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Introduction to B Physics

1. Leptonic Decays of Hadrons: from π → 𝓁ν to B → 𝓁ν  
QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM. 

2. On the Structure and Unitarity of the CKM Matrix 
The CKM Matrix. The GIM Mechanism. The Unitarity Triangle. 

3. Semi-Leptonic Decays and the “Flavour Anomalies” 
B → D(*) 𝓁 ν. The Spectator Model. Form Factors. Heavy Quark Symmetry. 

B → K(*) 𝓁+ 𝓁-. FCNC. Aspects beyond tree level. Penguins. The OPE.
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“Flavour-Changing Neutral Currents” (FCNC)
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๏In the SM, only the  can change quark flavours
•“Charged Current”:    and  
•The photon, Higgs, and Z, all couple flavour-diagonally

๏➡ No tree-level FCNC in SM
•FCNC = processes involving , , or  transitions. 

๏ In the SM, this requires at least two W vertices.
๏ Recall: we saw an example when discussing the GIM mechanism:

W±

ui → W+dj di → W−uj

b → s b → d c → u
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W+

W-s̄

d

μ−

νμ

μ+

K0 u∑
u,c,t

GIM suppression by CKM unitarity:

∑
j

VijV†
jk = δjk

VudV*us + VcdV*cs ∼ cos θC sin θC − sin θC cos θC = 0

E.g.:



Suppressed in SM ➡ Good probes for BSM
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๏Also called “Rare Decays”
•Due to suppression, they have small Branching Fractions.
•How rare is rare? Recall our K→μμ example; BR(K→μμ) ~ 10-8.

๏ So you need to collect ~ one billion K decays to see ~ 10 of these.
๏ For comparison, the charged-current (tree-level W) decays we looked at in the last 

lecture have much larger branching ratios, e.g., BR(K→πeν) ~ 40%

๏Since FCNC amplitudes are tiny in the SM, any additional 
contributions from new physics may be relatively easy to see

๏In B Sector:
•Leptonic Decays: , 
•Semi-Leptonic: , and  
•Multi-hadronic: beyond the scope of this course.

B0
d,s → ℓ+ℓ− (B0

d,s → νν̄)

b → s ℓ+ℓ−, b → d ℓ+ℓ− b → s(d) γ, b → s(d) νν̄
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(why not B*?)

Our case study: 
B → K(*)ℓ+ℓ−

The equivalent of K → μμ



Diagrams contributing to b→sℓ+ℓ- transitions
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“Box” (Analogous to those you 
drew for )K+ → π+ℓ+ℓ−

b u, c, t

s

ℓ+

ℓ−
ν̄ℓW −

+ “Penguins”

W − ℓ+

ℓ−

s

b u, c, t

γ*/Z 0

ℓ+

ℓ−

s

b
u, c, t

γ*/Z 0

W−

(EW penguins)

This is 
actually a 
strong 

penguin; 
can you 

see why?

J. Ellis

Penguins?

➡ This is going to get complicated … so let’s think first.+ more … 



๏All of these amplitudes involve 
GIM-type sums:

1: Exploit CKM Unitarity and  ➡ Top Quark Dominationmt ≫ mc
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b u, c, t

s

ℓ+

ℓ−
ν̄ℓW −

+ “Penguins”

W − ℓ+

ℓ−

s

b u, c, t

γ*/Z 0

(EW penguins)

….

ℳ = VubV*usℳu + VcbV*csℳc + VtbV*tsℳt

= VcbV*cs(ℳc − ℳu) + VtbV*ts(ℳt − ℳu)

CKM Unitarity: VubV*us = − VcbV*cs − VtbV*ts

➡ Any quark-mass-independent 
terms must cancel. 

