QFT with HadronsIntroduction to B Physics

→ 1. Leptonic Decays of Hadrons: from π → $\ell \nu$ to B → $\ell \nu$

QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM.

2. On the Structure and Unitarity of the CKM Matrix

The CKM Matrix. The GIM Mechanism. The Unitarity Triangle.

3. Semi-Leptonic Decays and the "Flavour Anomalies"

 $B \to D^{(*)} \ell v$. The Spectator Model. Form Factors. Heavy Quark Symmetry.

 $B \to K^{(*)} \ell^+ \ell^-$. FCNC. Aspects beyond tree level. Penguins. The OPE.

Recap of (applied) QFT

Want to:

Start from assumed field content & Lagrangian (e.g., SM).

Compute scattering cross sections and decay rates.

Total and differential

Compare to experimental measurements.

Recipe in perturbative QFT:

Set up (relativistically normalised) in- and outgoing states.

Interaction picture: plane-wave states (eigenstates of free theory, in momentum space)

Compute (Lorentz-invariant) transition amplitudes.

QFT under the hood: Dyson's Formula, Wick Contractions

→ For practical calculations: **Feynman rules & diagrams**

Sum over amplitudes, square, and keep terms to given perturbative order.

Integrate over the relevant (Lorentz-invariant) **phase space**(s).

Recap: Decay Rates

Partial decay rate (a.k.a., "partial width") of particle of mass M into n bodies, in its CM:

$$\Gamma_{i \to f}$$

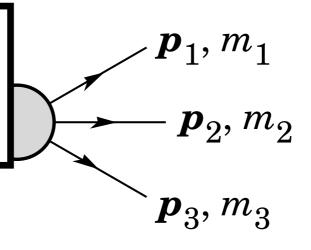
Total Width = sum over partial widths

$$\Gamma_i = \sum_j \Gamma_{i \to j}$$

Average Lifetime

$$\tau = 1/\Gamma$$

= \hbar/Γ if not using natural units

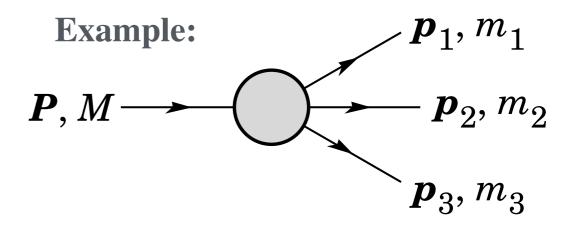


Why is it called the width?

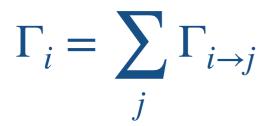


Recap: Decay Rates

Partial decay rate (a.k.a., "partial width") of particle of mass M into n bodies, in its CM:



Total Width = sum over partial widths



Average Lifetime

$$\tau = 1/\Gamma$$

= \hbar/Γ if not using natural units

Branching fractions = Γ_j/Γ

Example: π^+ decays (see, e.g., pdg.lbl.gov)

$$BR(\pi^+ \to \mu^+ \nu_\mu)$$
 (99.98770±0.00004) %
 $BR(\pi^+ \to e^+ \nu_e)$ (1.230 ±0.004)) × 10⁻⁴

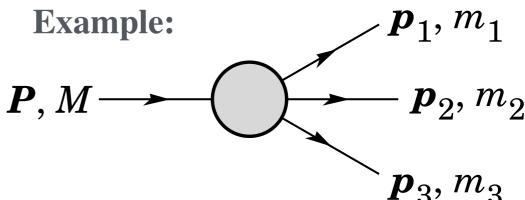
This agrees with the SM prediction.

