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1. Leptonic Decays of Hadrons: from π → 𝓁ν to B → 𝓁ν  
QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM. 

2. On the Structure and Unitarity of the CKM Matrix 
The CKM Matrix. The GIM Mechanism. The Unitarity Triangle. 

3. Semi-Leptonic Decays and the “Flavour Anomalies” 
B → D(*) 𝓁 ν. The Spectator Model. Form Factors. Heavy Quark Symmetry. 

B → K(*) 𝓁+ 𝓁-. FCNC. Aspects beyond tree level. Penguins. The OPE.



Flavour-Changing Neutral Currents
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Now, we move on to:

๏In the SM, only the W can change quark flavours
•“Charged Current”:    and  
•The photon, Higgs, and Z, all couple flavour-diagonally

๏➡ No tree-level FCNC in SM
•FCNC = processes involving , , or  transitions. 

๏ In the SM, this requires at least two W vertices.
๏ Recall: we saw an example when discussing the GIM mechanism:

ui → W+dj di → W−uj

b → s b → d c → u

W+

W-s̄

d

μ−

νμ

μ+

K0 u∑
u,c,t

GIM suppression by CKM unitarity:

∑
j

VijV†
jk = δjk

VudV*us + VcdV*cs ∼ cos θC sin θC − sin θC cos θC = 0

E.g.:



Suppressed in SM ➡ Good probes for BSM
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๏Also called “Rare Decays”
•Due to suppression, they have small Branching Fractions.
•How rare is rare? Recall our K→μμ example; BR(K→μμ) ~ 10-8.

๏ So you need to collect ~ one billion K decays to see ~ 10 of these.
๏ For comparison, the charged-current (tree-level W) decays we looked at in 

the last lecture have much larger branching ratios, e.g., BR(K→πeν) ~ 40%

๏Since FCNC amplitudes are tiny in the SM, any additional 
contributions from new physics may be relatively easy to see

๏In B Sector:
•Leptonic Decays: , 
•Semi-Leptonic: , and  
•Multi-hadronic: beyond the scope of this course.

B0
d,s → ℓ+ℓ− (B0

d,s → νν̄)

b → s ℓ+ℓ−, b → d ℓ+ℓ− b → s(d) γ, b → s(d) νν̄

Peter Skands UniversityMonash

(why not B*?)

Our case study: 
B → K(*)ℓ+ℓ−

The equivalent of K → μμ



Diagrams contributing to b→sℓ+ℓ- transitions
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“Box” (same type as you drew 
for )K+ → π+ℓ+ℓ−

b u, c, t

s

ℓ+

ℓ−
ν̄ℓW −

+ “Penguins”

W − ℓ+

ℓ−

s

b u, c, t

γ*/Z 0

ℓ+

ℓ−

s

b
u, c, t

γ*/Z 0

W−

(EW penguins)

This is 
actually a 
strong 

penguin; 
can you 

see why?

J. Ellis

Penguins?

➡ This is going to get complicated … so let’s think first.+ more … 



1: Exploit CKM Unitarity and  ➡ Top Quark Dominationmt ≫ mc
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“Box” (same type as you drew 
for )K+ → π+ℓ+ℓ−

b u, c, t

s

ℓ+

ℓ−
ν̄ℓW −

+ “Penguins”

W − ℓ+

ℓ−

s

b u, c, t

γ*/Z 0

(EW penguins)

….

ℳ = VubV*usℳu + VcbV*csℳc + VtbV*tsℳt

= VcbV*cs(ℳc − ℳu) + VtbV*ts(ℳt − ℳu)

CKM Unitarity: VubV*us = − VcbV*cs − VtbV*ts

➡ Any quark-mass-
independent terms must cancel. 

Whatever is left must be 
proportional to  and 

➨ Top quark dominates

mn
c mn

t

ℳ ∼ VtbV*ts ℳt
Keeping only terms ∝ mn

t

๏All of these amplitudes involve 
GIM-type sums:



→

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts

Vtb

CKM matrix in the Standard Model

Vud

Vus

Vub

Vcd

Vcs

Vcb

Vtd

Vts

Vtb

CKM matrix in t
he Standard Mo

del2: Exploit q2 ≪ mW2 ➡ Low-Energy Effective Theory
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๏Construct effective vertices, with effective coefficients
๏ For example, we previously wrote tree-level W exchange as an effective 

coefficient , multiplying two V-A fermion currents.

๏

∝ GF / 2

Peter Skands UniversityMonash

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts

Vtb

CKM matrix in the Standard Model

ℒ = −
GF

2
Vcb [c̄γρ(1 − γ5)b] [ℓ̄γρ(1 − γ5)νℓ]

Recall:  (and all the other processes we looked at so far)B → Dℓν

q2 = (pB-pD)2 

≪ mW2

Effective 
coupling

4-Fermion Operator 
(with V-A structure)

Effective 4-fermion Lagrangian:

“Effective 4-FermionVertex”
“Low-energy effective theory”

 and  verticesq̄qW ℓ̄νW

Full EW Theory

Question: what is the 
mass dimension of a 4-

fermion operator?