Whatever is left must be 
proportional to  and 

➨ Top quark dominates

mn
c mn

t

ℳ ∼ VtbV*ts ℳt
Keeping only terms ∝ mn

t
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“Box” (Analogous to those you 
drew for )K+ → π+ℓ+ℓ−



→

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts

Vtb

CKM matrix in the Standard Model

Vud

Vus

Vub

Vcd

Vcs

Vcb

Vtd

Vts

Vtb

CKM matrix in t
he Standard Mo

del2: Exploit q2 ≪ mW2 ➡ Low-Energy Effective Theory
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๏Construct effective vertices, with effective coefficients
๏ For example, we previously wrote tree-level W exchange as an effective coefficient 

, multiplying two V-A fermion currents.

๏

∝ GF / 2
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Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts

Vtb

CKM matrix in the Standard Model

ℒ = −
GF

2
Vcb [c̄γρ(1 − γ5)b] [ℓ̄γρ(1 − γ5)νℓ]

Recall:  (and all the other processes we looked at so far)B → Dℓν

q2 = (pB-pD)2 

≪ mW2

Effective 
coupling

4-Fermion Operator 
(with V-A structure)

Effective 4-fermion Lagrangian:

“Effective 4-FermionVertex”
“Low-energy effective theory”

 and  verticesq̄qW ℓ̄νW

Full EW Theory

Question: what is the 
mass dimension of a 4-

fermion operator?



Effective vertices for b→sℓ+ℓ-
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“Box” (same type as you drew 
for )K+ → π+ℓ+ℓ−

b

s

ℓ+

ℓ−

+ “Penguins”

ℓ+

ℓ−

s

b

ℓ+

ℓ−

s

b

(EW penguins)

Apply same idea to FCNC processes.

(Re)classify all possible low-energy operators in terms of Lorentz (+ colour) structure

“Integrate out” the short-distance 
propagators, leaving only operators 
for the external states: Oi 

with some effective coefficients, Ci 
(which now in general will contain integrals 
over whatever loops contribute to them in the 
full theory)

Inami & Lim, Progr. Theor. Phys. 65 (1981) 297



๏Effective Lagrangian for b→s transitions
•= sum over effective vertices
•   with overall GF & CKM factor, 
•   and operators   coefficients 𝒪k × Ck

The Operator Product Expansion
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ℒ = −
GF

2
VtbV*ts ∑

k

Ck 𝒪k

Q: why only t? “Wilson Coefficients”

In general, we need to do some 
loop integrals to compute them.

Operators directly responsible for semi-leptonic decays:

𝒪ℓ
9V = [s̄γμ(1 − γ5)b] [ℓ̄γμℓ]

𝒪ℓ
10A = [s̄γμ(1 − γ5)b] [ℓ̄γ5γμℓ]

𝒪9V + 𝒪10A
b

s

ℓ+

ℓ−

(+QED Magnetic Penguin)

𝒪7γ = e
8π2 mb [s̄σμν(1 + γ5)b] Fμν 𝒪7γ

b

s

γσμν = − i
4 [γμ, γν]

Warning: I have not been particularly systematic about  vs  in these slides.1
2 (1 − γ5) (1 − γ5)

For a review, see e.g., Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125
For a textbook, see e.g., Donoghue, Golowich, Holstein, “Dynamics of the SM”, Cambridge, 1992
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𝒪1, 𝒪2

s

c̄

c

𝒪1 = [s̄iγμ(1 − γ5)ci] [c̄jγμ(1 − γ5)bj]

(Non-Leptonic Operators)
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𝒪2 = [s̄iγμ(1 − γ5)cj] [c̄jγμ(1 − γ5)bi]

W exchange / Charged-Current:

(i,j=1,2,3 and a=1,…,8 are SU(3)C indices; indicate colour structure)

Note: some 
authors swap 

these, e.g. 
Buchalla et al.

