QFT with HadronsIntroduction to B Physics

1. Leptonic Decays of Hadrons: from $\pi \to \ell \nu$ to $B \to \ell \nu$

QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM.

2. On the Structure and Unitarity of the CKM Matrix

The CKM Matrix. The GIM Mechanism. The Unitarity Triangle.

3. Semi-Leptonic Decays and the "Flavour Anomalies"

 $B \to D^{(*)} \ell v$. The Spectator Model. Form Factors. Heavy Quark Symmetry.

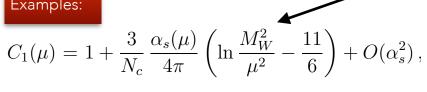
 \Rightarrow B \rightarrow K(*) ℓ^+ ℓ^- . FCNC. Aspects beyond tree level. Penguins. The OPE. **Data.**

From mw to mb

What does "running" of the Wilson coefficients mean, and what consequences does it have?

Matrix Equation:
$$C_i(\mu) = \sum_j U_{ij}(\mu, m_W) C_j(m_W)$$
U: "Evolution Matrix"

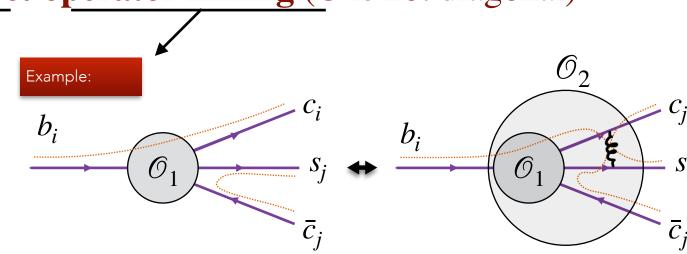
QCD corrections > Large logs & operator mixing (U is not diagonal)



$$C_2(\mu) = -3 \frac{\alpha_s(\mu)}{4\pi} \left(\ln \frac{M_W^2}{\mu^2} - \frac{11}{6} \right) + O(\alpha_s^2).$$

Expansion parameter is not really α_s but $\alpha_s \ln(m_W^2/\mu^2)$

Large for $\mu \sim m_b \ll m_W$



The "Renormalisation Group Method": sums $(\alpha_s \ln(m_W/\mu))^n$

U_{ij} obtained by solving differential equation ("RGE") analogous to that for other running couplings:

$$\frac{dC_i}{d\ln\mu} = \gamma_{ij} \, C_j$$

 $\frac{dC_i}{d \ln \mu} = \gamma_{ij} C_j$ The kernels, γ_{ij} , are called the "matrix of anomalous dimension"

See, e.g., M. Schwarz "Quantum Field Theory and the Standard Model", chp.23 Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125

Quark-Level Matrix Element

E.g., Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125

For now, all we shall care about is that the $C_i(m_b)$ have been calculated in the theoretical literature with high precision

Not just for SM, but for many scenarios of physics BSM as well.

E.g., SUSY: Ali, Ball, Handoko, Hiller, hep-ph/9910221

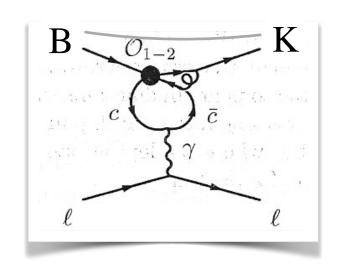
$$\begin{split} \mathcal{M}(b \to s \ell^+ \ell^-) &= \frac{G_F \sqrt{\alpha}}{2\pi} V_{ts}^* V_{tb} \left[C_{9V}(m_b) [\bar{s} \gamma^\mu \frac{1}{2} (1 - \gamma_5) b] [\bar{\ell} \gamma_\mu \ell] \right. \\ &\quad + C_{10A}(m_b) [\bar{s} \gamma^\mu \frac{1}{2} (1 - \gamma_5) b] [\bar{\ell} \gamma_\mu \gamma_5 \ell] \\ &\quad \left. - 2 \frac{m_b}{m_B} C_{7\gamma}(m_b) [\bar{s} i \sigma^{\mu\nu} \frac{q_\nu}{q^2} \frac{1}{2} (1 + \gamma_5) b] [\bar{\ell} \gamma_\mu \ell] \right] \end{split}$$

