QFT with Hadrons Introduction to B Physics

1. Leptonic Decays of Hadrons: from $\boldsymbol{\pi} \rightarrow \ell \nu$ to $B \rightarrow \ell \nu$

QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM.
\rightarrow 2. On the Structure and Unitarity of the CKM Matrix
The CKM Matrix. The GIM Mechanism. The Unitarity Triangle.

3. Semi-Leptonic Decays and the "Flavour Anomalies"

$B \rightarrow D^{(*)} \ell v$. The Spectator Model. Form Factors. Heavy Quark Symmetry.
$B \rightarrow K^{(*)} \ell^{+} \ell^{-}$. FCNC. Aspects beyond tree level. Penguins. The OPE.

Recap: Charged-Current Processes at Low Energies

Consider W interactions with quarks ("charged current")

For now, assume free quarks, for simplicity
(will reintroduce effects of confinement later.)

Generic amplitude for W exchange between two fermion currents, $\mathrm{J}_{1}, \mathrm{~J}_{2}$:

$$
\begin{aligned}
& J_{1}^{\mu} \cdot \sim \cdot J_{2}^{\nu} \quad \mathbb{M}=\frac{4 G_{F}}{\sqrt{2}} J_{1}^{\mu} J_{2 \mu}^{\dagger} \\
& \text { with } J_{\text {quark }}^{\mu}=(\bar{u}, \bar{c}, \bar{t}) \gamma^{\mu} \frac{1}{2}\left(1-\gamma_{5}\right) U\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
\end{aligned}
$$

Recap: Charged-Current Processes at Low Energies

Consider W interactions with quarks ("charged current")

For now, assume free quarks, for simplicity
(will reintroduce effects of confinement later.)

Historical example: first two generations:

$$
\left[\begin{array}{l}
d^{\prime} \\
s^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta_{\mathrm{c}} & \sin \theta_{\mathrm{c}} \\
-\sin \theta_{\mathrm{c}} & \cos \theta_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{c}
d \\
s
\end{array}\right]
$$

$$
\text { with "Cabibbo Angle" } \theta_{C} \sim 13^{\circ}
$$

$$
>\sin \theta_{C} \sim 0.23
$$

SU(2) L Weak-interaction ("current") eigenstates slightly rotated relative to Hamiltonian ("mass") eigenstates

$$
\sum_{i} \bar{d}_{i}^{\prime} d_{i}^{\prime}=\sum_{j} \bar{d}_{j} d_{j} \quad \text { (due to unitarity) }
$$

(same for leptons*, with $\mathrm{U}=1$) *Note I use the word Iepton to refer collectively to charged leptons + neutrinos

Recap: The CKM Matrix

"Wolfenstein parametrisation", to $\mathrm{O}\left(\lambda^{2}\right)$

$$
U=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
\boxed{1-\frac{1}{2} \lambda^{2}} & \begin{array}{c}
\lambda \\
\end{array} & \mathcal{O}\left(\lambda^{3}\right) \\
\hline--\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
\hline \mathcal{O}\left(\lambda^{3}\right) & -A \lambda^{2} & 1 \\
\hline
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

$$
\begin{aligned}
\lambda & \sim \sin \theta_{C} \\
& \sim 0.23 \\
A & \sim 0.81
\end{aligned}
$$

+ two more parameters (ρ, η),
to specify complex $V_{u b}, V_{t d}$

Note: there are other parametrisations, such as the "PDG" parametrisation: same numerical values of $V_{i j}$, cast in terms of a 3 rotation angles and a phase instead of (λ, A, ρ, η)

The CKM elements in Physical Processes

(Note that most of these processes are charged-current semileptonic decays)

Illustration by M. Bona

Consequences of CKM Unitarity 1: The GIM Mechanism

S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.