Effective vertices for b→sℓ+ℓ-
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“Box” (same type as you drew 
for )K+ → π+ℓ+ℓ−

b

s

ℓ+

ℓ−

+ “Penguins”

ℓ+

ℓ−

s

b

ℓ+

ℓ−

s

b

(EW penguins)

Apply same idea to FCNC processes.

(Re)classify all possible low-energy operators in terms of Lorentz (+ colour) structure

“Integrate out” the short-distance 
propagators, leaving only operators 
for the external states: Oi 

with some effective coefficients, Ci 
(which now in general will contain integrals 
over whatever loops contribute to them in 
the full theory)

Inami & Lim, Progr. Theor. Phys. 65 (1981) 297



๏Effective Lagrangian for b→s transitions
•= sum over effective vertices
•   with overall GF & CKM factor, 
•   and operators   coefficients 𝒪k × Ck

The Operator Product Expansion
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ℒ = −
GF

2
VtbV*ts ∑

k

Ck 𝒪k

Q: why only t? “Wilson Coefficients”

In general, we need to do some 
loop integrals to compute them.

Operators directly responsible for semi-leptonic decays:

𝒪ℓ
9V = [s̄γμ(1 − γ5)b] [ℓ̄γμℓ]

𝒪ℓ
10A = [s̄γμ(1 − γ5)b] [ℓ̄γ5γμℓ]

𝒪9V + 𝒪10A
b

s

ℓ+

ℓ−

(+QED Magnetic Penguin)

𝒪7γ = e
8π2 mb [s̄σμν(1 + γ5)b] Fμν 𝒪7γ

b

s

γσμν = − i
4 [γμ, γν]

Warning: I have not been particularly systematic about  vs  in these slides.1
2 (1 − γ5) (1 − γ5)

For a review, see e.g., Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125
For a textbook, see e.g., Donoghue, Golowich, Holstein, “Dynamics of the SM”, Cambridge, 1992



𝒪1, 𝒪2

s

c̄

c

𝒪1 = [s̄iγμ(1 − γ5)ci] [c̄jγμ(1 − γ5)bj]

(Non-Leptonic Operators)
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𝒪2 = [s̄iγμ(1 − γ5)cj] [c̄jγμ(1 − γ5)bi]

W exchange / Charged-Current:

(i,j=1,2,3 and a=1,…,8 are SU(3)C indices; indicate colour structure)

Note: some 
authors swap 

these, e.g. 
Buchalla et al.

𝒪7 =
3eq

2 [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 + γ5)qj]

Electroweak Penguins

𝒪8 =
3eq

2 [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 + γ5)qi]

𝒪9 =
3eq

2 [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 − γ5)qj]

𝒪10 =
3eq

2 [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 − γ5)qi]

(Sum over q=u,d,s,c,b)

𝒪3 − 𝒪6
b

s

q̄

q

2 Lorentz 
structures & 2 

possible colour 
structures

g

𝒪3 = [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 − γ5)qj]
Strong/QCD Penguins

𝒪4 = [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 − γ5)qi]
𝒪5 = [s̄iγμ(1 − γ5)bi] [q̄jγμ(1 + γ5)qj]
𝒪6 = [s̄iγμ(1 − γ5)bj] [q̄jγμ(1 + γ5)qi]

(Sum over q=u,d,s,c,b)

𝒪8G

𝒪3 − 𝒪6

2 Lorentz 
structures & 2 

possible colour 
structures

s

b
s

q̄

q

𝒪8G =
gs mb

8π2 [s̄i σμν (1 + γ5) Ta
ij bj] Ga

μν

Why not t?
b

b
Exercise: consider tree-level diagrams 

for W exchange between two quark 
currents and justify why the (LO) Wilson 

coefficients are C1 = 1 and C2 = 0.



Renormalisation & Running Wilson Coefficients
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๏At tree level, C1 = 1 and all other Ci = 0 (they all involve loops)
•Not good enough. (Among other things, FCNC would be absent!)

๏At loop level, we must discuss renormalisation
•In this part of the course, we focus on applications; not formalism
•Suffice it to say that, just as we did a tree-level comparison between the full theory (EW 
SM with full W propagators) and the effective theory, to see that  and the other 

 are zero at tree level, we can do the same kind of comparison at loop level. 
•This procedure - determining the coefficients of the effective theory from those of the 
full theory - is called matching and is a general aspect of deriving any effective theory 
by “integrating out” degrees of freedom from a more complete one.

๏Two aspects are especially important to know. At loop level:
•We do the matching a specific value of the renormalisation scale, characteristic of 
the degrees of freedom being integrated out, here .
•This determines the values of the Wilson coefficients at that scale, .
•We must then “run” those coefficients to a scale characteristic of the physical process 
at hand, in our case . In general, .

C1 = 1
Ci

μmatch = mW
Ci(mW)

μR = mb Ci(mb) ≠ Ci(mW)

Peter Skands UniversityMonash



One-Loop Coefficients at the Weak Scale
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๏At the scale μ=mW (at one loop in QCD), the matching eqs. are:

Peter Skands UniversityMonash

Note that
λu

λc
=

VubV ∗
us

VcbV ∗
cs

∼ e−iγ (37)

has a non-zero, relative CP-violating phase. This allows for the phenomenon of CP violation
from amplitude interference in FCNC processes – a phenomenon that is currently being studied
extensively at the B-factories (see, e.g., [1]).