Next: add perturbative contributions from other operators

Then: add non-perturbative effects of hadronic resonances

Finally: form factors → hadronic matrix elements

Monash



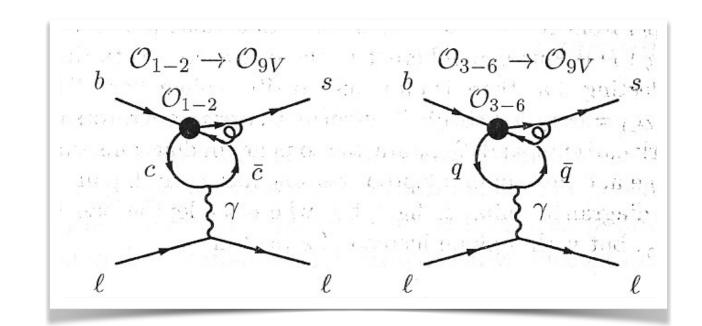
Additional Perturbative Contributions

Additional Contributions to O₉:

W-exchange $O_{1,2}: c\bar{c}$ pairs

QCD penguins O_{3-6} : $q\bar{q}$ pairs (u,d,s,c,b)

Buras, M. Münz, Phys. Rev. D52 (1995) 186. Misiak, Nucl. Phys. B393 (1993) 23; +err. Ibid. B439 (1995) 461



$$C_{9V} \rightarrow C_9^{\text{eff}}(q^2) = C_9 + g_c(q^2; C_{1-6}) + g_b(q^2; C_{3-6}) + g_{uds}(q^2; C_{3-4}) + \frac{2}{9}(3C_3 + C_4 + 3C_5 + C_6)$$

Recall: $q^2 = (p_B - p_K)^2 = (p_{\ell^+} + p_{\ell^-})^2$

"Loop functions"

contain $\ln m_c^2/m_h^2$, $\ln q^2/m_h^2$, $\ln \mu^2/m_h^2$

Large at low q²

Question: what do you call a $c\bar{c}$ pair with $q^2 \sim 4m_c^2$, in a spin-1 state?

also contain imaginary parts for $q^2 > 4m_q^2$

Perturbative calculation is presumably not valid.

Main worry is g_c since it gets contributions from the O(1) C_1 coefficient

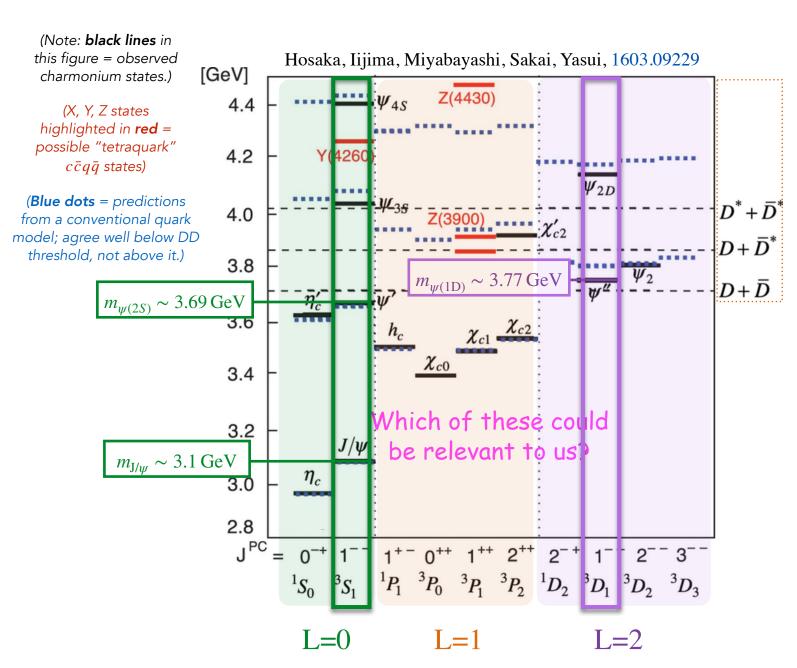
Corresponds to on-shell quarks ➤ can propagate over long distances

