Applications and Phenomenology

1. Leptonic Decays of Hadrons: from $\boldsymbol{\pi} \rightarrow \ell \mathbf{v}$ to $\mathbf{B} \rightarrow \ell \mathbf{v}$

QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM.

2. On the Structure and Unitarity of the CKM Matrix

The CKM Matrix. The GIM Mechanism. CP Violation. The Unitarity Triangle.
3. Introduction to the "Flavour Anomalies": Semi-Leptonic Decays
$B \rightarrow D^{(*)} \ell v$. The Spectator Model. Form Factors. Heavy Quark Symmetry.

- $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$. FCNC. Aspects beyond tree level. Penguins. The OPE.

4. Introduction to Radiative Corrections: B $\rightarrow \boldsymbol{\mu} \mathbf{v} \mathbf{\gamma}$

The (infrared) pole structure of gauge field theory amplitudes.
Collinear and Infrared Safety.

Flavour-Changing Neutral Currents

In the $\mathbf{S M}$, only the \mathbf{W} can change quark flavours

"Charged Current": $u_{i} \rightarrow W^{+} d_{j}$ and $d_{i} \rightarrow W^{-} u_{j}$
The photon, Higgs, and Z, all couple flavour-diagonally
\Rightarrow No tree-level FCNC in SM
FCNC $=$ processes involving $b \rightarrow s, b \rightarrow d$, or $c \rightarrow u$ transitions.
In the SM , this requires at least two W vertices.
Recall: we saw an example when discussing the GIM mechanism:

GIM suppression by CKM unitarity:

$$
\sum_{j} V_{i j} V_{j k}^{\dagger}=\delta_{j k}
$$

E.g.:
$V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*} \sim \cos \theta_{C} \sin \theta_{C}-\sin \theta_{C} \cos \theta_{C}=0$

Suppressed in $\mathrm{SM} \boldsymbol{=}$ Good probes for BSM

Also called "Rare Decays"

Due to suppression, they have small Branching Fractions.
How rare is rare? Recall our $\mathrm{K} \rightarrow \mu \mu$ example; $\mathrm{BR}(\mathrm{K} \rightarrow \mu \mu) \sim 10^{-8}$.
So you need to collect \sim one billion K decays to see ~ 10 of these.
For comparison, the charged-current (tree-level W) decays we looked at in the last lecture have much larger branching ratios, e.g., $\mathrm{BR}(\mathrm{K} \rightarrow$ лev $) \sim 40 \%$

Since FCNC amplitudes are tiny in the SM, any additional contributions from new physics may be relatively easy to see

In B Sector:
Leptonic Decays: $B_{d, s}^{0} \rightarrow \ell^{+} \ell^{-},\left(B_{d, s}^{0} \rightarrow \nu \bar{\nu}\right) \quad$ (why not B^{*} ?)
Semi-Leptonic: $\left.b \rightarrow s \ell^{+} \ell^{-}\right) b \rightarrow d \ell^{+} \ell^{-}$, and $b \rightarrow s(d) \gamma, b \rightarrow s(d) \nu \bar{\nu}$
Multi-hadronic: beyond the scope of this course.

Our case study:
$B \rightarrow K^{(*)} \ell^{+} \ell^{-}$

Diagrams contributing to $b \rightarrow s \ell+\ell$ - transitions

+ "Penguins" (EW penguins)

+ more ...
\Rightarrow This is going to get complicated ... so let's think first.

1: Exploit CKM Unitarity and $m_{t} \gg m_{c} \Rightarrow$ Top Quark Domination

+ "Penguins" (EW penguins)

All of these amplitudes involve

 GIM-type sums:$\mathscr{M}=V_{u b} V_{u s}^{*} \mathscr{M}_{u}+V_{c b} V_{c s}^{*} \mathscr{M}_{c}+V_{t b} V_{t s}^{*} \mathscr{M}_{t}$
CKM Unitarity: $V_{u b} V_{u s}^{*}=-V_{c b} V_{c s}^{*}-V_{t b} V_{i s}^{*}$

$$
=V_{c b} V_{c s}^{*}\left(\mathscr{M}_{c}-\mathscr{M}_{u}\right)+V_{t b} V_{t s}^{*}\left(\mathscr{M}_{t}-\mathscr{M}_{u}\right)
$$

\Rightarrow Any quark-massindependent terms must cancel.

