Applications and Phenomenology

1. Leptonic Decays of Hadrons: from $\boldsymbol{\pi} \rightarrow \ell \mathbf{v}$ to $\mathbf{B} \rightarrow \ell \mathbf{v}$

QFT in Hadron Decays. Decay Constants. Helicity Suppression in the SM.

2. On the Structure and Unitarity of the CKM Matrix

The CKM Matrix. The GIM Mechanism. CP Violation. The Unitarity Triangle.
3. Introduction to the "Flavour Anomalies": Semi-Leptonic Decays
$\left.B \rightarrow D^{*}\right) \ell v$. The Spectator Model. Form Factors. Heavy Quark Symmetry.
$B \rightarrow K^{(*)} \ell^{+} \ell^{-}$. FCNC. Aspects beyond tree level. Penguins. The OPE.

4. Introduction to Radiative Corrections: B $\rightarrow \boldsymbol{\mu} \mathbf{V} \mathbf{\gamma}$

The (infrared) pole structure of gauge field theory amplitudes.
Collinear and Infrared Safety.

Peter Skands
Monash University - 2020

Recap: Charged-Current Processes at Low Energies

Consider \boldsymbol{W} interactions with quarks ("charged current")

For now, assume free quarks, for simplicity

(will reintroduce effects of confinement later.)

Generic amplitude for W exchange between two fermion currents, $\mathrm{J}_{1}, \mathrm{~J}_{2}$:

$$
\text { (same for leptons*, with } \mathrm{U}=1 \text {) }
$$

*Note I use the word lepton to refer collectively to charged leptons + neutrinos

Recap: The CKM Matrix

$$
U=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
\boxed{1-\frac{1}{2} \lambda^{2}} & \begin{array}{|c|c}
\lambda & \mathcal{O}\left(\lambda^{3}\right) \\
\hline-\lambda & 1-\frac{1}{2} \lambda^{2} \\
\hline \mathcal{A} \lambda^{2} \\
\hline \mathcal{O}\left(\lambda^{3}\right) & --A \lambda^{2} \\
1
\end{array}
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

"Wolfenstein parametrisation", to $\mathrm{O}\left(\lambda^{2}\right)$ with $\lambda \sim 0.23 \sim \sin \theta_{\mathrm{C}}$, and $\mathrm{A} \sim 0.81$
Weak-interaction eigenstates slightly rotated relative to Hamiltonian eigenstates

The CKM elements in Physical Processes

Consequences of CKM Unitarity 1: The GIM Mechanism

S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.

Off-diagonal CKM terms imply amplitudes for processes like:

$\boldsymbol{K}^{\boldsymbol{0}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

Expect $M \propto \mathrm{G}_{\mathrm{F}} \mathrm{V}_{\mathrm{us}} \sim \mathrm{G}_{\mathrm{F}} \sin \theta_{\mathrm{C}}$
Observed to be much more strongly suppressed (BR~10-8)

Historical Note: the absence of the processes discussed on this slide led GIM to predict existence of the charm quark!

Unitarity: $\sum_{j} V_{i j} V_{j k}^{\dagger}=\delta_{j k}$

$$
\text { E.g.,: } V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*} \sim \cos \theta_{C} \sin \theta_{C}-\sin \theta_{C} \cos \theta_{C}=0
$$

Also: $\left\{\begin{array}{l}K^{+}(u \bar{s}) \rightarrow \pi^{+} e^{+} e^{-} \\ K^{+}(u \bar{s}) \rightarrow \pi^{+} \nu \bar{\nu}\end{array}\right.$

Exercise problem E4: draw diagrams analogous to the one above for these two processes and show how the GIM mechanism is at work in them. Hint: One of the incoming quarks is a "spectator"

Consequences of CKM Unitarity 2: The Unitarity Triangle(s)

Write the unitarity constraints explicitly:

$$
\sum_{j} V_{i j} V_{j k}^{\dagger}=\delta_{i k} \quad \text { e.g. } \quad V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

Sum of three complex numbers $=0$

Normalise by $\left|\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}{ }^{*}\right|$:

Recap: The Unitarity Triangle*

This is called "the unitarity triangle"

LHCb

> Exercise problem E5: show mathematically why CPV is only observable in processes with at least two interfering amplitudes with different relative CKM phases.

Note: complex phases $\Rightarrow \mathbf{C P}$ Violation (Note: requires interfering amplitudes)
$>$ Measurements of CPV processes constrain relative phases.

$$
\begin{aligned}
& \alpha=\arg \left[-V_{t d} V_{t b}^{*} / V_{u d} V_{u b}^{*}\right]=\phi_{2} \\
& \beta=\arg \left[-V_{c d} V_{c b}^{*} / V_{t d} V_{t b}^{*}\right]=\phi_{1} \\
& \gamma=\arg \left[-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right]=\phi_{3}
\end{aligned}
$$

Different weak processes probe different combinations of the CKM elements \rightarrow constrain different sides or angles in the triangle.
Overconstrain \rightarrow test SM
(*In principle, each unitarity constraint has its own "triangle" - this is the standard one.)

Constraints on the CKM Triangle

Example: "Our" process, $\mathbf{B} \rightarrow \boldsymbol{\tau} \boldsymbol{v}$, is proportional to $\mid \mathbf{V}_{\mathrm{ub}}{ }^{2}$:

First measured by Belle in 2012

The Current Picture

All determinations of coordinates of top corner ($\bar{\rho}, \bar{\eta}$) self-consistent at this level.

(A puzzle?)

Discrepancies between inclusive and exclusive determinations of $\mathbf{V}_{\mathbf{c b}}$ and $\mathbf{V}_{\mathbf{u b}}$

Inclusive: $B \rightarrow X_{u} \ell v$
Exclusive: $B \rightarrow \pi \ell v$

Summary of Problems and Exercises for Self Study

E4. Draw diagrams for processes on p.5; explain their GIM suppression
E5. Show why CPV is only physically observable in processes with at least two interfering amplitudes with different CKM phases.

E6. Draw the LO Feynman diagrams for (1) $D^{0} \rightarrow K-\pi^{+}$and (2) $D^{0} \rightarrow$ $K^{+} \pi$, and explain the observation that $\Gamma_{(1)} / \Gamma_{(2)} \sim 4 \times 10^{-3}$.

> You will present your progress on these in the next lesson and we will discuss any questions / issues you encounter.

Assignment Problems 1\&2 : the B physics research problems