Note also:
$$C_{7\gamma} \to C_7^{\text{eff}} = C_{7\gamma} + C_5/3 - C_6$$

(*in the scheme used by Buras, Fleischer, hep-ph/9704376)

University

Which $c\bar{c}$ states are there?

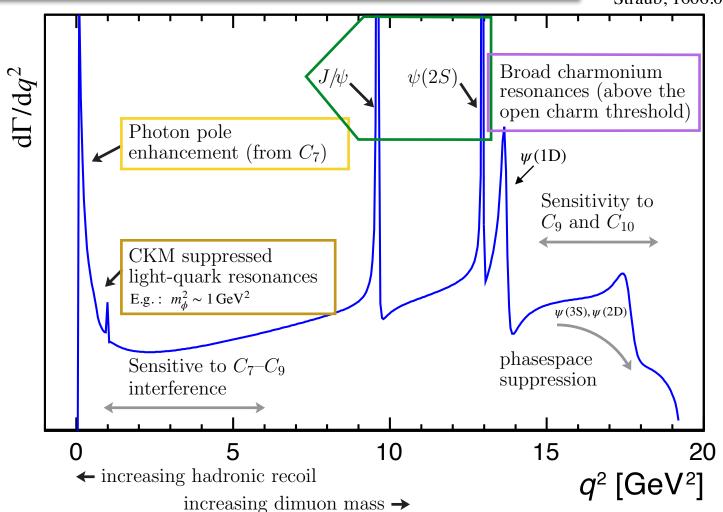


Are they important?

Vest in resonant region(s) pr

Yes: in resonant region(s), process is really $B \to J/\psi K$, followed by $J/\psi \to \ell^+\ell^-$.

Cartoon adapted from Blake, Lanfranchi, Straub, 1606.00916



(can add resonances with Breit-Wigner functions + "non-factorizable contributions" in $C_9^{\rm eff}$)

Note: the dilepton q^2 spectrum is still **relatively clean below the J/psi**

(Non-Factorizable Contributions?)

We so far did not consider multi-hadronic final states

But that is effectively what the $B \to J/\psi K$ intermediate states are.

Non-factorisable contributions: general problem in multi-hadronic processes.

The factorisation ansatz

Including the J/ψ and other $c\bar{c}$ (henceforth ψ_n) states as Breit-Wigner distributions in C_9^{eff} , we are effectively *factoring* the process, into $B \to K$ transition $\otimes \psi_n$ creation (& decay):

$$\left\langle K\mathscr{E}^{+}\mathscr{E}^{-}\left|\hat{H}\right|B\right\rangle \underset{\text{\tiny Res.}}{\sim} \left\langle \mathscr{E}^{+}\mathscr{E}^{-}\left|\hat{H}\right|\psi_{n}\right\rangle \left\langle \psi_{n}K\left|\hat{H}\right|B\right\rangle \underset{\text{\tiny Fact.}}{\sim} \left\langle \mathscr{E}^{+}\mathscr{E}^{-}\left|\hat{H}\right|\psi_{n}\right\rangle \left\langle \psi_{n}\left|\hat{H}\right|0\right\rangle \left\langle K\left|\hat{H}\right|B\right\rangle$$

(The creation & decay amplitudes for ψ_n are proportional to the ψ_n decay constant.)

Ignores any crosstalk between the J/ψ and $B \to K$ currents.

Non-factorizable contributions

Long-distance interactions between the (hadronic) J/ψ and $B \to K$ currents.