Whatever is left must be proportional to m_{c}^{n} and m_{t}^{n}

- Top quark dominates

$$
\underset{\text { Keeping only terms } \alpha m_{t}^{\prime}}{\mathscr{M}} \sim V_{t b} V_{t}^{*} \bar{M}_{t}
$$

2: Exploit $q^{2} \ll w^{2}{ }^{2}$ Low-Energy Effective Theory

Construct effective vertices, with effective coefficients

For example, we previously wrote tree-level W exchange as an effective coefficient $\propto G_{F} / \sqrt{2}$, multiplying two V-A fermion currents.

Recall: $B \rightarrow D \ell \nu$ (and all the other processes we looked at so far)

"Low-energy effective theory"
"Effective 4-FermionVertex"

Effective vertices for $b \rightarrow s \ell+\ell-$

+ "Penguins" (EW penguins)

Apply same idea to FCNC processes.

"Integrate out" the short-distance propagators, leaving only operators for the external states: $\mathbf{O}_{\mathbf{i}}$
with some effective coefficients, $\mathrm{C}_{\mathbf{i}}$ (which now in general will contain integrals over whatever loops contribute to them in the full theory)

(Re)classify all possible low-energy operators in terms of Lorentz (+ colour) structure
Inami \& Lim, Progr. Theor. Phys. 65 (1981) 297

The Operator Product Expansion

Effective Lagrangian for $\mathbf{b} \rightarrow \mathbf{s}$ transitions

= sum over effective vertices with overall G_{F} \& CKM factor, and operators $\boldsymbol{O}_{k} \times$ coefficients C_{k}

$$
\begin{array}{rl}
\mathscr{L}= & -\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{k} C_{k} \mathcal{O}_{k} \\
C_{k} & Q: \text { why only t? }
\end{array}
$$

"Wilson Coefficients"
In general, we need to do some loop integrals to compute them.

Operators directly responsible for semi-leptonic decays:

$$
\begin{aligned}
& \mathcal{O}_{9 V}^{\ell}=\left[\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right] \\
& \mathcal{O}_{10 A}^{\ell}=\left[\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b\right]\left[\bar{\ell} \gamma_{5} \gamma_{\mu} \ell\right]
\end{aligned}
$$

(+QED Magnetic Penguin)

$$
\begin{gathered}
\mathcal{O}_{7 \gamma}=\frac{e}{8 \pi^{2}} m_{b}\left[\bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b\right] F_{\mu \nu} \\
\sigma^{\mu \nu}=-\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]
\end{gathered}
$$

(Non-Leptonic Operators)

$$
\text { (i,i=1,2,3 and } a=1, \ldots, 8 \text { are } \boldsymbol{S U (3})_{c} \text { indices; indicate colour structure) }
$$

W exchange / Charged-Current:

> Note: some authors swap these..... Buchall et al.

Exercise: consider tree-level diagrams for W exchange between two quark currents and justify why the (LO) Wilson coefficients are $\mathrm{C}_{1}=1$ and $\mathrm{C}_{2}=0$.

Strong/OCD Penguins

(Sum over $q=u, d, s, c, b$)

$$
\begin{aligned}
& \mathcal{O}_{3}=\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{i}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) q_{j}\right] \\
& \mathcal{O}_{4}=\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{j}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) q_{i}\right] \\
& \mathcal{O}_{5}=\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{i}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1+\gamma_{5}\right) q_{j}\right] \\
& \mathcal{O}_{6}=\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{j}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1+\gamma_{5}\right) q_{i}\right] \\
& \mathcal{O}_{8 G}=\frac{g_{s} m_{b}}{8 \pi^{2}}\left[\bar{s}_{i} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) T_{i j}^{a} b_{j}\right] G_{\mu \nu}^{a}
\end{aligned}
$$

Why not t?
b

2 Lorentz structures \& 2 possible colour structures

Electroweak Penguins

(Sum over $q=u, d, s, c, b$)

$$
\begin{aligned}
& \mathcal{O}_{7}=\frac{3 e_{q}}{2}\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{i}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1+\gamma_{5}\right) q_{j}\right] \\
& \widehat{O}_{8}=\frac{3 e_{q}}{2}\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{j}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1+\gamma_{5}\right) q_{i}\right] \\
& \widehat{O}_{9}=\frac{3 e_{q}}{2}\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{i}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) q_{j}\right] \\
& \mathcal{O}_{10}=\frac{3 e_{q}}{2}\left[\bar{s}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) b_{j}\right]\left[\bar{q}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) q_{i}\right]
\end{aligned}
$$

> 2 Lorentz structures \& 2 possible colour structures

Renormalisation \& Running Wilson Coefficients

At tree level, $\mathbf{C}_{\mathbf{1}}=\mathbf{1}$ and all other $\mathbf{C}_{\mathbf{i}}=\mathbf{0}$ (they all involve loops)

Not good enough. (Among other things, FCNC would be absent!)