𝒪7 =
3eq

2 [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 + γ5)qj]

Electroweak Penguins

𝒪8 =
3eq

2 [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 + γ5)qi]

𝒪9 =
3eq

2 [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 − γ5)qj]

𝒪10 =
3eq

2 [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 − γ5)qi]

(Sum over q=u,d,s,c,b)

𝒪3 − 𝒪6
b

s

q̄

q

2 Lorentz 
structures & 2 

possible colour 
structures

g

𝒪3 = [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 − γ5)qj]
Strong/QCD Penguins

𝒪4 = [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 − γ5)qi]
𝒪5 = [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 + γ5)qj]
𝒪6 = [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 + γ5)qi]

(Sum over q=u,d,s,c,b)

𝒪8G

𝒪3 − 𝒪6

2 Lorentz 
structures & 2 

possible colour 
structures

s

b
s

q̄

q

𝒪8G =
gs mb

8π2 [s̄i σμν (1 + γ5) Ta
ij bj] Ga

μν

Why not t?
b

b
Exercise: consider tree-level diagrams for 
W exchange between two quark currents 

and justify why the (LO) Wilson 
coefficients are C1 = 1 and C2 = 0.



Renormalisation & Running Wilson Coefficients
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๏At tree level, C1 = 1 and all other Ci = 0 (they all involve loops)
•Not good enough. (Among other things, FCNC would be absent!)

๏At loop level, we must discuss renormalisation
•In this part of the course, we focus on applications; not formalism
•Suffice it to say that, just as we did a tree-level comparison between the full theory (EW SM with 
full W propagators) and the effective theory, to see that  and the other  are zero at tree 
level, we can do the same kind of comparison at loop level. 
•This procedure - determining the coefficients of the effective theory from those of the full theory - 
is called matching and is a general aspect of deriving any effective theory by “integrating out” 
degrees of freedom from a more complete one.

๏Two aspects are especially important to know. At loop level:
•We do the matching a specific value of the renormalisation scale, characteristic of the degrees 
of freedom being integrated out, here .
•This determines the values of the Wilson coefficients at that scale, .
•We must then “run” those coefficients to a scale characteristic of the physical process at hand, 
in our case . In general, .

C1 = 1 Ci

μmatch = mW
Ci(mW)

μR = mb Ci(mb) ≠ Ci(mW)

Peter Skands UniversityMonash



One-Loop Coefficients at the Weak Scale
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๏At the scale μ=mW (at one loop in QCD), the matching eqs. are:
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Note that
λu

λc
=

VubV ∗
us

VcbV ∗
cs

∼ e−iγ (37)

has a non-zero, relative CP-violating phase. This allows for the phenomenon of CP violation
from amplitude interference in FCNC processes – a phenomenon that is currently being studied
extensively at the B-factories (see, e.g., [1]).

Let me finish this discussion by quoting the matching conditions for the various operators
at the weak scale µ = MW . They are [8]:

C1(MW ) = 1 −
11

6

αs(MW )

4π
,

C2(MW ) =
11

2

αs(MW )

4π
,

C3(MW ) = C5(MW ) = −
1

6
Ẽ0

(
m2

t

M2
W

)
αs(MW )

4π
,

C4(MW ) = C6(MW ) =
1

2
Ẽ0

(
m2

t

M2
W

)
αs(MW )

4π
,

C7(MW ) = f

(
m2

t

M2
W

)
α(MW )

6π
,

C9(MW ) =

[
f

(
m2

t

M2
W

)
+

1

sin2 θW
g

(
m2

t

M2
W

)]
α(MW )

4π
,

C8(MW ) = C10(MW ) = 0 , (38)

with

Ẽ0(x) = −
7

12
+ O(1/x) ,

f(x) =
x

2
+

4

3
ln x −

125

36
+ O(1/x) ,

g(x) = −
x

2
−

3

2
ln x + O(1/x) , (39)

and

C7γ(MW ) = −
1

3
+ O(1/x) ,

C8g(MW ) = −
1

8
+ O(1/x) . (40)

Note that despite of the fact that there is a heavy top-quark running in the penguin loops, the
Wilson coefficients exhibit non-decoupling, i.e., they do not vanish in the limit where mt → ∞.
The coefficients of the electroweak penguin operators are even proportional to m2

t in this limit.
This makes electroweak penguin operators relevant for phenomenology, even though the are
suppressed by small electroweak coupling constants.
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(Sorry I did not find equivalent handy 

expressions for C9V and C10A yet)

M. Neubert, TASI Lectures on EFT and heavy quark physics, 2004, arXiv:hep-ph/0512222
Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125



From mW to mb
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๏What does “running” of the Wilson coefficients mean, and what 
consequences does it have?