Beyond the scope of this course

Hadronic Matrix Element & Form Factors

We are now ready to look at the hadron-level matrix element

$$\mathcal{M}(B \to K\ell^+\ell^-) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* \left[C_9^{\text{eff}} \left\langle K(p_K) \left| \bar{s} \gamma^{\mu} (1 - \gamma_5) b \left| B(p_B) \right\rangle [\bar{\ell} \gamma_{\mu} \ell] \right. \right. \\ \left. + C_{10A} \left\langle K(p_K) \left| \bar{s} \gamma^{\mu} (1 - \gamma_5) b \left| B(p_B) \right\rangle [\bar{\ell} \gamma_{\mu} \gamma_5 \ell] \right. \right. \\ \left. - 2 \frac{m_b}{m_B} C_7^{\text{eff}} \left\langle K(p_K) \left| \bar{s} i \sigma^{\mu\nu} \frac{q_{\nu}}{q^2} (1 + \gamma_5) b \left| B(p_B) \right\rangle [\bar{\ell} \gamma_{\mu} \ell] \right] \right]$$

Similarly to $B \to D\ell\nu$, axial part does not contribute in $B \to K\ell^+\ell^-$.

But we do need a magnetic form factor, due to the C₇ contribution.

$$\left\langle K(p_{K}) \left| \bar{s} \gamma^{\mu} (1 - \gamma_{5}) b \right| B(p_{B}) \right\rangle = f_{+}(q^{2}) \left(p_{B} + p_{K} \right)^{\mu} + f_{-}(q^{2}) (\underline{p_{B} - p_{K}})^{\mu}$$

$$\left\langle K(p_{K}) \left| \bar{s} i \sigma^{\mu \nu} \frac{q_{\nu}}{q^{2}} (1 + \gamma_{5}) b \right| B(p_{B}) \right\rangle = \frac{f_{T}(q^{2})}{m_{B} + m_{K}} \left(q^{2} (p_{B} + p_{K})^{\mu} - (m_{B}^{2} - m_{K}^{2}) q^{\mu} \right)$$
(Recall: $p_{B} - p_{K} = q$)

K is not a "heavy-light" system $(\Lambda_{QCD}/m_s \sim 1) \rightarrow$ cannot play Isgur-Wise trick; have to keep both f_+ and f_-

(Example of Form-Factor Parametrisations)

Main method is called "Light Cone Sum Rules" (LCSR)

The ones below are admittedly rather old; from hep-ph/9910221

$$F(\hat{s}) = F(0) \exp(c_1 \hat{s} + c_2 \hat{s}^2 + c_3 \hat{s}^3).$$

Central	f_+	f_0	f_T
F(0)	0.319	0.319	0.355
c_1	1.465	0.633	1.478
c_2	0.372	-0.095	0.373
c_3	0.782	0.591	0.700

Max	f_+	f_0	f_T
F(0)	0.371	0.371	0.423
c_1	1.412	0.579	1.413
c_2	0.261	-0.240	0.247
c_3	0.822	0.774	0.742

Min	f_+	f_0	f_T
F(0)	0.278	0.278	0.300
c_1	1.568	0.740	1.600
c_2	0.470	0.080	0.501
c_3	0.885	0.425	0.796

(and there are corresponding ones for $B \to K^*$)

The B \rightarrow K ℓ^+ ℓ^- Decay Distribution

Squared matrix element + trace algebra

$$\overline{|\mathcal{M}|^2} = \frac{G_F^2 \alpha^2}{4\pi^2} |V_{ts}^* V_{tb}|^2 D(q^2) \left(\lambda(m_B^2, m_K^2, q^2) - u^2 \right)$$

Exercise: do the steps

Hint: use advantage of OPE basis: operators are orthogonal. E.g., axial and vector currents can't interfere.

$$\overline{|\mathcal{M}|^2} = \frac{G_F^2 \alpha^2}{4\pi^2} |V_{ts}^* V_{tb}|^2 D(q^2) \left(\lambda(m_B^2, m_K^2, q^2) - u^2\right)$$
 operators a vector with $D(q^2) = \left|C_9^{\text{eff}}(q^2)|f_+(q^2) + \frac{2m_b}{m_B + m_K}C_7^{\text{eff}}f_T(q^2)\right|^2 + |C_{10A}|^2 f_+(q^2)^2$ And $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2bc - 2ac$, $u \equiv 2p_B \cdot (p_{\ell^+} - p_{\ell^-})$

Note: we assumed lepton mass vanishes \rightarrow no dependence on f_{-} any more!