At loop level, we must discuss renormalisation

In this part of the course, we focus on applications; not formalism
Suffice it to say that, just as we can do a tree-level comparison between the full theory (EW SM with full W propagators) and the effective theory, to see that $C_{1}=1$ and the other C_{i} are zero at tree level, we can do the same kind of comparison at loop level.
This procedure - determining the coefficients of the effective theory from those of the full theory - is called matching and is a general aspect of deriving any effective theory by "integrating out" degrees of freedom from a more complete one.

Two aspects are especially important to know. At loop level:

We do the matching a specific value of the renormalisation scale, characteristic of the degrees of freedom being integrated out, here $\mu_{\text {match }}=m_{W}$.
This determines the values of the Wilson coefficients at that scale, $C_{i}\left(m_{W}\right)$.
We must then "run" those coefficients to a scale characteristic of the physical process at hand, in our case $\mu_{R}=m_{b}$. In general, $C_{i}\left(m_{b}\right) \neq C_{i}\left(m_{W}\right)$.

One-Loop Coefficients at the Weak Scale

M. Neubert, TASI Lectures on EFT and heavy quark physics, 2004, arXiv:hep-ph/0512222

Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125
At the scale $\boldsymbol{\mu}=\mathbf{m}_{\mathbf{W}}$ (at one loop in QCD), the matching eqs. are:

$$
\begin{aligned}
& C_{1}\left(M_{W}\right)=1-\frac{11}{6} \frac{\alpha_{s}\left(M_{W}\right)}{4 \pi}, \\
& C_{2}\left(M_{W}\right)=\frac{11}{2} \frac{\alpha_{s}\left(M_{W}\right)}{4 \pi} \text {, } \\
& C_{3}\left(M_{W}\right)=C_{5}\left(M_{W}\right)=-\frac{1}{6} \widetilde{E}_{0}\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right) \frac{\alpha_{s}\left(M_{W}\right)}{4 \pi}, \\
& C_{4}\left(M_{W}\right)=C_{6}\left(M_{W}\right)=\frac{1}{2} \widetilde{E}_{0}\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right) \frac{\alpha_{s}\left(M_{W}\right)}{4 \pi}, \\
& C_{7}\left(M_{W}\right)=f\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right) \frac{\alpha\left(M_{W}\right)}{6 \pi}, \\
& C_{9}\left(M_{W}\right)=\left[f\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right)+\frac{1}{\sin ^{2} \theta_{W}} g\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right)\right] \frac{\alpha\left(M_{W}\right)}{4 \pi}, \\
& C_{8}\left(M_{W}\right)=C_{10}\left(M_{W}\right)=0, \\
& C_{7 \gamma}\left(M_{W}\right)=-\frac{1}{3}+O(1 / x), \\
& C_{8 g}\left(M_{W}\right)=-\frac{1}{8}+O(1 / x) . \\
& \widetilde{E}_{0}(x)=-\frac{7}{12}+O(1 / x) \text {, } \\
& f(x)=\frac{x}{2}+\frac{4}{3} \ln x-\frac{125}{36}+O(1 / x), \\
& g(x)=-\frac{x}{2}-\frac{3}{2} \ln x+O(1 / x), \\
& \text { (Sorry I did not find equivalent handy } \\
& \text { expressions for } \mathrm{C}_{9 v} \text { and } \mathrm{C}_{10 \mathrm{~A}} \text { yet) }
\end{aligned}
$$

From mw to mb

What does "running" of the Wilson coefficients mean, and what consequences does it have?