•

Matrix Equation: Ci(μ) = ∑
j

Uij(μ, mW)Cj(mW)

Peter Skands UniversityMonash

U: “Evolution Matrix”

See, e.g., M. Schwarz “Quantum Field Theory and the Standard Model”, chp.23

๏The “Renormalisation Group Method”: sums (αs ln(mW /μ))n

•Uij obtained by solving differential 
equation (“RGE”) analogous to that 
for other running couplings: 

dCi

d ln μ
= γij Cj

The kernels, , are called the 
“matrix of anomalous dimension”

γij

Expansion parameter is not really  
but 

Large for μ ~ mb ≪ mW

αs
αs ln(m2

W /μ2)

4 RG-Improved Perturbation Theory

There are some important technical aspects which we have ignored in the discussion of the
previous lecture. Recall the one-loop matching results for the Wilson coefficients C1 and C2

from (22):

C1(µ) = 1 +
3

Nc

αs(µ)

4π

(
ln

M2
W

µ2
−

11

6

)
+ O(α2

s) ,

C2(µ) = −3
αs(µ)

4π

(
ln

M2
W

µ2
−

11

6

)
+ O(α2

s) . (41)

Ideally, we would like to integrate out all high-frequency modes perturbatively and then
evaluate the remaining EFT matrix elements 〈Qi(µ)〉 at some low scale µ ∼ few GeV, below
which perturbation theory becomes untrustworthy. The computation of these matrix elements
must use a non-perturbative approach such as lattice QCD, heavy-quark expansions, or chiral
perturbation theory. A glance at the above equations shows a potential problem: the expansion

parameter is not αs

π ∼ 0.1, but αs

π ln
M2

W

µ2 ∼ 0.8. The problem is indeed generic: in the presence

of widely separated scales M % µ, perturbation theory often involves powers of αs ln M
µ rather

than powers of αs. Such large logarithmic terms must be resummed to all orders.
While this problem is particularly acute for almost all practical calculations in QCD, it

is also relevant to theories with smaller coupling constants. For instance, when the gauge
couplings of the Standard Model are extrapolated from low energy up to the GUT scale

MGUT ∼ 1016 GeV, the relevant logarithm is ln
M2

GUT

µ2 ≈ 65. Resummation is essential to
control such large logarithms even if the coupling constants are as small as those for the
electro-weak interactions of the Standard Model.

The general solution to the problem of large logarithms is called “renormalization-group
(RG) improved perturbation theory”. It provides a reorganization of perturbation theory in
which αs ln M

µ is treated as an O(1) parameter, while αs ' 1. Large logarithms are resummed
to all orders in perturbation theory by solving RG equations. The nomenclature of RG-
improved perturbation theory is as follows: At leading order (LO) all terms of the form
(αs ln M

µ )n with n = 0, . . . ,∞ are resummed. The result is an O(1) contribution to the Wilson
coefficient functions. At next-to-leading order (NLO), one also resums terms of the form
αs(αs ln M

µ )n, all of which count as O(αs), and so on. Note that in cases where the term with
n = 0 is absent (such as for C2), there may be O(1) effects after resummation that not seen
at tree level in perturbation theory. This happens also for the Wilson coefficients of the QCD
penguin operators in the effective weak Lagrangian. As shown in (38) the matching conditions
for the coefficients C2,...,6 start at O(αs); yet, after RG resummation these coefficients become
of O(1) and contribute at the same order as the Wilson coefficient C1 of the leading current-
current operator.

Before we can perform such resummations, we must study in some more detail the renor-
malization of the composite operators in the effective Lagrangian.
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Example:

bi
𝒪1 sj

c̄j

ci

𝒪2

𝒪1 si

c̄j

cj
bi

Examples:

๏ QCD corrections ➤ Large logs & operator mixing (U is not diagonal)

Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125


