QFT Beyond Fixed Order Introduction to Bremsstrahlung and Jets

1. Radiation from Accelerated Charges

Soft Bremsstrahlung in Classical E\&M, and in QED. The soft eikonal \& coherence.

2. Infrared Singularities and Infrared Safety

IR Poles \& Probabilities > 1, Sudakov logs, IRC Safety

3. QCD as a Weakly Coupled Conformal Field Theory

The emission probability; Double-Logarithmic Approximation
The no-emission probability; Sudakov Factor; exponentiation; example: jet mass.

4. Parton Showers

DLA as differential evolution kernels; unitarity and detailed balance
Sampling the Sudakov; perturbation theory as a Markov Chain; Monte Carlo

Warmup: Classical Fields of a Charge in Uniform Motion

To start with, consider a classical charged particle

If it is charged, it has a Coulomb field

Stationary

Warmup: Classical Fields of a Charge in Uniform Motion

The EM fields of an electron in uniform relativistic motion are predominantly transverse, with $|E| \approx|B| \approx \gamma\left|E_{\text {rest }}\right|$

Weiszäcker (1934) \& Williams (1935) noted that, in the limit of a large boost, that starts to look a lot like (a superposition of) plane waves!

They interpreted this to mean that fast electrically charged particles can be regarded as carrying with them clouds of virtual photons

That was for a charge in uniform motion. What happens if we give it a kick?
a.k.a. "the method of virtual quanta" (e.g., Jackson, Classical

Electrodynamics) or "the equivalent photon approximation" (EPA)

Radiation from Accelerated Charges (Bremsstrahlung)

Consider a (QED or QCD) charge that receives a kick at $t=0$

(Analogous to the elastic-scattering form-factor situation we discussed earlier in the course)
Before t_{0} : Coulomb field at rest with respect to particle.
An observer far away sees the fields of a uniformly moving charge. No plane waves; no radiation.

At t_{0} : instantaneously replace stationary charge by one moving at velocity v, If $v \neq v^{\prime}$, the Coulomb field will need to be rearranged (sped up).

Much later than t_{0} : moving charge, with boosted Coulomb field.
No plane waves; no radiation.

The far-away observer experiences a disturbance in the EM field (generated around $t \sim t_{0}$), which upon Fourier transformation > a spectrum of plane-wave radiation

Quantum Treatment

Peskin \& Schroeder shows the calculations for actual electrons

I will not care about spin; will use scalar charged particles instead (for simplicity) We will see that we get the same result(s) in the end (in the soft limit, $k_{\gamma} \rightarrow 0$)

Feynman rules for spin-0 particle coupled to a gauge field

$\frac{i}{p^{2}-m^{2}} \quad$ Scalar propagator
Trivial wave function for incoming/outgoing scalars
$\begin{gathered}\text { Scalar-Scalar-Vector vertex } \\ -i e\left(p+p^{\prime}\right)^{\mu}\end{gathered} \quad\binom{D_{\mu} \phi D^{\mu} \phi^{*}=\left(\partial_{\mu}+i e A_{\mu}\right) \phi\left(\partial^{\mu}+i e A^{\mu}\right) \phi^{*}}{\Longrightarrow$ terms with $i e A_{\mu} \phi\left(\partial^{\mu} \phi\right)^{*}+$ c.c. }

Kick a charged particle

Note: in principle applies every time we disturb a charged particle!
Expect consequences to be universal, for every vertex that involves a charged particle

Radiative Correction (Bremsstrahlung) to first perturbative order in e :

$-i e \mathscr{M}_{0}\left(p-k, p^{\prime}\right) \frac{i}{(p-k)^{2}-m^{2}}(p+p-k)^{\mu} \epsilon_{\mu}^{*}(k)$

Exercise: write down the amplitude for this diagram

A little algebra

On-shell photon has transverse polarisation; satisfies $k^{\mu} \epsilon_{\mu}=0$

$$
\begin{aligned}
& (2 p-k)^{\mu} \epsilon_{\mu}^{*} \rightarrow 2\left(p \cdot \epsilon^{*}\right) \\
& \left(2 p^{\prime}+k\right)^{\mu} \epsilon_{\mu}^{*} \rightarrow 2\left(p^{\prime} \cdot \epsilon^{*}\right)
\end{aligned}
$$

Propagators :

$$
\begin{aligned}
& \frac{1}{(p-k)^{2}-m^{2}}=\frac{-1}{2(p \cdot k)} \\
& \frac{1}{\left(p^{\prime}+k\right)^{2}-m^{2}}=\frac{+1}{2\left(p^{\prime} \cdot k\right)}
\end{aligned}
$$

+ Consider soft photon limit: $|k| \ll\left|p^{0}\right|$

$$
\mathscr{M}_{0}\left(p-k, p^{\prime}\right) \sim \mathscr{M}_{0}\left(p, p^{\prime}\right) \sim \mathscr{M}_{0}\left(p, p^{\prime}+k\right)
$$

Probability for soft photon bremsstrahlung

Amplitude for diagram with radiation before scattering becomes:

$$
-i e \mathscr{M}_{0}\left(p-k, p^{\prime}\right) \frac{i}{(p-k)^{2}-m^{2}}(p+p-k)^{\mu} \epsilon_{\mu}^{*}(k) \rightarrow-e \mathscr{M}_{0}\left(p, p^{\prime}\right) \frac{\left(p \cdot \epsilon^{*}\right)}{(p \cdot k)}
$$