Our first application: weak leptonic decays of hadrons

Recap: Decay Rates

Reminder:

Fermi's Golden Rule (on relativistic form) for decay rates:



$$\Gamma_{i\to f} = \int d\Gamma_{i\to f} = \frac{(2\pi)^4}{2M} \int |\mathcal{M}_{i\to f}|^2 d\Phi_n(P; p_1, ..., p_n)$$

Lorentz-invariant Matrix Element

Lorentz-invariant **phase-space element**:

$$d\Phi_n(P; p_1, \dots, p_n) = \delta^4 \left(P - \sum_{i=1}^n p_i\right) \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i}$$

a.k.a. : *dLIPS*

= d^4p_i with on-shell condition (**L.I.**)

(see, e.g., PDG review (pdg.lbl.gov) section 47: kinematics)

Special case: 2-body decays

In 2-body decays, the kinematics are fully constrained (up to an overall solid angle)

$$\Rightarrow \Gamma_{i \to f} = \frac{|\mathbf{p}^*|}{32\pi^2 M^2} \int |\mathcal{M}_{fi}|^2 \mathrm{d}\Omega \qquad \begin{array}{c} \text{VALID FOR } \underline{\text{ALL}} \\ \text{2-BODY DECAYS} \\ \text{Exercise problem E1a: derive this} \end{array}$$

Exercise problem E1a: derive this formula from the one on the previous page.

with \mathbf{p}^* the 3-momentum of either of the decay products in the rest frame of M:

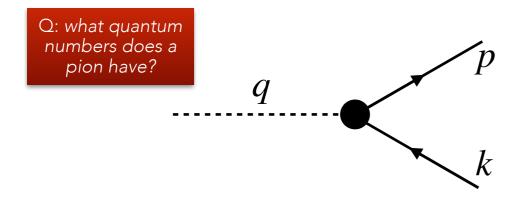
$$p^* = \frac{1}{2M} \sqrt{[M^2 - (m_1 + m_2)^2][M^2 - (m_1 - m_2)^2]}$$

Question: why does it not matter which 3-momentum we use?

Exercise problem E1b: derive this formula for p*

OK, let's apply this to compute pion decays

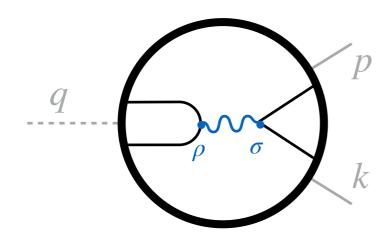
Want to calculate M for: $\pi^-(q) \to \mu^-(p) + \bar{\nu}_{\mu}(k)$



First problem: the SM Lagrangian does not include a "pion"

How are we supposed to apply Feynman rules without a π - μ - ν vertex?

What is really going on?



It's the **weak force**: W exchange between quark and lepton currents

$$m_{\pi} = 0.13 \text{ GeV}$$

 $q = (m_{\pi}, 0, 0, 0)$
 $m_{W} = 80.4 \text{ GeV}$

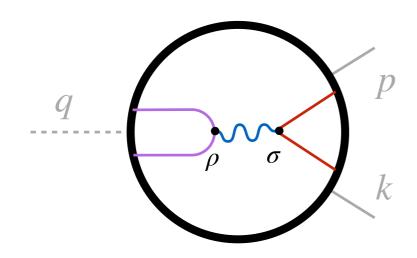
W propagator: (how) familiar is this?

$$\frac{-i(g_{\rho\sigma} - q_{\rho}q_{\sigma}/M_W^2)}{q^2 - M_W^2} \rightarrow \frac{ig_{\rho\sigma}}{M_W^2}$$

Application to Pion Decay

Want to calculate M for: $\pi^-(q) \to \mu^-(p) + \bar{\nu}_{\mu}(k)$

What is really going on?



$$m_{\pi} = 0.13 \text{ GeV}$$

 $q = (m_{\pi}, 0, 0, 0)$
 $m_{W} = 80.4 \text{ GeV}$

W propagator:
$$\frac{ig_{\rho\sigma}}{M_W^2}$$

Lepton current:
$$L^{\sigma}(p,k) = -i \frac{g_w}{2\sqrt{2}} \bar{u}(p) \gamma^{\sigma} (1-\gamma_5) v(k)$$
 (how) familiar is this?

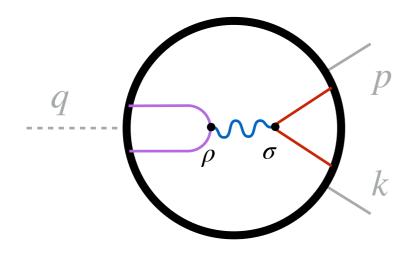
Quark current:
$$\frac{-i\frac{g_w}{2\sqrt{2}}\bar{v}_u\gamma^\rho(1-\gamma_5)u_d}{2\sqrt{2}}$$
 Why not?