Let me finish this discussion by quoting the matching conditions for the various operators
at the weak scale µ = MW . They are [8]:

C1(MW ) = 1 −
11

6

αs(MW )

4π
,

C2(MW ) =
11

2

αs(MW )

4π
,

C3(MW ) = C5(MW ) = −
1

6
Ẽ0

(
m2

t

M2
W

)
αs(MW )

4π
,

C4(MW ) = C6(MW ) =
1

2
Ẽ0

(
m2

t

M2
W

)
αs(MW )

4π
,

C7(MW ) = f

(
m2

t

M2
W

)
α(MW )

6π
,

C9(MW ) =

[
f

(
m2

t

M2
W

)
+

1

sin2 θW
g

(
m2

t

M2
W

)]
α(MW )

4π
,

C8(MW ) = C10(MW ) = 0 , (38)

with

Ẽ0(x) = −
7

12
+ O(1/x) ,

f(x) =
x

2
+

4

3
ln x −

125

36
+ O(1/x) ,

g(x) = −
x

2
−

3

2
ln x + O(1/x) , (39)

and

C7γ(MW ) = −
1

3
+ O(1/x) ,

C8g(MW ) = −
1

8
+ O(1/x) . (40)

Note that despite of the fact that there is a heavy top-quark running in the penguin loops, the
Wilson coefficients exhibit non-decoupling, i.e., they do not vanish in the limit where mt → ∞.
The coefficients of the electroweak penguin operators are even proportional to m2

t in this limit.
This makes electroweak penguin operators relevant for phenomenology, even though the are
suppressed by small electroweak coupling constants.
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(Sorry I did not find equivalent handy 

expressions for C9V and C10A yet)

M. Neubert, TASI Lectures on EFT and heavy quark physics, 2004, arXiv:hep-ph/0512222
Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125



From mW to mb
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๏What does “running” of the Wilson coefficients mean, and 
what consequences does it have?

•

Matrix Equation: Ci(μ) = ∑
j

Uij(μ, mW)Cj(mW)

Peter Skands UniversityMonash

U: “Evolution Matrix”

See, e.g., M. Schwarz “Quantum Field Theory and the Standard Model”, chp.23

๏The “Renormalisation Group Method”: sums (αs ln(mW /μ))n

•Uij obtained by solving differential 
equation (“RGE”) analogous to 
that for other running couplings: 

dCi

d ln μ
= γij Cj

The kernels, γij, are 
called the “matrix of 

anomalous dimension”

Expansion parameter is not really 
 but 

Large for μ ~ mb ≪ mW

αs αs ln(m2
W /μ2)

4 RG-Improved Perturbation Theory

There are some important technical aspects which we have ignored in the discussion of the
previous lecture. Recall the one-loop matching results for the Wilson coefficients C1 and C2

from (22):

C1(µ) = 1 +
3

Nc

αs(µ)

4π

(
ln

M2
W

µ2
−

11

6

)
+ O(α2

s) ,

C2(µ) = −3
αs(µ)

4π

(
ln

M2
W

µ2
−

11

6

)
+ O(α2

s) . (41)

Ideally, we would like to integrate out all high-frequency modes perturbatively and then
evaluate the remaining EFT matrix elements 〈Qi(µ)〉 at some low scale µ ∼ few GeV, below
which perturbation theory becomes untrustworthy. The computation of these matrix elements
must use a non-perturbative approach such as lattice QCD, heavy-quark expansions, or chiral
perturbation theory. A glance at the above equations shows a potential problem: the expansion

parameter is not αs

π ∼ 0.1, but αs

π ln
M2

W

µ2 ∼ 0.8. The problem is indeed generic: in the presence

of widely separated scales M % µ, perturbation theory often involves powers of αs ln M
µ rather

than powers of αs. Such large logarithmic terms must be resummed to all orders.
While this problem is particularly acute for almost all practical calculations in QCD, it

is also relevant to theories with smaller coupling constants. For instance, when the gauge
couplings of the Standard Model are extrapolated from low energy up to the GUT scale

MGUT ∼ 1016 GeV, the relevant logarithm is ln
M2

GUT

µ2 ≈ 65. Resummation is essential to
control such large logarithms even if the coupling constants are as small as those for the
electro-weak interactions of the Standard Model.

The general solution to the problem of large logarithms is called “renormalization-group
(RG) improved perturbation theory”. It provides a reorganization of perturbation theory in
which αs ln M

µ is treated as an O(1) parameter, while αs ' 1. Large logarithms are resummed
to all orders in perturbation theory by solving RG equations. The nomenclature of RG-
improved perturbation theory is as follows: At leading order (LO) all terms of the form
(αs ln M

µ )n with n = 0, . . . ,∞ are resummed. The result is an O(1) contribution to the Wilson
coefficient functions. At next-to-leading order (NLO), one also resums terms of the form
αs(αs ln M

µ )n, all of which count as O(αs), and so on. Note that in cases where the term with
n = 0 is absent (such as for C2), there may be O(1) effects after resummation that not seen
at tree level in perturbation theory. This happens also for the Wilson coefficients of the QCD
penguin operators in the effective weak Lagrangian. As shown in (38) the matching conditions
for the coefficients C2,...,6 start at O(αs); yet, after RG resummation these coefficients become
of O(1) and contribute at the same order as the Wilson coefficient C1 of the leading current-
current operator.