The other amplitude (radiation after scattering) becomes

$$
\rightarrow+e \mathscr{M}_{0}\left(p, p^{\prime}\right) \frac{\left(p^{\prime} \cdot \epsilon^{*}\right)}{\left(p^{\prime} \cdot k\right)}
$$

Squaring and integrating to get the cross section, we get:

$$
\mathrm{d} \sigma\left(p \rightarrow p^{\prime}+k ; \epsilon\right)=\mathrm{d} \sigma\left(p \rightarrow p^{\prime}\right) \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} 2 k} e^{2}\left|\frac{\left(p^{\prime} \cdot \epsilon\right)}{\left(p^{\prime} \cdot k\right)}-\frac{(p \cdot \epsilon)}{(p \cdot k)}\right|^{2}
$$

Same as classical result!

Denoting the one-particle phase space element by $\mathrm{d} \Phi_{1}(k)$ and summing over photon polarisations $\boldsymbol{>}$ total probability density per phase-space element:

$$
\frac{\mathrm{d} \sigma\left(p \rightarrow p^{\prime}+k\right)}{\mathrm{d} \sigma\left(p \rightarrow p^{\prime}\right) \mathrm{d} \Phi_{1}}=e^{2}\left(\frac{2\left(p \cdot p^{\prime}\right)}{\left(p^{\prime} \cdot k\right)(p \cdot k)}-\frac{m^{2}}{(p \cdot k)^{2}}-\frac{m^{2}}{\left(p^{\prime} \cdot k\right)^{2}}\right)
$$

Infrared Structure of Gauge Field Theory Amplitudes

We considered a generic process: a charged particle got kicked

Expect to see this expression any time we look at the (soft limit of) a first-order QED correction to any scattering process involving a gauge-charged current:

$$
\mathrm{d} \sigma_{p p^{\prime}+\gamma}=e^{2}\left(\frac{2\left(p \cdot p^{\prime}\right)}{\left(p^{\prime} \cdot k_{\gamma}\right)\left(p \cdot k_{\gamma}\right)}-\frac{m^{2}}{\left(p \cdot k_{\gamma}\right)^{2}}-\frac{m^{2}}{\left(p^{\prime} \cdot k_{\gamma}\right)^{2}}\right) \mathrm{d} \Phi_{\gamma} \mathrm{d} \sigma_{p p^{\prime}}
$$

Note: same expression for gluon emission in QCD, with $e^{2} \rightarrow g_{s}^{2} N_{C}$ (Before adding photon)
(For completeness, note that for particles with spin there are further universal terms, called collinear which are also relevant to bremsstrahlung and which can be derived in a similar manner; here we focused only on the soft limit.)

Some immediate follow-up questions:

What is the total probability to emit a photon? How about two photons; or more?
What if there is more than one charged particle that gets kicked? (Or one gets several kicks?)
What about if the charged particle is not pointlike (e.g., a charged hadron)?
How does this relate to gluons and jets in QCD? How about weak $\operatorname{SU}(2)_{\mathrm{L}}$? Other (gauge) theories?

Towards the total probability
Want to integrate the dipole factor over $\mathrm{d}^{3} k=k^{2} \mathrm{~d} k \mathrm{~d} \cos \theta_{k} \mathrm{~d} \varphi_{k}$

$$
\int \frac{d^{3} k}{(2 \pi)^{2} 2 k} \frac{2\left(p \cdot p^{\prime}\right)}{(p \cdot k)\left(p^{\prime} \cdot k\right)}=\frac{1}{4 \pi^{2}} \int \frac{d k}{k} \int d \cos \theta_{k} \frac{d \varphi_{k}}{2 \pi} \frac{1-\cos \theta_{p p^{\prime}}}{\left(1-\cos \theta_{k p}\right)\left(1-\cos \theta_{k p^{\prime}}\right)}
$$

Looks divergent for small k (soft limit; our approximation should be OK there), and/or for small $\theta_{k p}, \theta_{k p^{\prime}}$ (collinear, with p or p^{\prime} respectively). But let's forge ahead ...

To do φ integral, separate the two collinear pole structures, by adding and subtracting two terms, then integrate half of the dipole factor with each combination, using:

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \varphi_{k p}}{4 \pi} \underbrace{\left(\frac{1-\cos \theta_{p p^{\prime}}}{\left(1-\cos \theta_{k p}\right)\left(1-\cos \theta_{k p^{\prime}}\right)}+\frac{1}{1-\cos \theta_{k p}}-\frac{1}{1-\cos \theta_{k p^{\prime}}}\right)}_{\text {Only divergent for } \theta_{k p} \rightarrow 0 \text {, not for } \theta_{k p^{\prime}} \rightarrow 0 \text { (and vice versa for the other half) }}=\frac{1}{2\left(1-\cos \theta_{k p}\right)}\left(1+\frac{\cos \theta_{k p}-\cos \theta_{p p^{\prime}}}{\left|\cos \theta_{k p}-\cos \theta_{p p^{\prime}}\right|}\right))
$$

Already an interesting result!
Averaged over φ_{k}, there is zero soft radiation outside cones) with opening angle $\theta_{p p^{\prime}}$ scattering adds coherently!

The kp' term of the partitioned eikonal