Matrix Equation: $C_{i}(\mu)=\sum U_{i j}\left(\mu, m_{W}\right) C_{j}\left(m_{W}\right)$
U: "Evolution Matrix"
QCD corrections $>\underline{\text { Large logs } \& ~ o p e r a t o r ~ m i x i n g ~(~} \mathrm{U}$ is not diagonal)

Examples:
$C_{1}(\mu)=1+\frac{3}{N_{c}} \frac{\alpha_{s}(\mu)}{4 \pi}\left(\ln \frac{M_{\omega}^{2}}{\mu^{2}}-\frac{11}{6}\right)+O\left(\alpha_{s}^{2}\right)$,
$C_{2}(\mu)=-3 \frac{\alpha_{s}(\mu)}{4 \pi}\left(\ln \frac{M_{w}^{2}}{\mu^{2}}-\frac{11}{6}\right)+O\left(\alpha_{s}^{2}\right)$.
Expansion parameter is not really

$$
\alpha_{s} \text { but } \alpha_{s} \ln \left(m_{W}^{2} / \mu^{2}\right)
$$

\square

Large for $\boldsymbol{\mu} \sim \mathbf{m}_{\mathbf{b}} \ll \mathbf{m}_{\mathbf{w}}$

The 'Renormalisation Group Method": sums $\left(\alpha_{s} \ln \left(m_{W} / \mu\right)\right)^{n}$

U_{ij} obtained by solving differential equation ("RGE") analogous to that for other running couplings:
$\frac{d C_{i}}{d \ln \mu}=\gamma_{i j} C_{j}$
The kernels, γ_{ij}, are called the "matrix of anomalous dimension"

Quark-Level Matrix Element

For now, all we shall care about is that the $C_{i}\left(m_{b}\right)$ have been calculated in the theoretical literature with high precision

Not just for SM, but for many scenarios of physics BSM as well.
E.g., SUSY: Ali, Ball, Handoko, Hiller, hep-ph/9910221

$$
\begin{aligned}
\mathscr{M}\left(b \rightarrow s \ell^{+} \ell^{-}\right)=\frac{G_{F} \sqrt{\alpha}}{2 \pi} V_{t s}^{*} V_{t b}[& C_{9 V}\left(m_{b}\right)\left[\bar{s} \gamma^{\mu} \frac{1}{2}\left(1-\gamma_{5}\right) b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right] \\
& +C_{10 A}\left(m_{b}\right)\left[\bar{s} \gamma^{\mu} \frac{1}{2}\left(1-\gamma_{5}\right) b\right]\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right] \\
& \left.-2 \frac{m_{b}}{m_{B}} C_{7_{\gamma}}\left(m_{b}\right)\left[\overline{s i} \sigma^{\mu \nu} \frac{q_{\nu}}{q^{2}} \frac{1}{2}\left(1+\gamma_{5}\right) b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right]\right]
\end{aligned}
$$

Next: add perturbative contributions from other operators
Then: add non-perturbative effects of hadronic resonances
Finally: form factors $\boldsymbol{\rightarrow}$ hadronic matrix elements

Additional Perturbative Contributions

Additional Contributions to \mathbf{O}_{9} :

W-exchange $O_{1,2}: c \bar{c}$ pairs
QCD penguins $O_{3-6}: q \bar{q}$ pairs (u,d,s,c,b)

Buras, M. Münz, Phys. Rev. D52 (1995) 186.
Misiak, Nucl. Phys. B393 (1993) 23; +err. Ibid. B439 (1995) 461

$C_{9 V} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+g_{c}\left(q^{2} ; C_{1-6}\right)+g_{b}\left(q^{2} ; C_{3-6}\right)+g_{u d s}\left(q^{2} ; C_{3-4}\right)+\frac{2}{9}\left(3 C_{3}+C_{4}+3 C_{5}+C_{6}\right)$
Recall: $q^{2}=\left(p_{B}-p_{k}\right)^{2}=\left(p_{t+}+p_{\epsilon}-\right)^{2}$
"Loop functions"
contain $\ln m_{c}^{2} / m_{b}^{2}, \ln q^{2} / m_{b}^{2}, \ln \mu^{2} / m_{b}^{2}$
Question: what do you call a $c \bar{c}$ pair with $q^{2} \sim 4 m_{c}^{2}$, in a spin-1 state?
also contain imaginary parts for $\mathrm{q}^{2}>4 \mathrm{~m}_{\mathrm{q}^{2}}$
Corresponds to on-shell quarks $>$ can propagate over long distances Perturbative calculation is presumably not valid.
Main worry is $\mathbf{g}_{\mathbf{c}}$ since it gets contributions from the $\mathrm{O}(1) \mathrm{C}_{1}$ coefficient

Note also: $C_{7 \gamma} \rightarrow C_{7}^{\mathrm{eff}}=C_{7 \gamma}+C_{5} / 3-C_{6}$

[^0]
Resonances (and other long-distance states)

Which $c \bar{c}$ states are there?