Phase Space

Useful Trick: factor $1 \rightarrow 3$ phase space into two $1 \rightarrow 2$ ones using

$$\int d^4q \, \delta^{(4)}(q - p_1 - p_2) = 1$$

Exercise: starting from the standard form of dLIPS for a $1 \rightarrow 3$ decay, show that :

$$\frac{\mathrm{d}\Gamma_{B\to K\ell^+\ell^-}}{\mathrm{d}q^2\,\mathrm{d}u} = \frac{\overline{\left|\mathcal{M}\right|^2}}{2^9\pi^3 m_B^3}$$

What does data say?

Here just looking at LHCb measurements; From talk by E. Graverini, BEACH 2018 Additional measurements by BaBar and Belle not shown.

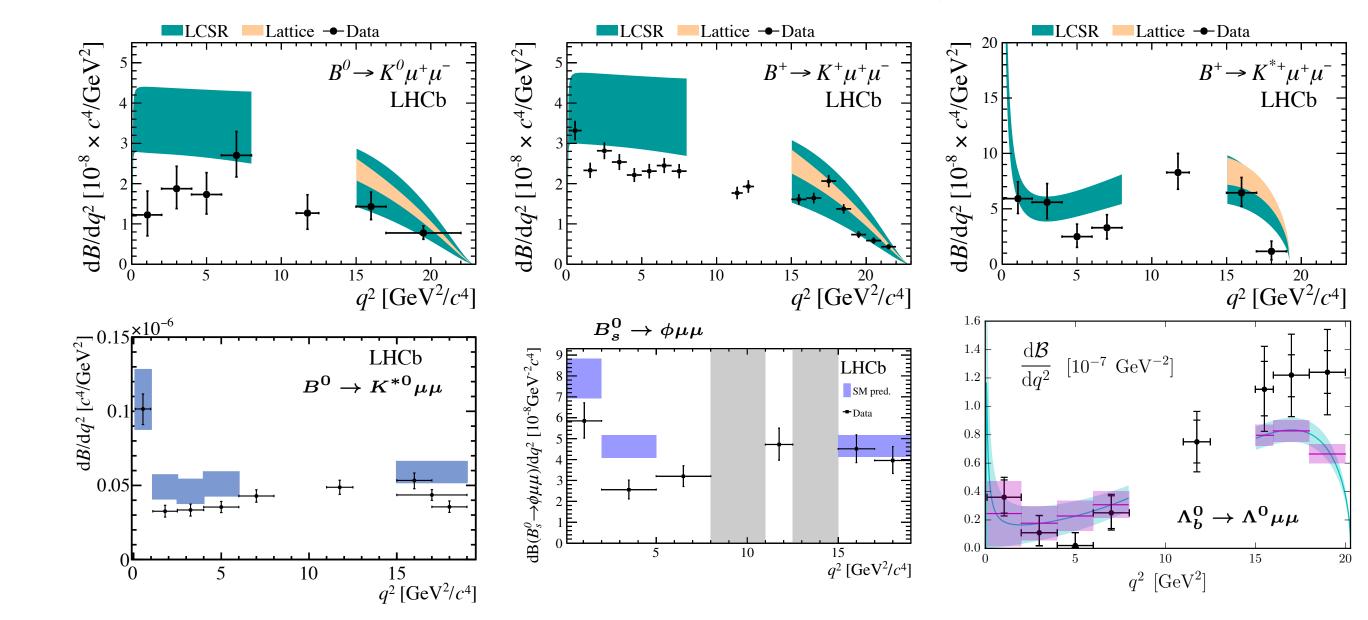


Figure 3. (Colours online) Differential branching fraction for various $b \to s\mu\mu$ transitions measured at LHCb, superimposed to SM predictions [2–5,40].