Monash

The Quark Current

The quark-antiquark pair

Bouncing around inside the pion \rightarrow not free plane-wave states.



$$\mathcal{M}(\pi o \mu \bar{
u}) = Q^{
ho}(q) \frac{ig_{
ho\sigma}}{M_W^2} L^{\sigma}(p,k)$$

What do we know about the quark current?

Must be proportional to g_w

Carries a 4-vector index, o

Since the pion has spin 0 (no spin vector), the only 4-vector is: q

$$\Rightarrow Q^{\rho}(q) = \frac{g_w}{2\sqrt{2}} q^{\rho} f(q^2)$$

$$\int q^2 = m_{\pi}^2 = \text{const.}$$

$$= \frac{g_w}{2\sqrt{2}} q^{\rho} f_{\pi}$$
f . "Pion decay constant"

University

So the matrix element for $\pi^-(q) \to \mu^-(p) + \bar{\nu}_{\mu}(k)$ is:

$$G_{F} = \frac{\sqrt{2}g_{w}^{2}}{8M_{W}^{2}} \qquad \mathcal{M} = \frac{G_{F}}{\sqrt{2}} (p^{\rho} + k^{\rho}) f_{\pi} \left[\bar{u}(p) \gamma_{\rho} (1 - \gamma_{5}) v(k) \right]$$

Use the Dirac eqs. for the <u>neutrino</u> and <u>muon</u>:

$$kv(k) = 0 \qquad \bar{u}(p)(\not p - m_{\mu}) = 0$$

Only a term proportional to the muon mass survives

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} f_{\pi} m_{\mu} \bar{u}(p) (1 - \gamma_5) v(k)$$

$$\implies |\mathcal{M}|^2 = \frac{G_F^2}{2} f_\pi^2 m_\mu^2 \operatorname{Tr} \left[(\not p + m_\mu) (1 - \gamma_5) \not k (1 + \gamma_5) \right]$$

$$=8(p \cdot k)$$
 (how) familiar is this?

Putting it Together

From previous slide:

$$|\mathcal{M}|^2 = 4G_F^2 f_\pi^2 m_\mu^2 (p \cdot k)$$

We also had the Golden-rule master formula for $1\rightarrow 2$ decays

$$\Gamma_{i\to f} = \frac{|\mathbf{p}^*|}{32\pi^2 M^2} \int |\mathcal{M}_{fi}|^2 d\Omega$$

with
$$p^* = \frac{m_\pi}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)$$
 cf. your derivation of p*

 $\rightarrow p = (E_{\mu}, p^*)$ and $k = (p^*, -p^*)$ $q = (m_{\pi}, 0, 0, 0)$ $\implies (k \cdot p) = (k \cdot (q - k))$ $= m_{\pi} |p^*|$

$\Gamma(\pi \rightarrow \mu \nu)$

$$\Rightarrow \Gamma(\pi \to \mu \bar{\nu}) = \frac{G_F^2}{8\pi} f_\pi^2 m_\pi m_\mu^2 \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2$$

Question: could we use same G_F for $\Gamma(\pi \rightarrow ev)$? Same f_{π} ?

Can get G_F from muon decay (no hadrons \triangleright no decay constant).

But cannot compute f_{π} (perturbatively), so cannot "predict" pion lifetime.

Instead, we can use the pion lifetime to **measure** f_{π} .

 $m(\pi,\mu,e,v) = (135, 105, 0.5, 0) MeV$

Independently of f_{π} however, we can now account for:

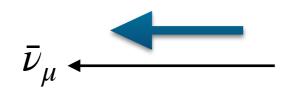
$$BR(\pi^+ \to \mu^+ \nu_\mu)$$

 $BR(\pi^+ \to e^+ \nu_e)$

$$(99.98770\pm0.00004)\%$$

 $(1.230\pm0.004)\times10^{-4}$

Physics = Angular momentum cons.:



Spin 0

(how) familiar is this?

