QFT Beyond Fixed Order Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges

Soft Bremsstrahlung in Classical E&M, and in QED. The dipole factor & coherence.

2. Infrared Singularities and Infrared Safety

IR Poles & Sudakov Logarithms. **Probabilities > 1**. Summing over degenerate quantum states (KLN theorem). **IRC Safety.**

3. QCD as a Weakly Coupled Conformal Field Theory

The **emission** probability; Double-Logarithmic Approximation The **no-emission** probability; Sudakov Factor; exponentiation; example: **jet mass**.

4. Parton Showers

DLA as differential evolution kernels; unitarity and detailed balance. Sampling the Sudakov; perturbation theory as a Markov Chain; Monte Carlo.

Peter Skands

Monash University

Quantum Field Theory II Applications and Phenomenology

Having done the φ integral, the total probability is now given by:

$$P_{\gamma} = \frac{e^2}{4\pi^2} \int_0^{k_{\text{max}}} \frac{\mathrm{d}k}{k} \int_0^{k_{\text{max}}} \frac{\mathrm{d$$

We can artificially regulate this by introducing a k_{\min} (formally equivalent to a photon mass) and a θ_{\min} (~ equivalent to a mass for the radiating particle)

$$\rightarrow \frac{e^2}{4\pi^2} \ln\left(\frac{k_{\text{max}}}{k_{\text{min}}}\right) \ln\left(\frac{1 - \cos\theta_{\text{pp'}}}{1 - \cos\theta_{\text{min}}}\right)$$

Logarithmically divergent. These are the (leading) **infrared divergences** of QED (also exist in QCD)

Interpretation as a probability has a problem For sufficiently small k_{\min} and/or θ_{\min} , this probability becomes > 1

 $\int_{\cos\theta_{pp'}}^{1} \frac{d\cos\theta_k}{(1-\cos\theta_k)} \to \infty$

The "Sudakov double logarithm"

The Born-level $\sigma_{pp'} \propto$ event rate for $p \rightarrow p'$ scattering The radiative cross section $\sigma_{pp'+\gamma} \propto$ photon rate in $p \rightarrow p'$ scattering What would an experimentalist conclude if their photon detector was triggering at a higher rate than their p' detector? Simply that each p' was accompanied by more than one photon on average!

$$\sigma_{pp'+}$$

 $\sigma_{pp'}$

The regulator variables k_{\min} , θ_{\min} then represent an (arbitrary) definition of the smallest photon energies and angles we can **resolve** in a given context.

> Expect $\sigma_{pp'+\gamma}(k_{\min}, \theta_{\min})/\sigma_{pp'}$ ~ number of "resolved" photons

$$\frac{\gamma}{2} = \left\langle n_{\gamma} \right\rangle_{pp}$$

3

 $k_{\min} \rightarrow 0, \ \theta_{\min} \rightarrow 0$

But then ... what about our QED perturbation expansion?

the previous one.

it is **infinite**!

Still, if we want the total correction to the Born, we must include

Looks like **total** probability to emit a photon ("resolved" or not) is infinite. (Related to the infinite range of the Coulomb field \leftrightarrow massless photon.)

- In perturbation theory, each higher-order term is supposed to be smaller than
- But it looks like our first-order QED correction is not only larger than the Born,
- Perhaps not surprising given that bremsstrahlung is essentially a classical process; *ought* to involve an infinite number of quanta (correspondence).

We deal with UV divergences through renormalisation

Redefine couplings & fields to absorb anything smaller than wavelength of our probe

The analogy for **IR divergences is:**

"bare electron" and "bare photon" ➤ "electron + unresolved photons" and "resolved photons".

To the rescue:

1. In QM, we must sum over degenerate quantum states. Saves fixed-order perturbation theory (next slide).

number of emissions, with finite total cross section

> infinite-order resummations & parton showers (next lectures).

Resolved and Unresolved Quantum States

- 2. Reinterpret divergent cross section for one emission in terms of divergent

1. IR Divergences in Fixed-Order Perturbation Theory

Sum over 'degenerate quantum states'

In the IR limit (Born + *infinitely* soft/collinear photon), the Born + γ final state is indistinguishable from the Born state.

Complete calculation must include both **emission** and **reabsorption** amplitudes

At NLO:
$$\sigma_{\rm X}^{\rm NLO} = \int |M_{X}^{(0)}|^{2} + \int |\vec{A}|^{q_{i}}$$

Same IR singularities (from poles of propagators going on shell) but opposite signs!