For both the K and K* final states, the data is a bit on the low side (compared with SM)?

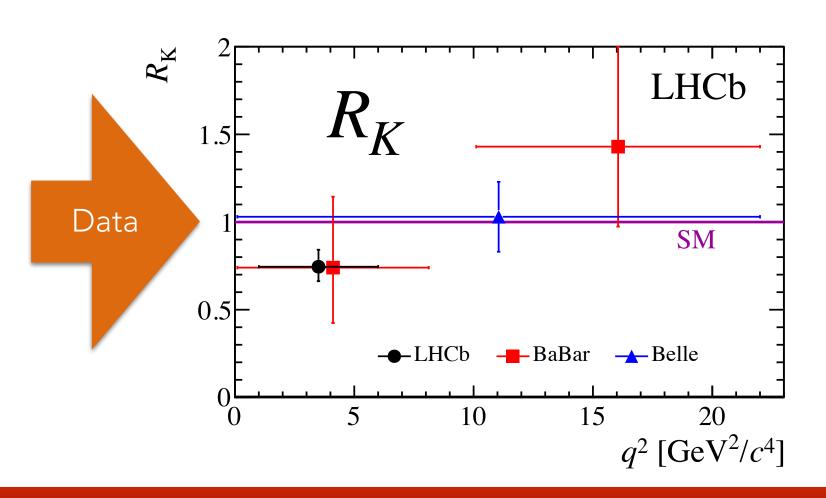
The Flavour Anomalies Part 2

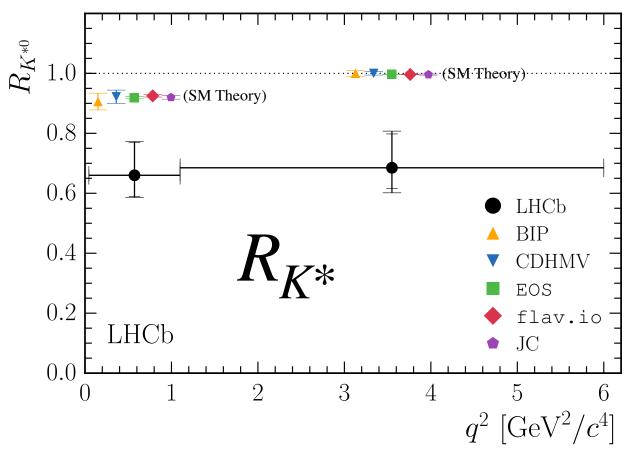
Regardless of the complications in analysing these decays, we can again also use them as tests of lepton universality

Now, form the two ratios:

$$R_{K^{(*)}} \equiv \frac{\operatorname{Br}(B \to K^{(*)}\mu^{+}\mu^{-})}{\operatorname{Br}(B \to K^{(*)}e^{+}e^{-})}$$
 Expect R = 1 in SM (the complicated stuff drops out in the ratio)

Expect R = 1 in SMdrops out in the ratio).