Before we can perform such resummations, we must study in some more detail the renor-
malization of the composite operators in the effective Lagrangian.
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Example:

bi

𝒪1
sj

c̄j

ci

𝒪2

𝒪1
si

c̄j

cj
bi

Examples:

๏ QCD corrections ➤ Large logs & operator mixing (U is not diagonal)

Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125



Quark-Level Matrix Element
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๏For now, all we shall care about is that the Ci(mb) have been 
calculated in the theoretical literature with high precision

•Not just for SM, but for many scenarios of physics BSM as well.

Peter Skands UniversityMonash

ℳ(b → sℓ+ℓ−) =
GF α

2π
V*tsVtb[C9V(mb)[s̄γμ 1

2 (1 − γ5)b][ℓ̄γμℓ]

−2
mb

mB
C7γ(mb)[s̄iσμν qν

q2
1
2 (1 + γ5)b][ℓ̄γμℓ]]

+C10A(mb)[s̄γμ 1
2 (1 − γ5)b][ℓ̄γμγ5ℓ]

Next: add perturbative contributions from other operators

Then: add non-perturbative effects of hadronic resonances

Finally: form factors ➡ hadronic matrix elements

B K

E.g., Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125

E.g., SUSY: Ali, Ball, Handoko, Hiller, hep-ph/9910221



Additional Perturbative Contributions
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๏Additional Contributions to O9:
•W-exchange O1,2 :  pairs 
•QCD penguins O3-6 :  pairs (u,d,s,c,b)

cc̄
qq̄

Peter Skands UniversityMonash

Buras, M. Münz, Phys. Rev. D52 (1995) 186. 
Misiak, Nucl. Phys. B393 (1993) 23; +err. Ibid. B439 (1995) 461 

C9V → Ceff
9 (q2) = C9 + gc(q2; C1−6) + gb(q2; C3−6) + guds(q2; C3−4) + 2

9 (3C3 + C4 + 3C5 + C6)

"Loop functions”
q2 = (pB − pK)2 = (pℓ+ + pℓ−)2Recall:

contain ln m2
c /m2

b , ln q2/m2
b , ln μ2/m2

b
Large at low q2

also contain imaginary parts for q2 > 4mq2

Corresponds to on-shell quarks ➤ can propagate over long distances
Perturbative calculation is presumably not valid.
Main worry is gc since it gets contributions from the O(1) C1 coefficient

๏Note also: C7γ → Ceff
7 = C7γ + C5/3 − C6

(*in the scheme used by Buras, Fleischer, hep-ph/9704376)

Question: what do 
you call a  pair 
with , in 

a spin-1 state?

cc̄
q2 ∼ 4m2

c



Resonances (and other long-distance states)
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๏Which  states are there?cc̄

Peter Skands UniversityMonash

Which of these could 
be relevant to us?3.1 GeV

3.7 GeV
3.8 GeV

]2 [GeV2q
0 5 10 15 20

2 q
/d

Γd

Photon pole
enhancement (from C7)

J/� �(2S) Broad charmonium
resonances (above the
open charm threshold)

increasing hadronic recoil

increasing dimuon mass

CKM suppressed
light-quark resonances

Sensitive to C7–C9

interference

Sensitivity to
C9 and C10

phasespace
suppression

Figure 7: Cartoon illustrating the dimuon mass squared, q2, dependence of the di↵erential decay rate of B ! K
⇤
`
+
`
� decays.

The di↵erent contributions to the decay rate are also illustrated. For B ! K`
+
`
� decays there is no photon pole enhancement

due to angular momentum conservation.

short lifetime – in contrast to the pseudoscalar mesons ⇡ and K, K⇤ and � are not stable under the strong
interactions. The finite lifetime is neglected in the lattice simulation and represents a source of systematic
uncertainty. Overcoming this limitation is in the focus of current e↵orts [196]. As for the B to pseudoscalar
transitions, combined fits of lattice and LCSR results valid in di↵erent kinematical regimes lead to increased
precision and less dependence on extrapolation models [131].

Beyond the form-factors, the next most significant uncertainties are hadronic uncertainties associated
to non-factorisable corrections. These are illustrated in Fig. 6. Diagrams (a) and (b) represent the leading
order short-distance contributions from the operators Q7...10 that factorise “naively” into a hadronic and
leptonic current. The size of the non-factorisable e↵ects and the theoretical methods required to compute
them vary strongly with q2 (see Fig. 7 for a cartoon of the q2 dependence of the di↵erential branching ratio
and the relevant hadronic e↵ects).

At intermediate q2, around the masses of the J/ and  (2S), the charm loop in diagram (c) goes on
shell, the decays turn into non-leptonic decays, e.g. B ! KJ/ (! `+`�), and quark-hadron duality breaks
down [197]. These regions are typically vetoed in the experimental analyses.