In SM, $\bar{\nu}$ is massless and **right-handed** \Rightarrow **positive helicity**

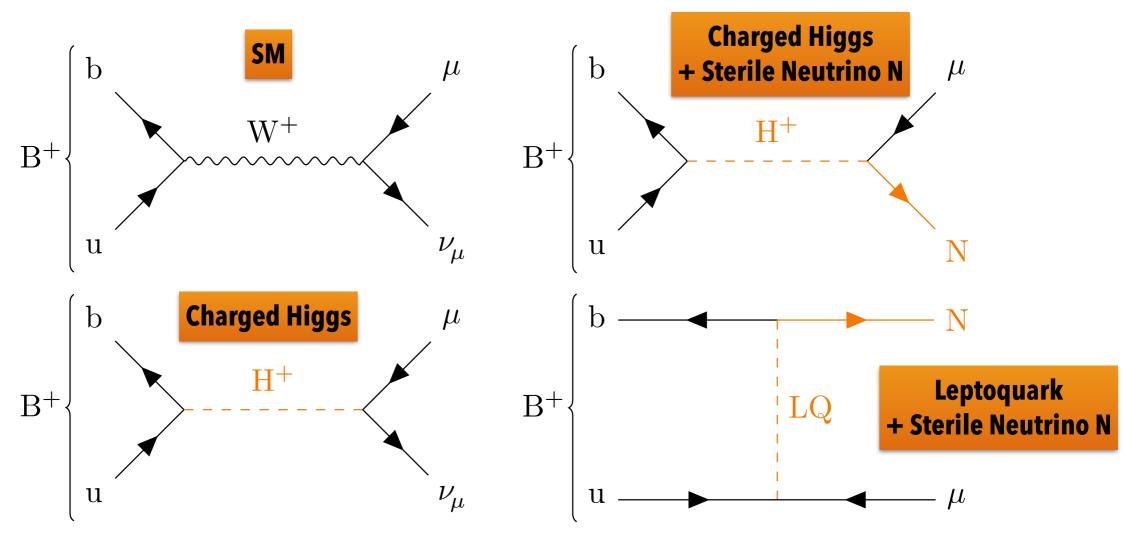
⇒ Muon must also have positive **helicity**, but W couples to left-handed **chirality**.

 $\langle u_L | u_+ \rangle \propto m \Leftrightarrow \text{Helicity Suppression}$

$B^+ \rightarrow \tau^+ v$ and $B^+ \rightarrow \mu^+ v$

A very similar treatment applies to B+ \rightarrow τ + ν and B+ \rightarrow μ + ν

Some reasons why those might be interesting: (illustration from arXiv:1911.03186)



Most BSM diagrams not helicity suppressed! (why?) \Rightarrow Can be even larger than SM amplitude despite heavier virtual states. (BSM currents not restricted to be purely L-handed)

Exercise problem E3: give reason(s) why B decays might be more interesting than pion decays?

Research Problems for Assignment

R1. Provide an elaborate derivation of $\mathcal{M} \Leftrightarrow |\mathcal{M}|^2 \Leftrightarrow \Gamma$ \Rightarrow Branching Fraction for B+ $\rightarrow \tau$ + v_{τ} in the SM and compare with measurements

Use the lattice determination of f_B from https://arxiv.org/abs/1607.00299

Use the Heavy-Flavour Averaging Group (HFLAV) value for V_{ub} from https://arxiv.org/abs/1909.12524

Find measured values for the lifetime of the B+ meson and BR(B+ $\rightarrow \tau$ + ν_{τ}) in the Particle Data Group (PDG) summary for the B+ meson: <u>pdg.lbl.gov</u>

(You will also need the masses of the involved particles, and the value of the Fermi constant, G_F)

R2. What is BR(B+ $\rightarrow \mu^+\nu_\mu$)/BR(B+ $\rightarrow \tau^+\nu_\tau$) in the SM?

Belle has reported a measurement of BR(B+ \rightarrow μ + ν_{μ}), see https://arxiv.org/abs/1911.03186: study it, and does it agree with your expectation?

Summary of Problems and Exercises for Home Study

- E1. Derive the formulae for $\Gamma_{1\rightarrow 2}$ & p* on p.5. You may use standard textbooks such as Thomson / Griffiths / Halzen & Martin / ...
- E2. Perform the detailed steps in the derivation on p.9
- E3. Give reason(s) why B decays may be more interesting than π ones?

You will present your progress on these in the next lesson and we will discuss any questions / issues you encounter.

+ Assignment Problems 1&2: the B physics research problems on p.14

Due in week 6