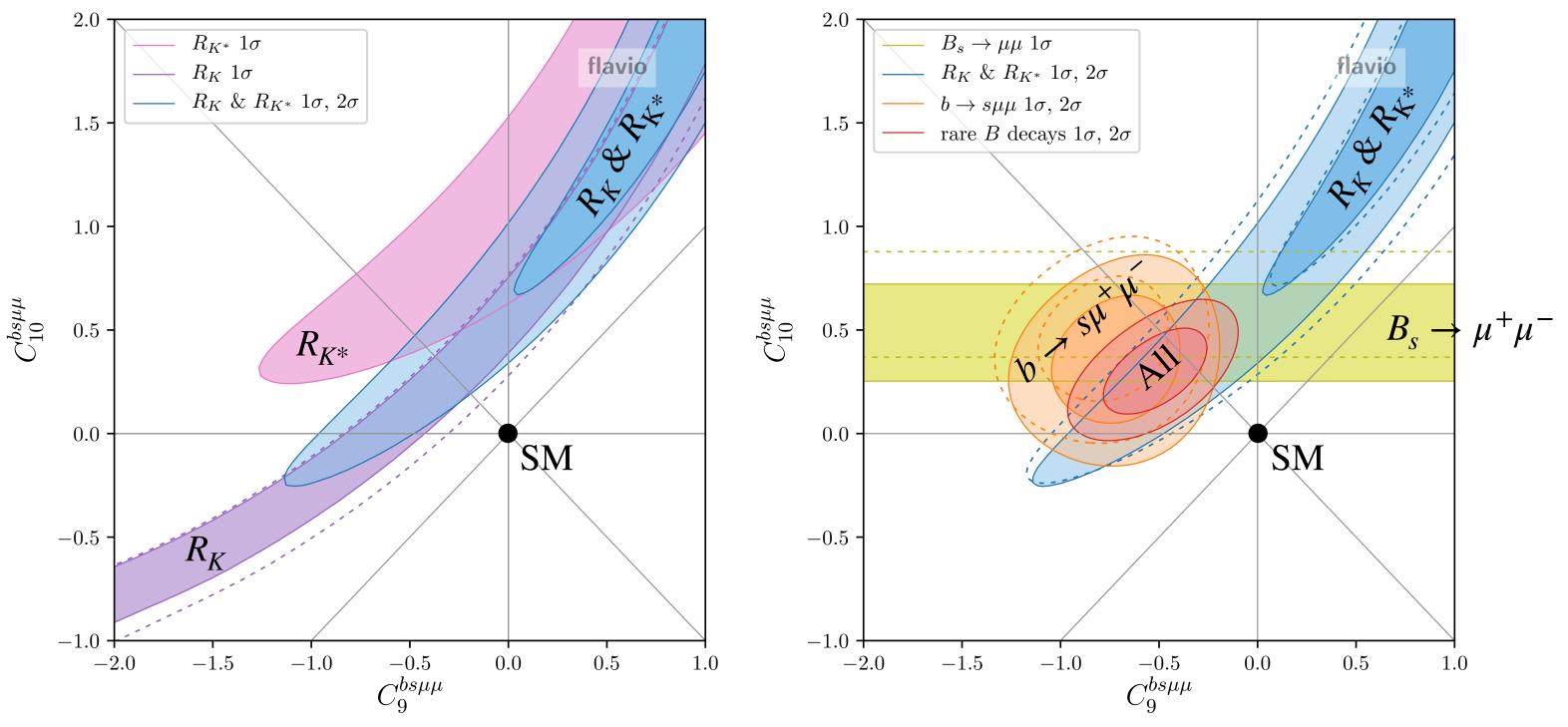




... Interesting ...

Representation in C_9 - C_{10} space

From: Altmansshofer & Stangl, New physics in rare B decays after Moriond 2021, Eur. Phys. J.C 81 (2021) 10, 952 2103.13370 [hep-ph]



(Note: what is actually plotted here is the *difference* between the SM values of C_i and the measured values; sometimes denoted ΔC_i . Dashed lines show the status before 2021.)

(What Approximations did we Make?)

Top Quark Dominance

Low-energy effective theory at quark level

Matched at finite loop order to full theory

Running at finite loop order from mw to mb

Non-leptonic operators contributing to $C_7^{\rm eff}$ and $C_9^{\rm eff}$, but not C_{10A}

Effect of intermediate c-cbar resonances

Non-factorizable contributions

Other hadronic states: light-quark resonances, open charm, ...?

Form Factors

QED Corrections at Hadronic Level?