(can add resonances with Breit-Wigner functions + "non-factorizable contributions" in $C_{9}^{\text {eff }}$)
Note: the dilepton q^{2} spectrum is still relatively clean below the $\mathbf{J} / \mathbf{p s i}$

(Non-Factorizable Contributions?)

We so far did not consider multi-hadronic final states

But that is effectively what the $B \rightarrow J / \psi K$ intermediate states are.
The problem of non-factorizable contributions illustrates a general problem that crops up in multi-hadronic processes.

The factorisation ansatz

When including the J / ψ and other $c \bar{c}$ (henceforth ψ_{n}) states as Breit-Wigner distributions in $C_{9}^{\text {eff }}$, we are effectively factoring the process into a $B \rightarrow K$ transition part, and a ψ_{n} creation (and decay) part.

$$
\left\langle K \ell^{+} \ell^{-}\right| \hat{H}|B\rangle \stackrel{\text { ree. }}{\text { ren }}\left\langle\ell^{+} \ell^{-}\right| \hat{H}\left|\psi_{n}\right\rangle\left\langle\psi_{n} K\right| \hat{H}|B\rangle \stackrel{\text { Fact }}{\text { Fat }}\left\langle\ell^{+} \ell^{-}\right| \hat{H}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| \hat{H}|0\rangle\langle K| \hat{H}|B\rangle
$$

The creation \& decay amplitudes for ψ_{n} are proportional to the ψ_{n} decay constant.
Ignores any crosstalk between the J / ψ and $B \rightarrow K$ currents.

Non-factorizable contributions

Long-distance interactions between the (hadronic) J / ψ and $B \rightarrow K$ currents.
Beyond the scope of this course

Hadronic Matrix Element \& Form Factors

We are now ready to look at the hadron-level matrix element

$$
\begin{aligned}
& \mathscr{M}\left(B \rightarrow K \ell^{+} \ell^{-}\right)=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*} {\left[C_{9}^{\text {eff }}\left\langle K\left(p_{K}\right)\right| \bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b\left|B\left(p_{B}\right)\right\rangle\left[\bar{\ell} \gamma_{\mu} \ell\right]\right.} \\
&+C_{10 A}\left\langle K\left(p_{K}\right)\right| \bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b\left|B\left(p_{B}\right)\right\rangle\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right] \\
&\left.-2 \frac{m_{b}}{m_{B}} C_{7}^{\text {eff }}\left\langle K\left(p_{K}\right)\right| \bar{s} i \sigma^{\mu \nu} \frac{q_{\nu}}{q^{2}}\left(1+\gamma_{5}\right) b\left|B\left(p_{B}\right)\right\rangle\left[\bar{\ell} \gamma_{\mu} \ell\right]\right]
\end{aligned}
$$

Similarly to $B \rightarrow D \ell \nu$, the axial part does not contribute in $B \rightarrow K \ell^{+} \ell^{-}$. But we do need a magnetic form factor, due to the C_{7} contribution.

$$
\begin{aligned}
\left\langle K\left(p_{K}\right)\right| \bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b\left|B\left(p_{B}\right)\right\rangle & =f_{+}\left(q^{2}\right)\left(p_{B}+p_{K}\right)^{\mu}+f_{-}\left(q^{2}\right)\left(p_{B}-p_{D}\right)^{\mu} \\
\left\langle K\left(p_{K}\right)\right| \bar{s} i \sigma^{\mu \nu} \frac{q_{\nu}}{q^{2}}\left(1+\gamma_{5}\right) b\left|B\left(p_{B}\right)\right\rangle & =\frac{f_{T}\left(q^{2}\right)}{m_{B}+m_{K}}\left(q^{2}\left(p_{B}+p_{K}\right)^{\mu}-\left(m_{B}^{2}-m_{K}^{2}\right) q^{\mu}\right)
\end{aligned}
$$

K is not a "heavy-light" system $\left(\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{s}} \sim 1\right) \rightarrow$ cannot play Isgur-Wise trick; have to keep both f_{+}and f -

(Example of Form-Factor Parametrisations)

Main method is called 'Light Cone Sum Rules" (LCSR)