E.g.:
$$\sigma_{\rm NLO}(e^+e^- \to q\bar{q}) = \sigma_{\rm LO}(e^+e^- \to q\bar{q}) \left(1 + \left(\frac{\alpha_s(E_{\rm CM})}{\pi} + \mathcal{O}(\alpha_s^2)\right)\right)$$

(General proof beyond scope of this course)

→ *Kinoshita-Lee-Nauenberg Theorem*: IR singularities cancel each other out, order by order:

(Slide on Notation)

Note: the equation on the previous slide was written quite schematically:

At NLO:
$$\sigma_{\rm X}^{\rm NLO} = \int |M_X^{(0)}|^2 + \int |M_{X+1}^{(0)}|^2 + \int 2\text{Re}[M_X^{(1)}M_X^{(0)*}]$$

Really,
$$\sigma_X^{\text{NLO}} = \int \left| M_X^{(0)} \right|^2 d\Phi_X + \int \left| M_{X+1}^{(0)} \right|^2 d\Phi_{X+1} + \int 2\text{Re} \left[M_X^{(1)} M_X^{(0)*} \right] d\Phi_X$$

Lorentz-Invariant Phase Spaces Note: sh

Can also write: $\sigma_X^{\text{NLO}} = \left[\mathrm{d}\sigma_X^{\text{B}} + \left[\mathrm{d}\sigma_{X+1}^{\text{R}} + \left[\mathrm{d}\sigma_X^{\text{V}} \right] \right] \right]$ "Born"

Peter Skands

(LO)

"Real" "Virtual"

(NLO)

nould really also show flux factor, symmetry/averaging factors, and PDF factors

(NLO)

(The Subtraction Approach)

Singularities mandated by gauge theory Non-singular terms: up to you (added and subtracted here, so zero net contribution)

$$\begin{split} & \text{SOFT} & \text{COLLINEAR} \\ \frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] \\ \frac{H^0 \to q_i g_j \bar{q}_k)|^2}{(H^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \\ & \text{SOFT} & \text{COLLINEAR} + \mathsf{F} \end{split}$$

$$\begin{split} & \frac{|\mathcal{M}(Z^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(Z^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} \right) \right] \\ & \frac{|\mathcal{M}(H^0 \to q_i g_j \bar{q}_k)|^2}{|\mathcal{M}(H^0 \to q_I \bar{q}_K)|^2} = g_s^2 \, 2C_F \, \left[\frac{2s_{ik}}{s_{ij} s_{jk}} + \frac{1}{s_{IK}} \left(\frac{s_{ij}}{s_{jk}} + \frac{s_{jk}}{s_{ij}} + 2 \right) \right] \\ & \text{SOFT} & \text{COLLINEAR} + \mathsf{F} \end{split}$$

Not all observables can be computed perturbatively

But this was not always so. E.g., seeded cone algorithms (used at Tevatron) were not collinear safe.

Collinear Safe

Virtual and Real go into same bins!

(example by G. Salam)

Note: in real life, hadronisation scale regulates the perturbative divergences in QCD. \implies What this means in practice is that **IRC safe** observables are relatively **insensitive** to hadronisation effects (they are suppressed by powers of Λ/Q), whereas **IRC unsafe** ones are **sensitive** to hadronisation effects.

All modern collider experiments use "infrared and collinear safe" jet clustering algorithms

Perturbatively Calculable ↔ "Infrared Safe"

Definition: An observable is **infrared safe** if it is **insensitive** to

SOFT radiation:

Adding one (or more) infinitely soft particles (zero-energy) should not change the value of the observable

COLLINEAR splittings:

Splitting an existing particle up into two (or more) comoving ones (conserving total momentum and energy) should not change the value of the observable

 \rightarrow ensures that virtual and real singularities go in "same bin" (of histograms), and hence cancel \rightarrow observable can be computed perturbatively & hadronisation effects suppressed by $(\Lambda/Q)^n$

My usage of the terms infrared, soft, and collinear:

Thus, if I say an observable is "IR safe", it is both soft and collinear safe.

Most others follow a historical convention:

Infrared only means soft

To cover both cases one then has to say "Infrared and Collinear Safe".

i.e., Infrared = Soft and/or Collinear

Consistent with general distinction between UV and IR singularities in QFT.

Gets abbreviated to **IRC Safe** which is what you'll often see in literature.

IRC Safety: Examples

- - A) The **number** of **particles** (in an event).
 - B) The **number** of **jets** (in an event).
 - C) The **energy** of the **hardest particle** (in an event).
 - D) The **p**_T of the **hardest particle** ...
 - E) The **p**_T of the **hardest jet** ...

 - G) The summed p_T of all jets (also called H_T)

Discuss whether the following observables are both soft and collinear safe, or not.

For those questions that involve *jets*, assume an arbitrary but IRC safe jet definition.

F) The **number** of **particles** with energies $E \ge E_{min}$, for some given E_{min}

Extra Slides