So ... the total probability to emit a photon?

Still, if we want the total correction to the Born, we must include $k_{\text {min }} \rightarrow 0, \theta_{\text {min }} \rightarrow 0$
Looks like total probability to emit a photon ("resolved" or not) is infinite. (Related to the infinite range of the Coulomb field \leftrightarrow massless photon.)

But then ... what about our QED perturbation expansion?

In perturbation theory, each higher-order term is supposed to be smaller than the previous one.
But it looks like our first-order QED correction is not only larger than the Born, it is infinite!

Perhaps not surprising given that bremsstrahlung is essentially a classical process; ought to involve an infinite number of quanta (correspondence).

Resolved and Unresolved Quantum States

We deal with UV divergences through renormalisation

Redefine couplings \& fields to absorb anything smaller than wavelength of our probe

The analogy for IR divergences is:
"bare electron" and "bare photon" $>$ "electron + unresolved photons" and "resolved photons".

To the rescue:

1. In QM, we must sum over degenerate quantum states.

Saves fixed-order perturbation theory (next slide).
2. Reinterpret divergent cross section for one emission in terms of divergent number of emissions, with finite total cross section

- infinite-order resummations \& parton showers (next lectures).

1. IR Divergences in Fixed-Order Perturbation Theory

Sum over 'degenerate quantum states'

In the IR limit (Born + infinitely soft/collinear photon), the Born $+\gamma$ final state is indistinguishable from the Born state.
Complete calculation must include both emission and reabsorption amplitudes
At NLO: $\sigma_{\mathrm{X}}^{\mathrm{NLO}}=\int\left|M_{X}^{(0)}\right|^{2}+\int\left|M_{X+1}^{(0)}\right|^{2}+\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]$

Same IR singularities (from poles of propagators going on shell) but opposite signs!
(General proof beyond scope of this course)
\rightarrow Kinoshita-Lee-Nauenberg Theorem: IR singularities cancel each other out, order by order:

$$
\text { E.g.: } \left.\quad \sigma_{\mathrm{NLO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)=\sigma_{\mathrm{LO}}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)\left(1+\frac{\alpha_{s}\left(E_{\mathrm{CM}}\right)}{\pi}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

(Slide on Notation)

Note: the equation on the previous slide was written quite schematically:

At NLO: $\sigma_{\mathrm{X}}^{\mathrm{NLO}}=\int\left|M_{X}^{(0)}\right|^{2}+\int\left|M_{X+1}^{(0)}\right|^{2}+\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0) *}\right]$
Really, $\quad \sigma_{X}^{\mathrm{NLO}}=\int\left|M_{X}^{(0)}\right|^{2} \mathrm{~d}_{\Phi_{X}+\int\left|M_{X+1}^{(0)}\right|^{2} \mathrm{~d} \Phi_{X+1}+\int 2 \operatorname{Re}\left[M_{X}^{(1)} M_{X}^{(0)^{*}}\right]} \mathrm{d}^{\mathrm{d}} \mathrm{S}_{X}$
Lorentz-Invariant Phase Spaces

Can also write: $\quad \sigma_{X}^{\mathrm{NLO}}=\int_{\substack{\text { "Born" } \\ \text { (LO) }}} \mathrm{d} \sigma_{X}^{\mathrm{B}}+\int_{\substack{\text { "Real" } \\ \text { (NLO) }}}^{\mathrm{d} \sigma_{X+1}^{\mathrm{R}}}+\underset{\substack{\text { "Virtual" } \\ \text { (NLO) }}}{ } \mathrm{d} \sigma_{X}^{\mathrm{V}}$

Note: should really also show flux factor, symmetry/averaging factors, and PDF factors

(The Subtraction Approach)

Add and subtract universal IR limits (SOFT and COLLINEAR)

Finite by KLN
Compute and tabulate (regulated)
$\mathrm{d} \sigma_{\text {NLO }}^{\mathrm{S}}$ integrals once and for all

Choice of "subtraction terms" $\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{S}}$:

Singularities mandated by gauge theory
Non-singular terms: up to you (added and subtracted here, so zero net contribution)

$$
\begin{aligned}
& \text { SOFT COLINEAR } \\
& \frac{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(Z^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}\right)\right] \\
& \frac{\left|\mathcal{M}\left(H^{0} \rightarrow q_{i} g_{j} \bar{q}_{k}\right)\right|^{2}}{\left|\mathcal{M}\left(H^{0} \rightarrow q_{I} \bar{q}_{K}\right)\right|^{2}}=g_{s}^{2} 2 C_{F}\left[\frac{2 s_{i k}}{s_{i j} s_{j k}}+\frac{1}{s_{I K}}\left(\frac{s_{i j}}{s_{j k}}+\frac{s_{j k}}{s_{i j}}+2\right)\right] \\
& \text { SOFT COLLINEAR +F }
\end{aligned}
$$

Not all observables can be computed perturbatively

All modern collider experiments use "infrared and collinear safe" jet clustering algorithms

But this was not always so. E.g., seeded cone algorithms (used at Tevatron) were not collinear safe.

Collinear Safe

Virtual and Real go into same bins!

$\alpha_{s}^{n} \times(-\infty)$

Infinities cancel

(KLN: 'degenerate states')

Collinear Unsafe

Virtual and Real go into different bins!

$\alpha_{s}^{n} \times(-\infty)$

Infinities do not cancel

Invalidates perturbation theory

Note: in real life, hadronisation scale regulates the perturbative divergences in QCD.
\Longrightarrow What this means in practice is that IRC safe observables are relatively insensitive to hadronisation effects
(they are suppressed by powers of Λ / Q), whereas IRC unsafe ones are sensitive to hadronisation effects.

Perturbatively Calculable \Leftrightarrow "Infrared Safe"

Definition: An observable is infrared safe if it is insensitive to

SOFT radiation:

Adding one (or more) infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR splittings:

Splitting an existing particle up into two (or more) comoving ones (conserving total momentum and energy) should not change the value of the observable

\rightarrow ensures that virtual and real singularities go in "same bin" (of histograms), and hence cancel
\rightarrow observable can be computed perturbatively $\&$ hadronisation effects suppressed by $(\Lambda / Q)^{n}$

Note on terminology

My usage of the terms infrared, soft, and collinear:

Consistent with general distinction between UV and IR singularities in QFT.
Thus, if I say an observable is "IR safe", it is both soft and collinear safe.

Most others follow a historical convention:

Infrared only means soft
To cover both cases one then has to say "Infrared and Collinear Safe".
Gets abbreviated to IRC Safe which is what you'll often see in literature.

IRC Safety: Examples

Discuss whether the following observables are both soft and collinear safe, or not. For those questions that involve jets, assume an arbitrary but IRC safe jet definition.
A) The number of particles (in an event).
B) The number of jets (in an event).
C) The energy of the hardest particle (in an event).
D) The \mathbf{p}_{T} of the hardest particle ...
E) The p_{T} of the hardest jet ...
F) The number of particles with energies $E \geq E_{\text {min }}$, for some given $E_{\text {min }}$
G) The summed p_{T} of all jets (also called H_{T})

Extra Slides