At low q2, the relevant non-factorisable e↵ects include weak annihilation as in diagram (f) and hard
spectator scattering as in diagram (g). They have been calculated for b ! s and b ! d transitions involving
vector mesons in QCD factorisation to NLO in QCD [135, 136] as well as in soft-collinear e↵ective theory [198]
and shown to be negligible in B ! K`+`� decays [199, 200]. Weak annihilation and spectator scattering
involving Q8 have been computed also in LCSR [139, 140]. Diagram (c) corresponds to the contribution
of four-quark operators that is usually written as a contribution to the “e↵ective” Wilson coe�cient Ce↵

9
.

Perturbative QCD corrections to the matrix elements of Q1,2 as in diagram (d) are numerically sizeable and
are known from the inclusive decay as discussed above. The main challenge in exclusive b ! s decays at
low q2 is represented by soft gluon corrections to the charm loop shown in diagram (e). These have been
estimated in LCSR [138, 201] but remain a significant source of uncertainty.

27

Are they important? 
Yes: in resonant region(s), 

process is really , 
followed by .

B → J/ψ K
J/ψ → ℓ+ℓ−

Cartoon from Blake, 
Lanfranchi, Straub, 

1606.00916

Hosaka, Iijima, Miyabayashi, Sakai, Yasui, 1603.09229

dΓ
/d

q2

Note: the dilepton q2 spectrum is still relatively clean below the J/psi

(can add resonances with Breit-Wigner functions + “non-factorizable contributions” in )Ceff
9

https://arxiv.org/abs/1603.09229


(Non-Factorizable Contributions?)
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๏We so far did not consider multi-hadronic final states
•But that is effectively what the  intermediate states are.
•The problem of non-factorizable contributions illustrates a general problem 
that crops up in multi-hadronic processes.

๏The factorisation ansatz
•When including the  and other  (henceforth ) states as Breit-Wigner 
distributions in , we are effectively factoring the process into a  
transition part, and a  creation (and decay) part. 

๏

๏ The creation & decay amplitudes for  are proportional to the  decay constant.
•Ignores any crosstalk between the  and  currents. 

๏Non-factorizable contributions
•Long-distance interactions between the (hadronic)  and  currents.

๏ Beyond the scope of this course

B → J/ψ K

J/ψ cc̄ ψn
Ceff

9 B → K
ψn

⟨K ℓ+ℓ− Ĥ B⟩ ∼ ⟨ℓ+ℓ− Ĥ ψn⟩ ⟨ψn K Ĥ B⟩ ∼ ⟨ℓ+ℓ− Ĥ ψn⟩ ⟨ψn Ĥ 0⟩ ⟨K Ĥ B⟩
ψn ψn

J/ψ B → K

J/ψ B → K

Peter Skands UniversityMonash

Res. Fact.



Hadronic Matrix Element & Form Factors
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๏We are now ready to look at the hadron-level matrix element

•Similarly to , the axial part does not contribute in . 
๏ But we do need a magnetic form factor, due to the C7 contribution.

B → Dℓν B → Kℓ+ℓ−

Peter Skands UniversityMonash

ℳ(B → Kℓ+ℓ−) =
GFα

2π
VtbV*ts [ Ceff

9 ⟨K(pK) s̄γμ(1 − γ5)b B(pB)⟩ [ℓ̄γμℓ]

+C10A⟨K(pK) s̄γμ(1 − γ5)b B(pB)⟩ [ℓ̄γμγ5ℓ]

−2
mb

mB
Ceff

7 ⟨K(pK) s̄iσμν qν

q2
(1 + γ5)b B(pB)⟩ [ℓ̄γμℓ]]

⟨K(pK) s̄γμ(1 − γ5)b B(pB)⟩ = f+(q2)(pB + pK)μ + f−(q2)(pB − pD)μ

⟨K(pK) s̄iσμν qν

q2
(1 + γ5)b B(pB)⟩ =

fT(q2)
mB + mK

(q2(pB + pK)μ − (m2
B − m2

K)qμ)

K is not a “heavy-light” system (ΛQCD/ms ~ 1) ➜ cannot play Isgur-Wise trick; have to keep both f+ and f-



(Example of Form-Factor Parametrisations)
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๏Main method is called “Light Cone Sum Rules” (LCSR)
•The ones below are admittedly rather old; from hep-ph/9910221

Peter Skands UniversityMonash

at s = m2
B∗

s
. In the present work we thus choose a different parametrization which avoids this

problem:
F (ŝ) = F (0) exp(c1ŝ + c2ŝ

2 + c3ŝ
3). (3.7)

The term in ŝ3 turns out to be important in B → K transitions, where ŝ can be as large as
0.82, but can be neglected for B → K∗ with ŝ < 0.69. The parametrization formula works
within 1% accuracy for s < 15 GeV2. For an estimate of the theoretical uncertainty of these
form factors, we have varied the input parameters of the LCSRs, i.e. the b quark mass, the
Gegenbauer-moments of the K and K∗ distribution amplitudes and the LCSR-specific Borel-
parameters M2 and continuum threshold s0 within their respective allowed ranges specified in
[52, 49] and obtain the three sets of form factors given in Tabs. 3–5, which represent, for each
ŝ, the central value, maximum and minimum allowed form factor, respectively. We plot the
form factors in Figs. 1 and 2.