The ones below are admittedly rather old; from hep-ph/9910221

$$
F(\hat{s})=F(0) \exp \left(c_{1} \hat{s}+c_{2} \hat{s}^{2}+c_{3} \hat{s}^{3}\right)
$$

Max	f_{+}	f_{0}	f_{T}
$F(0)$	0.371	0.371	0.423
c_{1}	1.412	0.579	1.413
c_{2}	0.261	-0.240	0.247
c_{3}	0.822	0.774	0.742

Min	f_{+}	f_{0}	f_{T}
$F(0)$	0.278	0.278	0.300
c_{1}	1.568	0.740	1.600
c_{2}	0.470	0.080	0.501
c_{3}	0.885	0.425	0.796

(and there are corresponding ones for $B \rightarrow K^{*}$)

The $B \rightarrow K \ell+\ell$ Decay Distribution

Squared matrix element + trace algebra
Exercise: do the steps
$\overline{|\mathscr{M}|^{2}}=\frac{G_{F}^{2} \alpha^{2}}{4 \pi^{2}}\left|V_{t s}^{*} V_{t b}\right|^{2} D\left(q^{2}\right)\left(\lambda\left(m_{B}^{2}, m_{K}^{2}, q^{2}\right)-u^{2}\right)$
With $D\left(q^{2}\right)=\left|C_{9}^{\mathrm{eff}}\left(q^{2}\right)\right| f_{+}\left(q^{2}\right)+\left.\frac{2 m_{b}}{m_{B}+m_{K}} C_{7}^{\mathrm{eff}} f_{T}\left(q^{2}\right)\right|^{2}+\left|C_{10 A}\right|^{2} f_{+}\left(q^{2}\right)^{2}$
And $\quad \lambda(a, b, c)=a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 a c, u \equiv 2 p_{B} \cdot\left(p_{\ell^{+}}-p_{\ell^{-}}\right)$
Note: we assumed lepton mass vanishes $\boldsymbol{\rightarrow} \boldsymbol{n o}$ dependence on f - any more!

Phase Space

Useful Trick: factor $1 \rightarrow 3$ phase space into two $1 \rightarrow 2$ ones using

$$
\int \mathrm{d}^{4} q \delta^{(4)}\left(q-p_{1}-p_{2}\right)=1
$$

Exercise: starting from the standard form of dLIPS for a $1 \rightarrow 3$ decay, show that :

$$
\frac{\mathrm{d} \Gamma_{B \rightarrow K \ell^{+} \ell^{-}}}{\mathrm{d} q^{2} \mathrm{~d} u}=\frac{\overline{|\mathscr{M}|^{2}}}{2^{9} \pi^{3} m_{B}^{3}}
$$

What does data say?

Here just looking at LHCb measurements; From talk by E. Graverini, BEACH 2018 Additional measurements by BaBar and Belle not shown.

Figure 3. (Colours online) Differential branching fraction for various $b \rightarrow s \mu \mu$ transitions measured at LHCb, superimposed to SM predictions [2-5, 40].

For both the K and K^{*} final states, the data is a bit on the low side (compared with SM)?

The Flavour Anomalies Part 2

Regardless of the complications in analysing these decays, we can again also use them as tests of lepton universality

Now, form the two ratios: $\quad R_{K^{(*)}} \equiv \frac{\operatorname{Br}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}$
Expect $\mathrm{R}=1$ in SM (the complicated stuff drops out in the ratio)

.. Interesting ... ! Talk to German about possible new-physics implications ...

Representation in $\mathrm{C}_{9}-\mathrm{C}_{10}$ space

Figure 7. (Colours online) Expected sensitivity to NP contributions in \mathcal{C}_{9} and \mathcal{C}_{10}, shown as 1,2 and 3σ countours, after the LHC Run 2 [48].

(What Approximations did we Make?)

Top Quark Dominance

Low-energy effective theory at quark level

Matched at finite loop order to full theory
Running at finite loop order from m_{w} to m_{b}
Non-leptonic operators contributing to $C_{7}^{\text {eff }}$ and $C_{9}^{\text {eff }}$, but not $C_{10 A}$

Effect of intermediate c-cbar resonances

Non-factorizable contributions
Other hadronic states: light-quark resonances, open charm, ... ?

Form Factors

QED Corrections at Hadronic Level?

[^0]: (*in the scheme used by Buras, Fleischer, hep-ph/9704376)