Off-diagonal CKM terms imply amplitudes for processes like:

$$
K^{0} \rightarrow \mu^{+} \mu^{-}
$$

Expect $M \propto \mathrm{G}_{\mathrm{F}} \mathrm{V}_{\text {us }} \sim \mathrm{G}_{\mathrm{F}} \sin \theta_{\mathrm{C}}$
Observed to be much more strongly suppressed (BR~10-8)

Historical Note: the absence of the processes discussed on this slide led GIM to predict the existence of the charm quark!

$$
\begin{aligned}
& \text { Unitarity: } \sum_{j} V_{i j} V_{j k}^{\dagger}=\delta_{j k} \\
& \text { E.g.,: } V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*} \sim \cos \theta_{C} \sin \theta_{C}-\sin \theta_{C} \cos \theta_{C}=0
\end{aligned}
$$

Also: $\left\{\begin{array}{l}K^{+}(u \bar{s}) \rightarrow \pi^{+} e^{+} e^{-} \\ K^{+}(u \bar{s}) \rightarrow \pi^{+} \nu \bar{\nu}\end{array}\right.$ one above for these two processes and show how the GIM mechanism is at work in them. Hint: One of the incoming quarks is a "spectator"

Consequences of CKM Unitarity 2: The Unitarity Triangle(s)

Write the unitarity constraints explicitly:

$$
\sum_{j} V_{i j} V_{j k}^{\dagger}=\delta_{i k} \quad \text { e.g. } \quad V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

Sum of three complex numbers $=0$

Normalise by $\left|\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}{ }^{*}\right|$:

Recap: The Unitarity Triangle*

This is called "the unitarity triangle"

LHCb

Exercise problem E5: show mathematically why CPV is only observable in processes with at least two interfering amplitudes with different relative CKM phases.

Note: complex phases \Rightarrow CP Violation (Note: requires interfering amplitudes)

- Measurements of CPV processes constrain relative phases.
$\alpha=\arg \left[-V_{t d} V_{t b}^{*} / V_{u d} V_{u b}^{*}\right]=\phi_{2}$
$\beta=\arg \left[-V_{c d} V_{c b}^{*} / V_{t d} V_{t b}^{*}\right]=\phi_{1}$
$\gamma=\arg \left[-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right]=\phi_{3}$

Different weak processes probe different combinations of the CKM elements \rightarrow constrain different sides or angles in the triangle.

Measure many processes
\rightarrow Overconstrain the triangle $=$ Test SM
("In principle, each unitarity constraint has its own "triangle" - this is the standard one.)

Constraints on the CKM Triangle

Example: "Our" process, $B \rightarrow \tau v$, is proportional to $\left|\mathbf{V}_{u b}\right|^{2}$:

First measured by Belle in 2012

The first determination of V_{ub} from $B \rightarrow \tau v\left(\right.$ combined with $V_{t d}$ from $\left.\Delta \mathrm{m}_{\mathrm{d}}\right)$ $>$ Green area(s)

Seemed to be in slight tension with other existing constraints
> (the little yellow area)

The Current Picture

Conclusion (for now):
All determinations of coordinates of top corner $(\bar{\rho}, \bar{\eta})$ self-consistent at this level.

Why keep going?

The triangle has to break, at some point...

For 2023, explain the Sakharov conditions

+ maybe general considerations: new physics easily introduces new phase(s)

E4. Draw diagrams for processes on p.6; explain their GIM suppression
E5. Show why CPV is only physically observable in processes with at least two interfering amplitudes with different CKM phases.
E6. Draw LO Feynman diagrams for (1) $D^{0} \rightarrow K^{+} \pi^{-}$and (2) $D^{0} \rightarrow K^{-} \pi^{+}$, and explain the observation that $\Gamma_{(1)} / \Gamma_{(2)} \sim 4 \times 10^{-3}$.

```
You will present your progress on these in the next lesson
and we will discuss any questions / issues you encounter.
```

Assignment Problems 1\&2 : the B physics research problems

An example of a recent conundrum

Discrepancies between inclusive and exclusive determinations of $\mathbf{V}_{\mathbf{c b}}$ and $V_{u b}$

Examples:
Exclusive: $B \rightarrow \pi \ell v$
Exclusive means one specific decay mode

An example of a recent conundrum

Current Status (2021)

Still discrepant
PRL126 (2021) 081804 arXiv:2012.05143 [PDF]
Inspire 1835347