Our value of T1(0) is consistent with the CLEO measurement of B(B → K∗γ)exp = (4.2 ±
0.8 ± 0.6) · 10−5 [70]. From the formula for the decay rate,

Γ(B → K∗γ) =
G2

Fα|V ∗
tsVtb|2

32π4
m2

bm
3
B(1 − m2

K∗/m
2
B)3|C7

eff |2|T1(0)|2 , (3.8)

the central values of the parameters given in Table 6, T1(0) = 0.379 and with τB = 1.61 ps we
find B(B → K∗γ)th = 4.4 · 10−5.

4 Decay Distributions

In this section we define various decay distributions whose phenomenological analysis will be
performed in the next section.

Eq. (2.2) can be written as

M =
GFα

2
√

2π
V ∗

tsVtbmB

[

T 1
µ

(

%̄ γµ %
)

+ T 2
µ

(

%̄ γµ γ5 %
)]

, (4.1)

where for B → K%+%−,

T 1
µ = A′(ŝ) p̂µ + B′(ŝ) q̂µ , (4.2)

T 2
µ = C ′(ŝ) p̂µ + D′(ŝ) q̂µ , (4.3)

and for B → K∗%+%−,

T 1
µ = A(ŝ) εµραβε

∗ρp̂αB p̂βK∗ − iB(ŝ) ε∗µ + iC(ŝ) (ε∗ · p̂B)p̂µ + iD(ŝ) (ε∗ · p̂B)q̂µ , (4.4)

T 2
µ = E(ŝ) εµραβε

∗ρp̂αB p̂βK∗ − iF (ŝ) ε∗µ + iG(ŝ) (ε∗ · p̂B)p̂µ + iH(ŝ) (ε∗ · p̂B)q̂µ , (4.5)

with p ≡ pB + pK,K∗. Note that, using the equation of motion for lepton fields, the terms in
q̂µ in T 1

µ vanish and those in T 2
µ become suppressed by one power of the lepton mass. This

effectively eliminates the photon pole in B′ for B → K.
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f+ f0 fT A1 A2 A0 V T1 T2 T3

F (0) 0.319 0.319 0.355 0.337 0.282 0.471 0.457 0.379 0.379 0.260

c1 1.465 0.633 1.478 0.602 1.172 1.505 1.482 1.519 0.517 1.129

c2 0.372 −0.095 0.373 0.258 0.567 0.710 1.015 1.030 0.426 1.128

c3 0.782 0.591 0.700 0 0 0 0 0 0 0

Table 3: Central values of parameters for the parametrization (3.7) of the B → K and B → K∗

form factors. Renormalization scale for the penguin form factors fT and Ti is µ = mb. c3 can
be neglected for B → K∗ form factors.

f+ f0 fT A1 A2 A0 V T1 T2 T3

F (0) 0.371 0.371 0.423 0.385 0.320 0.698 0.548 0.437 0.437 0.295

c1 1.412 0.579 1.413 0.557 1.083 1.945 1.462 1.498 0.495 1.044

c2 0.261 −0.240 0.247 0.068 0.393 0.314 0.953 0.976 0.402 1.378

c3 0.822 0.774 0.742 0 0 0 0 0 0 0

Table 4: Parameters for the maximum allowed form factors.

f+ f0 fT A1 A2 A0 V T1 T2 T3

F (0) 0.278 0.278 0.300 0.294 0.246 0.412 0.399 0.334 0.334 0.234

c1 1.568 0.740 1.600 0.656 1.237 1.543 1.537 1.575 0.562 1.230

c2 0.470 0.080 0.501 0.456 0.822 0.954 1.123 1.140 0.481 1.089

c3 0.885 0.425 0.796 0 0 0 0 0 0 0

Table 5: Parameters for the minimum allowed form factors.
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Max 

Min 

Central 

•(and there are corresponding ones for )B → K*



The  B → K ℓ+ ℓ-    Decay Distribution 
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๏Squared matrix element + trace algebra

•

๏

With  

๏ And     ,   
๏ Note: we assumed lepton mass vanishes ➜ no dependence on f- any more!

๏Phase Space
•Useful Trick: factor  phase space into two  ones using 

•

•

|ℳ | 2 =
G2

F α2

4π2
|V*tsVtb |2 D(q2) (λ(m2

B, m2
K, q2) − u2)

D(q2) = Ceff
9 (q2) | f+(q2) +

2mb

mB + mK
Ceff

7 fT(q2)
2

+ |C10A |2 f+(q2)2

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ac u ≡ 2pB ⋅ (pℓ+ − pℓ−)

1 → 3 1 → 2

∫ d4q δ(4)(q − p1 − p2) = 1

Peter Skands UniversityMonash

Exercise: starting from the standard form of dLIPS for a  decay, show that : 

 

1 → 3

dΓB→Kℓ+ℓ−

dq2 du
=

|ℳ |2

29π3m3
B

Exercise: do the steps
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Figure 3. (Colours online) Di↵erential branching fraction for various b ! sµµ transitions
measured at LHCb, superimposed to SM predictions [2–5,40].

LHCb, including RD+ and the baryonic observables R
⇤
(⇤)
c

.

3. Flavour anomalies in rare b decays
Rare decays of heavy-flavoured hadrons can be described by e↵ective Hamiltonians that
encode SM and possible NP contributions in the Wilson coe�cients weighting the operators
participating in the process. In this framework, called Operator Product Expansion (OPE) [37],
a model-independent analysis of e↵ects beyond the SM is possible. In particular, b ! s``
transitions are described by the e↵ective Hamiltonian

Heff = �4GFp
2

VtbV
⇤
ts

X

i

�
CiOi + C0

iO0
i

�
, (5)

where GF is the Fermi constant, Vij are elements of the CKM matrix [38, 39], O(0)
i are local

operators encoding left(right)-handed long distance contributions, and C(0)
i are the corresponding

Wilson coe�cients.
Various discrepancies with the SM predictions have been detected in decays dominated by

the e↵ective vector and axial-vector couplings C9 and C10. Branching fractions of decays such
as B0 ! K0µ+µ�, B0 ! K⇤0µ+µ�, B+ ! K⇤+µ+µ�, B0

s ! �µ+µ�, ⇤0
b ! ⇤0µ+µ�, all

proceeding through a b ! sµµ transition, have been measured at the LHC [2–5,41], at CDF [42]
and at B-factories [7,8]. For all of these channels, interestingly, the SM expectations exceed the
measured value, as visible in Figure 3. The statistical significance of these anomalies is such
that a SM explanation is possible. However, many other small discrepancies – detailed below –
have been registered over the years, resulting altogether in a significant tension with the SM.

3.1. Tests of LFU with b ! s`` decays
Uncertainties in the hadronic form factors, and other hadronic uncertainties, cancel to a very
large extent in the SM predictions for the LFU ratios

RK(⇤) ⌘
Br

�
B ! K(⇤)µ+µ��

Br
�
B ! K(⇤)e+e�

� , (6)

Here just looking at LHCb measurements; From talk by E. Graverini, BEACH 2018
Additional measurements by BaBar and Belle not shown.

For both the K and K* final states, the data is a bit on the low side (compared with SM)?
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๏Regardless of the complications in analysing these decays, we 
can again also use them as tests of lepton universality

•Now, form the two ratios:

•Expect R = 1 in SM (the complicated stuff drops out in the ratio)

Peter Skands UniversityMonash
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Figure 4. (Colours online) LHCb [6], Belle [7] and BaBar [8] measurements of RK (left) and
LHCb measurement of RK⇤ [9] (right), superimposed to SM predictions [43–47]. Previous RK⇤

measurements from Belle and BaBar can be found in [7, 8].

provided the momentum transfer to the lepton pair is su�ciently large [43–47]. These observables
are predicted to be unity with uncertainties below 1% [43]. The LHCb experiment has provided
experimental measurements of these quantities, laying out a common strategy for LFU tests
with rare decays. The RX observables are defined as ratios of e�ciency corrected yields limited
to certain q2 ranges, chosen in order to exclude the J/ and  (2S) resonances, which are
then used as control channels. Electron and muon channel yields are measured relative to
the corresponding, much more abundant resonant modes B ! XJ/ , where X is the strange
meson under study and the J/ meson decays to either a µµ or ee pair. This way, thanks to the
topological similarity between the nonresonant and resonant modes, the systematic uncertainties
related to the di↵erences in the reconstruction of electron and muon tracks largely cancel.

In order to test the validity of the analysis procedure, the e�ciency corrected
resonant yields are compared, and the important cross-check observable rJ/ ⌘
Br (B ! XJ/ (! µµ)) / Br (B ! XJ/ (! ee)), expected to be unity, is measured. This way,
the electron and muon reconstruction e�ciencies, as well as the e�ciency of the o✏ine selection,
are validated. The electron mode is much more challenging from an experimental point of view,
and the low reconstruction e�ciency for dielectron final states represents the dominant factor
in the statistical uncertainty associated to the LHCb measurements.

The ratio RK was measured with B+ ! K+`+`� decays in the 1.1 < q2 < 6.0 GeV2/c4

range, finding RK = 0.745+0.090
�0.074 (stat) ± 0.036 (syst), about 2.6� below the SM prediction [6].

The ratio RK⇤ was later measured with B0 ! K⇤0`+`� decays in two disjoint q2 bins, finding

RK⇤ = 0.66+0.11
�0.07 (stat) ± 0.03 (syst) for 0.045 < q2 < 1.1 GeV2/c4 (7)

RK⇤ = 0.69+0.11
�0.07 (stat) ± 0.05 (syst) for 1.1 < q2 < 6.0 GeV2/c4 (8)

with a SM compatibility at the 2.2-2.5� level [9]. At the same time, the control ratio rJ/ was
found compatible with unity within 1�, with rJ/ = 1.043 ± 0.006 (stat) ± 0.045 (syst) [9]. The
main systematic uncertainties for both ratios arise from double-misidentification of J/ decay
products, from bremsstrahlung losses a↵ecting the B mass shape in the electron channel, and
from the determination of the trigger and selection e�ciencies. Some of these uncertainties also
depend on the size of the simulated samples used to assess the e�ciencies, and are expected to
shrink if more events are simulated. The RK and RK⇤ measurements from LHCb are shown
in the left- and right-hand panel of Figure 4, respectively, where they are compared to the SM
predictions and to the measurements performed by the Belle [7] and BaBar [8] experiments.

… Interesting … ! Possible new-physics implications … ?
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5� if other observables, such as the angular coe�cients and branching fractions of b ! sµµ
decays are included in the global fit [50]; however these observables have much larger theoretical
uncertainties. It has been suggested that an incorrect evaluation of long-distance e↵ects from
vector charmonium contributions could be the responsible for some of the observed discrepancies.
However, an LHCb measurement of the interference between long- and short-distance e↵ects in
B+ ! K+µµ suggests that such and e↵ect may not be su�cient to explain the observations [51].

A coherent picture emerges from the tensions observed in b ! c`⌫ and b ! s`` transitions.
Both sets of anomalies have a significance in the range of 4�. The large di↵erence between
tree-level and loop-level amplitudes, the significance and weight of the anomalies, and the fact
that no deviations from theory have been observed so far in decays of light mesons prompted
the physics community to develop NP models with particles that couple preferentially to the
second and third generations, in a Yukawa-like hierarchy [21–26]. Direct searches for such new
mediators have been performed at CMS [52, 53] and ATLAS [54]; searches for lepton flavour
violating decays, also predicted by such models, are reaching unprecedented sensitivities at
hadron colliders [55–58].

A recent work [48] found that a simultaneous analysis of B0 ! K⇤0µ+µ� and B0 ! K⇤0e+e�

amplitudes has the potential of turning the anomalies into a groundbreaking discovery already
with the LHC Run 2 dataset, as shown in Figure 7. Measurements from the newly started Belle
2 run are also expected to shed light on the current anomalies, with the added reliability of a
complementary experimental setup. For example, the LHCb uncertainty on the RD⇤ ratio is
expected to scale down about a factor 2 with the LHC Run 3, and Belle 2 will have enough
data by then to provide an RD measurement with an uncertainty 2 to 3 times smaller than the
current world average [59]. If the flavour anomalies persist, striking evidence of new physics will
be available on a short time scale.
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5� if other observables, such as the angular coe�cients and branching fractions of b ! sµµ
decays are included in the global fit [50]; however these observables have much larger theoretical
uncertainties. It has been suggested that an incorrect evaluation of long-distance e↵ects from
vector charmonium contributions could be the responsible for some of the observed discrepancies.
However, an LHCb measurement of the interference between long- and short-distance e↵ects in
B+ ! K+µµ suggests that such and e↵ect may not be su�cient to explain the observations [51].

A coherent picture emerges from the tensions observed in b ! c`⌫ and b ! s`` transitions.
Both sets of anomalies have a significance in the range of 4�. The large di↵erence between
tree-level and loop-level amplitudes, the significance and weight of the anomalies, and the fact
that no deviations from theory have been observed so far in decays of light mesons prompted
the physics community to develop NP models with particles that couple preferentially to the
second and third generations, in a Yukawa-like hierarchy [21–26]. Direct searches for such new
mediators have been performed at CMS [52, 53] and ATLAS [54]; searches for lepton flavour
violating decays, also predicted by such models, are reaching unprecedented sensitivities at
hadron colliders [55–58].

A recent work [48] found that a simultaneous analysis of B0 ! K⇤0µ+µ� and B0 ! K⇤0e+e�

amplitudes has the potential of turning the anomalies into a groundbreaking discovery already
with the LHC Run 2 dataset, as shown in Figure 7. Measurements from the newly started Belle
2 run are also expected to shed light on the current anomalies, with the added reliability of a
complementary experimental setup. For example, the LHCb uncertainty on the RD⇤ ratio is
expected to scale down about a factor 2 with the LHC Run 3, and Belle 2 will have enough
data by then to provide an RD measurement with an uncertainty 2 to 3 times smaller than the
current world average [59]. If the flavour anomalies persist, striking evidence of new physics will
be available on a short time scale.

References
[1] Lazzeroni C et al. (NA62) 2013 Phys. Lett. B719 326–336 (Preprint 1212.4012)
[2] Aaij R et al. (LHCb) 2014 JHEP 06 133 (Preprint 1403.8044)
[3] Aaij R et al. (LHCb) 2015 JHEP 06 115 (Preprint 1503.07138)
[4] Aaij R et al. (LHCb) 2015 JHEP 09 179 (Preprint 1506.08777)



(What Approximations did we Make?)
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๏Top Quark Dominance

๏Low-energy effective theory at quark level
•Matched at finite loop order to full theory
•Running at finite loop order from mW to mb

•Non-leptonic operators contributing to  and , but not 

๏Effect of intermediate c-cbar resonances 
•Non-factorizable contributions
•Other hadronic states: light-quark resonances, open charm, … ?

๏Form Factors

๏QED Corrections at Hadronic Level?
•

Ceff
7 Ceff

9 C10A
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